Evaluating the Performance of Two NaI(Tl) Detectors Using a Combined Approach of Experiment and Monte Carlo Simulation
Yıl 2024,
, 414 - 425, 30.06.2024
Aydın Yıldırım
,
Gökçe İnal
Öz
The aim of this study is to compare two identical NaI(Tl) detectors under the same conditions to reduce potential sources of error in future experiments. To this end, an experimental setup using both detectors was designed to measure the gamma spectrum of point sources. In order to verify the experimental results, the same setup was conducted by Monte Carlo simulations. The characteristics of the detectors, such as resolution and efficiency, were analyzed simultaneously to obtain possible differences. The resolution and efficiency of the detectors were found to be slightly different when their settings were the same, but within the expected range. The fitted data gave a standard deviation of 20.749±0.00693 keV for detector 1 and 19.698±0.00647 keV for detector 2 at 662 keV. The experimental data showed that one detector had a resolution of 6.9% and the other 7.2%. The simulation results and experimental data are in good agreement. In conclusion, it was observed that the high errors in the experimental data are due to the 20% uncertainty of the point sources.
Teşekkür
We would like to thank Dr. Luciano Pandola for his valuable and useful comments and discussion.
Kaynakça
- Bedir, M.E., Thomadsen, B., Bednarz, B., Development and Characterization of a Handheld Radiation Detector for Radio-Guided Surgery, Radiat. Meas., 135 (2020) 106362.
- Borella, A., Camps, J., Paridaens, J., Vidmar, T., Characterization and Monte Carlo Simulations of a 4-Liter NaI Detection System for Use During Nuclear and Radiological Emergencies and for the Detection of Nuclear Materials, AIP Conf. Proc., 1412 (2011) 335–342.
- Ghosh, C., Nanal, V., Pillay, R., Anoop, K., Dokania, N., Pal, S., et al., Characterization of Paris 〖LaBr〗_3 (Ce)-NaI(Tl) Phoswich Detectors up to E_γ~22 MeV, J. Instrum., 11 (2016) P05023.
- Prieto, E., Casanovas, R., Salvado, M., Calibration and Performance of a Real-Time Gamma-Ray Spectrometry Water Monitor Using a 〖LaBr〗_3 (Ce) Detector, Radiat. Phys. Chem., 144 (2018) 444–450.
- Heranudin, S.M., van Wyngaardt, W., Guatelli, S., Li, E., Rosenfeld, A., Characterization of a Well-Type NaI(Tl) Detector by Means of a Monte Carlo Simulation for Radionuclide Metrology Application, Appl. Radiat. Isot., 176 (2021) 109889.
- Yildirim, A., Solakci, S.O., Eke, C., Boztosun, I., Gamma Spectrometry Measurements of Natural and Artificial Radioactivity of Saklıkent-Antalya and Its Correlation to Quarries, Arab. J. Geosci., 14 (2021) 1–11.
- Akkurt, İ., Arda, S., Gunoglu, K., Variation of Energy Resolution with Distance for a NaI(Tl) Detector, Acta Phys. Pol. A, 128 (2B) (2015a) B–422.
- Akkurt, İ., Gunoglu, K., Arda, S., Detection Efficiency of NaI(Tl) detector in 511–1332 keV Energy Range, Sci. Technol. Nucl. Ins., 2014 (2014) 186798.
- Akkurt, İ., Tekin, H., Mesbahi, A., Calculation of Detection Efficiency for the Gamma Detector Using MCNPX, Acta Phys. Pol. A, 128 (2B) (2015b) 332–334.
- Mouhti, I., Elanique, A., Messous, M., Belhorma, B., Benahmed, A., Validation of a NaI(Tl) and 〖LaBr〗_3 (Ce) Detector’s Models via Measurements and Monte Carlo Simulations, J. Radiat. Res. Appl. Sci., 11 (4) (2018) 335–339.
- Guss, P., Reed, M., Yuan, D., Beller, D., Cutler, M., Contreras, C., et al., Size Effect on Nuclear Gamma-Ray Energy Spectra Acquired by Different Sized 〖CeBr〗_3, 〖LaBr〗_3:Ce, and NaI:Tl Gamma-Ray Detectors, Nucl. Technol., 185 (3) (2014) 309–321.
- Sariyal, R., Mazumdar, I., Sharma, Y., Patel, S., Chavan, P., Ranga, V., et al., Characterization of a Small Volume (1^'×1^') 〖CeBr〗_3 Crystal for γ-Ray Measurements up to 4.4 MeV, J. Instrum., 16 (01) (2021) T01004.
- Akkurt, İ., Waheed, F., Akyildirim, H., Gunoglu, K., Monte Carlo Simulation of a NaI(Tl) Detector Efficiency, Radiat. Phys. Chem., 176 (2020) 109081.
