Araştırma Makalesi
BibTex RIS Kaynak Göster

The Strain-Dependent Antimicrobial and Antibiofilm effect of Cis and Trans-Vaccenic Acid against Pseudomonas Aeruginosa

Yıl 2024, , 1 - 7, 28.03.2024
https://doi.org/10.17776/csj.1341700

Öz

This study, it was aimed to investigate the antibacterial and antibiofilm activity of cis and trans-vaccenic acid against Pseudomonas aeruginosa. In the study, four different P. aeruginosa strains were used. Antibacterial activity was determined by microdilution and growth curve. The antibiofilm activity was determined by crystal violet assay. In addition, the effect of vaccenic acids on pyocyanin production was investigated. The minimum inhibitory concentration (MIC) of cis and trans-vaccenic acid against all strains was determined as 128-256 μg/mL, and the minimum biofilm inhibitory concentration (MBIC) value was 8-512 μg/mL. While vaccenic acids reduced cell growth in three strains, they also significantly inhibited pyocyanin production. In one strain, it inhibited biofilm formation without affecting cell growth. As a result, the presence of antibacterial and antibiofilm activity of cis and trans-vaccenic acid against P. aeruginosa was determined as potential agents in the fight against this bacteria.

Kaynakça

  • [1] Majumder A., Rahman S., Cohall D., Bharatha A., Singh K., Haqu, M., Gittens Hilaire M., Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health, Infect Drug Resist., 13 (2020) 4713.
  • [2] Hernando-Amado S., Coque M., Baquero F., Martínez L., Defining and combating antibiotic resistance from One Health and Global Health perspectives, Nat. Microbiol., 4 (9) (2019) 1432-1442.
  • [3] Sharahi Y., Azimi T., Shariati A., Safari H., Tehrani K., Hashemi A., Advanced strategies for combating bacterial biofilms, J. Cell. Physiol., 234 (9) (2019) 14689-14708.
  • [4] Wu H., Moser C., Wang Z., Høiby N., Song J., Strategies for combating bacterial biofilm infections, Int. J. Oral Sci., 7 (1) (2015) 1-7.
  • [5] Pani A., Lucini V., Dugnani S., Scaglione F., Erdosteine enhances antibiotic activity against bacteria within biofilm, Int. J. Antimicrob. Agents., 59 (3) (2022) 106529.
  • [6] Whole health organization, WHO publishes list of bacteria for which new antibiotics are urgently needed, Available at: https://www.who.int/en/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Retrieved: 07.01.2023
  • [7] Abadi A., Rizvanov A., Haertlé T., Blatt L., World Health Organization report: current crisis of antibiotic resistance, BioNanoScience., 9 (4) (2019) 778-788.
  • [8] Bassetti S., Tschudin-Sutter S., Egli A., Osthoff M., Optimizing antibiotic therapies to reduce the risk of bacterial resistance, Eur. J. Intern. Med., 99 (2022) 7-12.
  • [9] Karuppiah V., Seralathan M. Quorum sensing inhibitory potential of vaccenic acid against Chromobacterium violaceum and methicillin-resistant Staphylococcus aureus, World J. Microbiol. Biotechnol., 38 (8) (2022) 1-10.
  • [10] Lim N., Oh J., Wang T., Lee S., Kim H., Kim J., Lee G., Trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells, Nutrients., 6 (2) (2014) 627-36.
  • [11] Kowalska-Krochmal B., Dudek-Wicher R., The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance, Pathogens., 10 (2) (2021) 165.
  • [12] European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Discussion Document Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, Clin Microbiol Infect., 9 (8) (2003) ix-xv.
  • [13] Sterniša M., Sabotič J., Klančnik A., A novel approach using growth curve analysis to distinguish between antimicrobial and anti-biofilm activities against Salmonella, Int. J. Food Microbiol., 364 (2022) 109520.
  • [14] Xu Z., Liang Y., Lin S., Chen D., Li B., Li L., Deng Y., Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification, Curr. Microbiol., 73 (4) (2016) 474-482.
  • [15] Çobanoğlu Ş., Yazici A., Isolation, Characterization, and Antibiofilm Activity of Pigments Synthesized by Rhodococcus sp. SC1. Curr. Microbio., 79 (1) (2022) 1-10.
  • [16] Ganesh S., Rai V., Inhibition of quorum-sensing-controlled virulence factors of Pseudomonas aeruginosa by Murraya koenigii essential oil: a study in a Caenorhabditis elegans infectious model, J. Med. Microbiol., 65 (12) (2016) 1528-1535.
