Research Article
BibTex RIS Cite

Electrochemical Study of Clopidogrel and its Determination in Pharmaceutical Preparations Using Square Wave Voltammetry

Year 2023, , 430 - 435, 29.09.2023
https://doi.org/10.17776/csj.1282586

Abstract

In the present study, the electroanalytical behaviour of clopidogrel was investigated by cyclic voltammetry method. The procedure was based on clopidogrel being electrochemically oxidized at a platinum electrode in nonaqueous solutions. At 1.93 V, the oxidation peak was noted. It was discovered that clopidogrel's oxidation was diffusion-controlled. Additionally, a quick and easy SWV approach was developed and validated in this work to determine clopidogrel in pharmaceutical preparations. At concentrations between 5 and 50 µg/mL, the calibration curve was linear. The precision was given by relative standard deviation and was less than 2.73%. Accuracy was given with relative error and did not exceed 3.89%. In pharmaceutical preparations, clopidogrel had an average recovery of 100.1%. Under the chosen experimental conditions, no interference was found. The suggested method is extremely accurate and precise. Therefore, the method is applicable to the measurement of clopidogrel in pharmaceutical formulations.

References

  • [1] Nurden A.T., Nurden P., Sanchez M., Andia I., Anitua E., Platelets and Wound Healing, Front Biosci., 13(9) (2008) 3532-3548.
  • [2] Hernandez Hernandez R., Carvajal A.R., Guerrero Pajuelo J., Armas de Hernandez M.J., Armas Padilla M.C., Barragan O., Boada J.J., Roa E., The Effect of Doxazosin on Platelet Aggregation in Normotensive Subjects and Patients with Hypertension: An in Vitro Study, Am. Heart J., 121(1) (1991) 389-394.
  • [3] Davi G., Patrono C., Platelet Activation and Atherothrombosis, N. Engl. J. Med., 357(24) (2007) 2482-2494.
  • [4] Watson S.P., Auger J.M., McCarty O.J., Pearce A.C., GPVI and Integrin Alphaiib Beta3 Signaling in Platelets, J. Thromb Haemost., 3(8) (2005) 1752-1762.
  • [5] Namrata K., Prashant P., Sunil A., Role of micronutrients in Heart Diseases, Int. J. Curr. Pharm. Res., 13(5) (2021) 1-5.
  • [6] Epstein F.H., Fuster V., Badimon L., Badimon J.J., Chesebro J.H., The pathogenesis of Coronary Artery Disease and the Acute Coronary Syndromes, N. Engl. J. Med., 326(4) (1992) 242-250.
  • [7] El Haouari M., Rosado J.A., Medicinal Plants with Antiplatelet Activity. Phytother. Res., 30(7) (2016) 1059-1071.
  • [8] Rada F.H., Antiplatelet Adequacy of Cyclopentyl Triazolopyrimidine versus Clopidogrel in-Patients with Coronary Heart Disease, Asian J. Pharm. Clin. Res., 11(12) (2018) 536-539.
  • [9] Mazyed E.A., Zakaria S., Enhancement of Dissolution Characteristics of Clopidogrel Bisulphate by Proniosomes, Int. J. Appl. Pharm., 11(2) (2019) 77-85.
  • [10] Deshkar S.S., Pawara A.S., Shirolkar S.V., Formulation and Optimization of Floating Tablets of Clopidogrel Bisulfate using Design of Experiments, Int. J. Appl. Pharm., 10(6) (2018) 94-102.
  • [11] Shifrin M.M., Widmar S.B., Platelet Inhibitors, Nurs. Clin. North Am., 51(1) (2016) 29-43.
  • [12] Suhas G., Venkatamahesh R., Development and Validation of a Derivative UV-Spectrophotometric Method for Quantitative Estimation of Clopidogrel Bisulfate in Bulk and Pharmaceutical Dosage Form, Int. J. Chem. Res., 4 (2012) 497-501.
  • [13] Jain H.K., Deore D.D., Bioanalytical Method Development and Validation for Estimation of Clopidogrel Bisulfate in Human Plasma by RP-HPLC, Int. J. Appl. Pharm., 8(4) (2018) 18-21.
  • [14] Lagorce P., Perez Y., Ortiz J., Necciari J., Bressole F., Assay Method for the Carboxylic Acid Metabolite of Clopidogrel in Human Plasma by Gas Chromatography Mass-Spectrometry, J. Chromatogr B: Biomed. Sci. Appl., 720 (1998) 107-117.
  • [15] Venkanna B., Shreedhara C., Ajitha M., Rapid and Rugged Bioanalytical Method Development and Validation Clopidogrel in Human Plasma using Liquid Chromatography/Tandem Mass Spectroscopy, Am. J. PharmTech. Res., 1(2) (2011) 66-80.
  • [16] Harahap Y., Maysyarah I., Analytical Validation of Clopidogrel in Human Plasma through Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry, Int. J. Appl. Pharm.,9(1) (2017) 163-167.
  • [17] Laviron E., Roullier L., Degrand C., A Multilayer Model for the Study of Space Distributed Redox Modified Electrodes: Part II. Theory and Application of Linear Potential Sweep Voltammetry for a Simple Reaction, J. Electroanal. Chem., 112 (1980) 11-23.
  • [18] Yilmaz B., Ekinci D., Voltammetric Behavior of Carvedilol in Non-Aqueous Media and its Analytical Determination in Pharmaceutical Preparations, Rev. Anal. Chem., 30 (2011) 187-193.
  • [19] The European Agency for the Evaluation of Medicinal Products. ICH Topic Q2B Note for Guideline on Validation of Analytical Procedures: Methodology GPMP/ICH/281/95 (1996).
  • [20] The United States Pharmacopoeia, Thirtieth Revision, and The National Formulary, 25th ed., Rockville, USA, (2007) 1802-1805.
Year 2023, , 430 - 435, 29.09.2023
https://doi.org/10.17776/csj.1282586