- Yalcin, S., Gurler, O., Kaynak, G., Gundogdu, O., Calculation of Total Counting Efficiency of a NaI(Tl) Detector by Hybrid Monte-Carlo Method for Point and Disk sources, Appl. Radiat. Isot., 65 (10) (2007) 1179–1186.
- Mitra, P., Tyagi, M., Thomas, R., Kumar, A.V., Gadkari, S., Optimization of Parameters for a CsI(Tl) Scintillator Detector Using Geant4-Based Monte Carlo Simulation Including Optical Photon Transport, IEEE T. Nucl. Sci., 66 (7) (2019) 1870–1878.
- Tam, H.D., Yen, N.T.H., Chuong, H.D., Thanh, T.T., et al., Optimization of the Monte Carlo Simulation Model of NaI(Tl) Detector by Geant4 Code, Appl. Radiat. Isot., 130 (2017) 75–79.
- Agostinelli, S., Allison, J., Amako, K.A., Apostolakis, J., Araujo, H., Arce, P., et al., Geant4—A simulation Toolkit, Nucl. Instrum. Methods Phys. Res. A, 506 (3) (2003) 250–303.
- Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P.A., Asai, M., et al., Geant4 Developments and Applications, IEEE T. Nucl. Sci., 53 (1) (2006) 270–278.
- Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., et al., Recent Developments in Geant4, Nucl. Instrum. Methods Phys. Res. A, 835 (2016) 186–225.
- Brun, R., Rademakers, F., Root — an Object Oriented Data Analysis Framework, Nucl. Instrum. Methods Phys. Res. A, 389 (1) (1997) 81-86.
- ROOT, Data Analysis Framework. Available at: https://root.cern/releases/release-62406/. Retrieved September 3, 2021.
- Knoll, G.F., Radiation detection and measurement. 4th Ed. John Wiley & Sons, (2010) 105-121.
- Freitas, E., Fernandes, L., Yahlali, N., Perez, J., Alvarez, V., Borges, F. et al., PMT Calibration of a Scintillation Detector Using Primary Scintillation, J. Instrum., 10 (02) (2015) C02039.
- Demir, N., Kuluozturk, Z.N., Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code, Nucl. Eng. Technol., 53 (2021) 3759-3763.
- Moszynski, M., Balcerzyk, M., Czarnacki, W., Kapusta, M., Klamra, et al., Study of Pure NaI at Room and Liquid Nitrogen Temperatures, IEEE T. Nucl. Sci., 50 (4) (2003) 767-773.
- Oliveira, J.R.B., Moralles, M., Flechas, D., Carbone, D., Cavallaro, M., et al.,, First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case, Eur. Phys. J. A, 56 (5) (2020) 153.
- Cappuzello, F., Agodi, C., Calabretta L., Calvo, D., Carbone, D., et al., The NUMEN Technical Design Report, Int. J. Mod. Phys. A, 36 (30) (2021) 2130018.
Yıl 2024,
, 414 - 425, 30.06.2024
Aydın Yıldırım
,
Gökçe İnal
Kaynakça
- Bedir, M.E., Thomadsen, B., Bednarz, B., Development and Characterization of a Handheld Radiation Detector for Radio-Guided Surgery, Radiat. Meas., 135 (2020) 106362.
- Borella, A., Camps, J., Paridaens, J., Vidmar, T., Characterization and Monte Carlo Simulations of a 4-Liter NaI Detection System for Use During Nuclear and Radiological Emergencies and for the Detection of Nuclear Materials, AIP Conf. Proc., 1412 (2011) 335–342.
- Ghosh, C., Nanal, V., Pillay, R., Anoop, K., Dokania, N., Pal, S., et al., Characterization of Paris 〖LaBr〗_3 (Ce)-NaI(Tl) Phoswich Detectors up to E_γ~22 MeV, J. Instrum., 11 (2016) P05023.
- Prieto, E., Casanovas, R., Salvado, M., Calibration and Performance of a Real-Time Gamma-Ray Spectrometry Water Monitor Using a 〖LaBr〗_3 (Ce) Detector, Radiat. Phys. Chem., 144 (2018) 444–450.
- Heranudin, S.M., van Wyngaardt, W., Guatelli, S., Li, E., Rosenfeld, A., Characterization of a Well-Type NaI(Tl) Detector by Means of a Monte Carlo Simulation for Radionuclide Metrology Application, Appl. Radiat. Isot., 176 (2021) 109889.
- Yildirim, A., Solakci, S.O., Eke, C., Boztosun, I., Gamma Spectrometry Measurements of Natural and Artificial Radioactivity of Saklıkent-Antalya and Its Correlation to Quarries, Arab. J. Geosci., 14 (2021) 1–11.