  • [17] El Feghali R., Nawas T., Extraction and purification of pyocyanin: A simpler and more reliable method, MOJ Toxicol., 4 (2018) 417-422.
  • [18] Bernier P., Surette G., Concentration-dependent activity of antibiotics in natural environments, Front Microbiol., 4 (2013) 20.
  • [19] Karygianni L., Ren Z., Koo H., Thurnheer T., Biofilm matrixome: extracellular components in structured microbial communities, Trends Microbiol., 28 (8) (2020) 668-681.
  • [20] Donlan M., Biofilms: microbial life on surfaces, Emerg. Infect. Dis., 8 (9) (2002) 881.
  • [21] Dieltjens L., Appermans K., Lissens M., Lories B., Kim W., Van der Eycken V., Steenackers P., Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy, Nat. Commun., 11 (1) (2020) 1-11.
  • [22] Manyi-Loh C., Mamphweli S., Meyer E., Okoh A., Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications, Molecules., 23 (4) (2018) 795.
  • [23] Ventola L., The antibiotic resistance crisis: part 1: causes and threats, Clin. Pharmacol. Ther., 40 (4) (2015) 277.
  • [24] Qin S., Xiao W., Zhou C., Pu Q., Deng X., Lan L., Wu M., Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics, Signal Transduct Target Ther., 7 (1) (2022) 1-27.
  • [25] Centers for Disease Control and Prevention, COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services, CDC; (2022). Available at: https://www.cdc.gov/drugresistance/covid19.html
  • [26] Hamazaki K., Suzuki N., Kitamura I., Hattori A., Nagasawa T., Itomura M., Hamazaki T., Is vaccenic acid (18: 1t n-7) associated with an increased incidence of hip fracture? An explanation for the calcium paradox, Prostaglandins Leukot. Essent., 109 (2016) 8-12.
  • [27] Stanley‐Samuelson W., Jurenka A., Cripps C., Blomquist J., de Renobales M., Fatty acids in insects: composition, metabolism, and biological significance, Arch. Insect Biochem. Physiol., 9 (1) (1988) 1-33.
  • [28] Ibarguren M., López J., Escribá V., The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health, Biochim Biophys Acta Biomembr BBA., 1838 (6) (2014) 1518-1528.
  • [29] Desbois P., Smith J., Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential, Appl. Microbiol. Biotechnol., 85 (6) (2010) 1629-1642.
  • [30] Karlova T., Polakova L., Šmidrkal J., Filip V., Antimicrobial effects of fatty acid fructose esters, Czech J. Food Sci., 28 (2) (2010) 146-149.
  • [31] Casillas-Vargas G., Ocasio-Malavé C., Medina S., Morales-Guzmán C., Del Valle G., Carballeira M., Sanabria-Ríos J., Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next generation of antibacterial agents, Prog. Lipid Res., 82 (2021) 101093.
  • [32] Petschow W., Batema P., Ford L., Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids, Antimicrob Agents Chemother., 40 (2) (1996) 302-306.
  • [33] Petschow W., Batema P., Talbott D., Ford L., Impact of medium-chain monoglycerides on intestinal colonisation by Vibrio cholerae or enterotoxigenic Escherichia coli, J. Med. Microbiol., 47 (5) (1998) 383-389.
  • [34] Semwal P., Painuli S., Badoni H., Bacheti K., Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichophora A. Camus from Uttarakhand Himalaya, Clin. Phytoscience., 4 (1) (2018) 1-6.
  • [35] Hassett J., Charniga L., Bean K., Ohman E., Cohen S., Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase, Infect. Immun., 60 (2) (1992) 328-336.
  • [36] Kumar P., Lee H., Beyenal H., Lee J., Fatty acids as antibiofilm and antivirulence agents, Trends Microbiol., 28 (9) (2020) 753-768.
  • [37] Ryan P., An Q., Allan H., McCarth Y., Dow M., The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators, PLoS Pathog., 11 (7) (2015) e1004986.
  • [38] Zhou L., Zhang H., Cámara M., He W., The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover, Trends Microbiol., 25 (4) (2017) 293-303.
  • [39] De Bruyn A., Verellen S., Bruckers L., Geebelen L., Callebaut I., De Pauw I., Dubois J., Secondary infection in COVID-19 critically ill patients: a retrospective single-center evaluation, BMC Infect. Dis., 22 (1) (2022) 207.
Yıl 2024, , 1 - 7, 28.03.2024
https://doi.org/10.17776/csj.1341700