Abstract

References

  • [1] Nurden A.T., Nurden P., Sanchez M., Andia I., Anitua E., Platelets and Wound Healing, Front Biosci., 13(9) (2008) 3532-3548.
  • [2] Hernandez Hernandez R., Carvajal A.R., Guerrero Pajuelo J., Armas de Hernandez M.J., Armas Padilla M.C., Barragan O., Boada J.J., Roa E., The Effect of Doxazosin on Platelet Aggregation in Normotensive Subjects and Patients with Hypertension: An in Vitro Study, Am. Heart J., 121(1) (1991) 389-394.
  • [3] Davi G., Patrono C., Platelet Activation and Atherothrombosis, N. Engl. J. Med., 357(24) (2007) 2482-2494.
  • [4] Watson S.P., Auger J.M., McCarty O.J., Pearce A.C., GPVI and Integrin Alphaiib Beta3 Signaling in Platelets, J. Thromb Haemost., 3(8) (2005) 1752-1762.
  • [5] Namrata K., Prashant P., Sunil A., Role of micronutrients in Heart Diseases, Int. J. Curr. Pharm. Res., 13(5) (2021) 1-5.
  • [6] Epstein F.H., Fuster V., Badimon L., Badimon J.J., Chesebro J.H., The pathogenesis of Coronary Artery Disease and the Acute Coronary Syndromes, N. Engl. J. Med., 326(4) (1992) 242-250.
  • [7] El Haouari M., Rosado J.A., Medicinal Plants with Antiplatelet Activity. Phytother. Res., 30(7) (2016) 1059-1071.
  • [8] Rada F.H., Antiplatelet Adequacy of Cyclopentyl Triazolopyrimidine versus Clopidogrel in-Patients with Coronary Heart Disease, Asian J. Pharm. Clin. Res., 11(12) (2018) 536-539.
  • [9] Mazyed E.A., Zakaria S., Enhancement of Dissolution Characteristics of Clopidogrel Bisulphate by Proniosomes, Int. J. Appl. Pharm., 11(2) (2019) 77-85.
  • [10] Deshkar S.S., Pawara A.S., Shirolkar S.V., Formulation and Optimization of Floating Tablets of Clopidogrel Bisulfate using Design of Experiments, Int. J. Appl. Pharm., 10(6) (2018) 94-102.
  • [11] Shifrin M.M., Widmar S.B., Platelet Inhibitors, Nurs. Clin. North Am., 51(1) (2016) 29-43.
  • [12] Suhas G., Venkatamahesh R., Development and Validation of a Derivative UV-Spectrophotometric Method for Quantitative Estimation of Clopidogrel Bisulfate in Bulk and Pharmaceutical Dosage Form, Int. J. Chem. Res., 4 (2012) 497-501.
  • [13] Jain H.K., Deore D.D., Bioanalytical Method Development and Validation for Estimation of Clopidogrel Bisulfate in Human Plasma by RP-HPLC, Int. J. Appl. Pharm., 8(4) (2018) 18-21.
  • [14] Lagorce P., Perez Y., Ortiz J., Necciari J., Bressole F., Assay Method for the Carboxylic Acid Metabolite of Clopidogrel in Human Plasma by Gas Chromatography Mass-Spectrometry, J. Chromatogr B: Biomed. Sci. Appl., 720 (1998) 107-117.
  • [15] Venkanna B., Shreedhara C., Ajitha M., Rapid and Rugged Bioanalytical Method Development and Validation Clopidogrel in Human Plasma using Liquid Chromatography/Tandem Mass Spectroscopy, Am. J. PharmTech. Res., 1(2) (2011) 66-80.
  • [16] Harahap Y., Maysyarah I., Analytical Validation of Clopidogrel in Human Plasma through Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry, Int. J. Appl. Pharm.,9(1) (2017) 163-167.
  • [17] Laviron E., Roullier L., Degrand C., A Multilayer Model for the Study of Space Distributed Redox Modified Electrodes: Part II. Theory and Application of Linear Potential Sweep Voltammetry for a Simple Reaction, J. Electroanal. Chem., 112 (1980) 11-23.
  • [18] Yilmaz B., Ekinci D., Voltammetric Behavior of Carvedilol in Non-Aqueous Media and its Analytical Determination in Pharmaceutical Preparations, Rev. Anal. Chem., 30 (2011) 187-193.
  • [19] The European Agency for the Evaluation of Medicinal Products. ICH Topic Q2B Note for Guideline on Validation of Analytical Procedures: Methodology GPMP/ICH/281/95 (1996).
  • [20] The United States Pharmacopoeia, Thirtieth Revision, and The National Formulary, 25th ed., Rockville, USA, (2007) 1802-1805.
There are 20 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Natural Sciences
Authors

Bilal Yılmaz 0000-0002-8574-7570

Semih Yılmaz 0009-0000-9629-8849

Publication Date September 29, 2023
Submission Date April 13, 2023
Acceptance Date September 1, 2023
Published in Issue Year 2023

Cite

APA Yılmaz, B., & Yılmaz, S. (2023). Electrochemical Study of Clopidogrel and its Determination in Pharmaceutical Preparations Using Square Wave Voltammetry. Cumhuriyet Science Journal, 44(3), 430-435. https://doi.org/10.17776/csj.1282586