- Akkurt, İ., Arda, S., Gunoglu, K., Variation of Energy Resolution with Distance for a NaI(Tl) Detector, Acta Phys. Pol. A, 128 (2B) (2015a) B–422.
- Akkurt, İ., Gunoglu, K., Arda, S., Detection Efficiency of NaI(Tl) detector in 511–1332 keV Energy Range, Sci. Technol. Nucl. Ins., 2014 (2014) 186798.
- Akkurt, İ., Tekin, H., Mesbahi, A., Calculation of Detection Efficiency for the Gamma Detector Using MCNPX, Acta Phys. Pol. A, 128 (2B) (2015b) 332–334.
- Mouhti, I., Elanique, A., Messous, M., Belhorma, B., Benahmed, A., Validation of a NaI(Tl) and 〖LaBr〗_3 (Ce) Detector’s Models via Measurements and Monte Carlo Simulations, J. Radiat. Res. Appl. Sci., 11 (4) (2018) 335–339.
- Guss, P., Reed, M., Yuan, D., Beller, D., Cutler, M., Contreras, C., et al., Size Effect on Nuclear Gamma-Ray Energy Spectra Acquired by Different Sized 〖CeBr〗_3, 〖LaBr〗_3:Ce, and NaI:Tl Gamma-Ray Detectors, Nucl. Technol., 185 (3) (2014) 309–321.
- Sariyal, R., Mazumdar, I., Sharma, Y., Patel, S., Chavan, P., Ranga, V., et al., Characterization of a Small Volume (1^'×1^') 〖CeBr〗_3 Crystal for γ-Ray Measurements up to 4.4 MeV, J. Instrum., 16 (01) (2021) T01004.
- Akkurt, İ., Waheed, F., Akyildirim, H., Gunoglu, K., Monte Carlo Simulation of a NaI(Tl) Detector Efficiency, Radiat. Phys. Chem., 176 (2020) 109081.
- Yalcin, S., Gurler, O., Kaynak, G., Gundogdu, O., Calculation of Total Counting Efficiency of a NaI(Tl) Detector by Hybrid Monte-Carlo Method for Point and Disk sources, Appl. Radiat. Isot., 65 (10) (2007) 1179–1186.
- Mitra, P., Tyagi, M., Thomas, R., Kumar, A.V., Gadkari, S., Optimization of Parameters for a CsI(Tl) Scintillator Detector Using Geant4-Based Monte Carlo Simulation Including Optical Photon Transport, IEEE T. Nucl. Sci., 66 (7) (2019) 1870–1878.
- Tam, H.D., Yen, N.T.H., Chuong, H.D., Thanh, T.T., et al., Optimization of the Monte Carlo Simulation Model of NaI(Tl) Detector by Geant4 Code, Appl. Radiat. Isot., 130 (2017) 75–79.
- Agostinelli, S., Allison, J., Amako, K.A., Apostolakis, J., Araujo, H., Arce, P., et al., Geant4—A simulation Toolkit, Nucl. Instrum. Methods Phys. Res. A, 506 (3) (2003) 250–303.
- Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P.A., Asai, M., et al., Geant4 Developments and Applications, IEEE T. Nucl. Sci., 53 (1) (2006) 270–278.
- Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., et al., Recent Developments in Geant4, Nucl. Instrum. Methods Phys. Res. A, 835 (2016) 186–225.
- Brun, R., Rademakers, F., Root — an Object Oriented Data Analysis Framework, Nucl. Instrum. Methods Phys. Res. A, 389 (1) (1997) 81-86.
- ROOT, Data Analysis Framework. Available at: https://root.cern/releases/release-62406/. Retrieved September 3, 2021.
- Knoll, G.F., Radiation detection and measurement. 4th Ed. John Wiley & Sons, (2010) 105-121.
- Freitas, E., Fernandes, L., Yahlali, N., Perez, J., Alvarez, V., Borges, F. et al., PMT Calibration of a Scintillation Detector Using Primary Scintillation, J. Instrum., 10 (02) (2015) C02039.
- Demir, N., Kuluozturk, Z.N., Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code, Nucl. Eng. Technol., 53 (2021) 3759-3763.
- Moszynski, M., Balcerzyk, M., Czarnacki, W., Kapusta, M., Klamra, et al., Study of Pure NaI at Room and Liquid Nitrogen Temperatures, IEEE T. Nucl. Sci., 50 (4) (2003) 767-773.
- Oliveira, J.R.B., Moralles, M., Flechas, D., Carbone, D., Cavallaro, M., et al.,, First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case, Eur. Phys. J. A, 56 (5) (2020) 153.
- Cappuzello, F., Agodi, C., Calabretta L., Calvo, D., Carbone, D., et al., The NUMEN Technical Design Report, Int. J. Mod. Phys. A, 36 (30) (2021) 2130018.