Öz

Kaynakça

  • [1] Majumder A., Rahman S., Cohall D., Bharatha A., Singh K., Haqu, M., Gittens Hilaire M., Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health, Infect Drug Resist., 13 (2020) 4713.
  • [2] Hernando-Amado S., Coque M., Baquero F., Martínez L., Defining and combating antibiotic resistance from One Health and Global Health perspectives, Nat. Microbiol., 4 (9) (2019) 1432-1442.
  • [3] Sharahi Y., Azimi T., Shariati A., Safari H., Tehrani K., Hashemi A., Advanced strategies for combating bacterial biofilms, J. Cell. Physiol., 234 (9) (2019) 14689-14708.
  • [4] Wu H., Moser C., Wang Z., Høiby N., Song J., Strategies for combating bacterial biofilm infections, Int. J. Oral Sci., 7 (1) (2015) 1-7.
  • [5] Pani A., Lucini V., Dugnani S., Scaglione F., Erdosteine enhances antibiotic activity against bacteria within biofilm, Int. J. Antimicrob. Agents., 59 (3) (2022) 106529.
  • [6] Whole health organization, WHO publishes list of bacteria for which new antibiotics are urgently needed, Available at: https://www.who.int/en/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Retrieved: 07.01.2023
  • [7] Abadi A., Rizvanov A., Haertlé T., Blatt L., World Health Organization report: current crisis of antibiotic resistance, BioNanoScience., 9 (4) (2019) 778-788.
  • [8] Bassetti S., Tschudin-Sutter S., Egli A., Osthoff M., Optimizing antibiotic therapies to reduce the risk of bacterial resistance, Eur. J. Intern. Med., 99 (2022) 7-12.
  • [9] Karuppiah V., Seralathan M. Quorum sensing inhibitory potential of vaccenic acid against Chromobacterium violaceum and methicillin-resistant Staphylococcus aureus, World J. Microbiol. Biotechnol., 38 (8) (2022) 1-10.
  • [10] Lim N., Oh J., Wang T., Lee S., Kim H., Kim J., Lee G., Trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells, Nutrients., 6 (2) (2014) 627-36.
  • [11] Kowalska-Krochmal B., Dudek-Wicher R., The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance, Pathogens., 10 (2) (2021) 165.
  • [12] European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Discussion Document Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, Clin Microbiol Infect., 9 (8) (2003) ix-xv.
  • [13] Sterniša M., Sabotič J., Klančnik A., A novel approach using growth curve analysis to distinguish between antimicrobial and anti-biofilm activities against Salmonella, Int. J. Food Microbiol., 364 (2022) 109520.
  • [14] Xu Z., Liang Y., Lin S., Chen D., Li B., Li L., Deng Y., Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification, Curr. Microbiol., 73 (4) (2016) 474-482.
  • [15] Çobanoğlu Ş., Yazici A., Isolation, Characterization, and Antibiofilm Activity of Pigments Synthesized by Rhodococcus sp. SC1. Curr. Microbio., 79 (1) (2022) 1-10.
  • [16] Ganesh S., Rai V., Inhibition of quorum-sensing-controlled virulence factors of Pseudomonas aeruginosa by Murraya koenigii essential oil: a study in a Caenorhabditis elegans infectious model, J. Med. Microbiol., 65 (12) (2016) 1528-1535.
  • [17] El Feghali R., Nawas T., Extraction and purification of pyocyanin: A simpler and more reliable method, MOJ Toxicol., 4 (2018) 417-422.
  • [18] Bernier P., Surette G., Concentration-dependent activity of antibiotics in natural environments, Front Microbiol., 4 (2013) 20.
  • [19] Karygianni L., Ren Z., Koo H., Thurnheer T., Biofilm matrixome: extracellular components in structured microbial communities, Trends Microbiol., 28 (8) (2020) 668-681.
  • [20] Donlan M., Biofilms: microbial life on surfaces, Emerg. Infect. Dis., 8 (9) (2002) 881.
  • [21] Dieltjens L., Appermans K., Lissens M., Lories B., Kim W., Van der Eycken V., Steenackers P., Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy, Nat. Commun., 11 (1) (2020) 1-11.
  • [22] Manyi-Loh C., Mamphweli S., Meyer E., Okoh A., Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications, Molecules., 23 (4) (2018) 795.
  • [23] Ventola L., The antibiotic resistance crisis: part 1: causes and threats, Clin. Pharmacol. Ther., 40 (4) (2015) 277.
  • [24] Qin S., Xiao W., Zhou C., Pu Q., Deng X., Lan L., Wu M., Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics, Signal Transduct Target Ther., 7 (1) (2022) 1-27.
  • [25] Centers for Disease Control and Prevention, COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services, CDC; (2022). Available at: https://www.cdc.gov/drugresistance/covid19.html
  • [26] Hamazaki K., Suzuki N., Kitamura I., Hattori A., Nagasawa T., Itomura M., Hamazaki T., Is vaccenic acid (18: 1t n-7) associated with an increased incidence of hip fracture? An explanation for the calcium paradox, Prostaglandins Leukot. Essent., 109 (2016) 8-12.
  • [27] Stanley‐Samuelson W., Jurenka A., Cripps C., Blomquist J., de Renobales M., Fatty acids in insects: composition, metabolism, and biological significance, Arch. Insect Biochem. Physiol., 9 (1) (1988) 1-33.
  • [28] Ibarguren M., López J., Escribá V., The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health, Biochim Biophys Acta Biomembr BBA., 1838 (6) (2014) 1518-1528.
  • [29] Desbois P., Smith J., Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential, Appl. Microbiol. Biotechnol., 85 (6) (2010) 1629-1642.
  • [30] Karlova T., Polakova L., Šmidrkal J., Filip V., Antimicrobial effects of fatty acid fructose esters, Czech J. Food Sci., 28 (2) (2010) 146-149.
  • [31] Casillas-Vargas G., Ocasio-Malavé C., Medina S., Morales-Guzmán C., Del Valle G., Carballeira M., Sanabria-Ríos J., Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next generation of antibacterial agents, Prog. Lipid Res., 82 (2021) 101093.
  • [32] Petschow W., Batema P., Ford L., Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids, Antimicrob Agents Chemother., 40 (2) (1996) 302-306.
  • [33] Petschow W., Batema P., Talbott D., Ford L., Impact of medium-chain monoglycerides on intestinal colonisation by Vibrio cholerae or enterotoxigenic Escherichia coli, J. Med. Microbiol., 47 (5) (1998) 383-389.
  • [34] Semwal P., Painuli S., Badoni H., Bacheti K., Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichophora A. Camus from Uttarakhand Himalaya, Clin. Phytoscience., 4 (1) (2018) 1-6.
  • [35] Hassett J., Charniga L., Bean K., Ohman E., Cohen S., Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase, Infect. Immun., 60 (2) (1992) 328-336.
  • [36] Kumar P., Lee H., Beyenal H., Lee J., Fatty acids as antibiofilm and antivirulence agents, Trends Microbiol., 28 (9) (2020) 753-768.
  • [37] Ryan P., An Q., Allan H., McCarth Y., Dow M., The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators, PLoS Pathog., 11 (7) (2015) e1004986.
  • [38] Zhou L., Zhang H., Cámara M., He W., The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover, Trends Microbiol., 25 (4) (2017) 293-303.
  • [39] De Bruyn A., Verellen S., Bruckers L., Geebelen L., Callebaut I., De Pauw I., Dubois J., Secondary infection in COVID-19 critically ill patients: a retrospective single-center evaluation, BMC Infect. Dis., 22 (1) (2022) 207.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Natural Sciences
Yazarlar

Ayşenur Yazıcı 0000-0002-3369-6791

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 11 Ağustos 2023
Kabul Tarihi 31 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yazıcı, A. (2024). The Strain-Dependent Antimicrobial and Antibiofilm effect of Cis and Trans-Vaccenic Acid against Pseudomonas Aeruginosa. Cumhuriyet Science Journal, 45(1), 1-7. https://doi.org/10.17776/csj.1341700