Araştırma Makalesi
BibTex RIS Kaynak Göster

Polimer Elektrolit Membran Yakıt Hücresinin Dolaylı Sodyum Borhidrür İle Çalıştırılması

Yıl 2021, Cilt: 11 Sayı: 2, 1 - 16, 29.12.2021

Öz

Proton değişim membranı (PEM) yakıt hücreleri, son zamanlarda geleneksel motorlar için ümit vaat eden bir malzeme olarak büyük bir ilgi görmüştür. PEM yakıt hücre performansının, çalışma sıcaklığı ve gaz akışlarının nemlendirilmesi gibi birçok parametreden etkilendiği bilinmektedir. Bu çalışmada, Pt/C destekli tek hücreli PEM yakıt hücresi üretimi ve uygulaması için bir deney tasarımı dizayn edildi. PEM yakıt pilinin performans testleri, yakıt pili hücre çalışma sıcaklığı ve katalizör miktarları parametrelerine bağlı olarak incelendi. Farklı yakıt hücresi sıcaklıklarında ve farklı katalizör miktarlarında polarizasyon eğrileri elde edildi. Elde edilen veriler sonucunda; Co-B katalizörü için ideal voltaja göre %88, güce göre %56 ve Ni-B katalizörü kullanılarak gerçekleştirilen deneylerin sonucunda ise, ideal voltaja göre verim %83 ve güce göre verim ise %54 olarak hesaplandı.

Destekleyen Kurum

Siirt Üniversitesi BAP birimi

Proje Numarası

2017-SİÜSYO-31

Teşekkür

Yazarlar finansal destek için BAP’a (proje numarası 2017-SİÜSYO-31) teşekkür ederler.

Kaynakça

  • Amirinejad, M., Rowshanzamir, S., MohammadEikani, H., 2006, Effects of operating parameters on performance of a proton exchange membrane fuel cell, Journal Power Sources, 161, 2, 872.
  • Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Petillo, K.J., 2000, A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst, International Journal of Hydrogen Energy, 25, 10, 969-75.
  • Bauen, D.H., 2000, Assessment of the environmental benefits of transport and stationary fuel cells,Journal Power Sources, 86, 2, 482.
  • Bilodeau, A., Agbossou K., 2006, Control analysis of renewable energy system with hydrogen storage for residential applications,Journal Power Sources, 162, 2, 757.
  • Buxbaum, R., Lei H., 2003, Power output and load following in a fuel cell fueled by membrane reactor hydrogen,Journal Power Sources, 123, 1, 43.
  • Ceraolo, M., Miulli, C., Pozio, A., 2003, Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description,Journal Power Sources, 113, 1, 131.
  • Costamagana, P., Srinivasan, S., 2001, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects, Journal Power Sources, 102, 1, 242.
  • Das, V., Padmanaban, S., Venkitusamy, K., Selvamuthukumaran, R., Blaabjerg, F., Siano, P. 2017, Recent advances and challenges of fuel cell based power system architectures and control–A review. Renewable and Sustainable Energy Reviews, 73, 10-18.
  • Dinçer, K., 2013, Pem Yakıt Hücresinin Katod Tarafı Performansının Geliştirilmesi, Selçuk-Teknik Dergisi, 12, 2. Dincer, K., Şahin, O., Yayla, S., Avcı, A., 2014, Anot tarafı elektrospin metodu ile YSZ+SDC+nacaniboile kaplanmış PEM yakıt hücresinin performansının deneysel olarak incelenmesi, Selçuk Üniversitesi.
  • ELSayed,Y., Khairia, E. A., Moataz, H. K., 2010, Lumped Model for Proton Exchange Membrane Fuel Cell (PEMFC),International Journal of. Electrocheical Science, 5, 267.
  • Hoşgün, Seda,. “Kobalt ve Nikel İçerikli Destekli Katalizörlerin Sentezi, Karakterizasyonu ve Sodyum Borhidrürden Hidroliz Tepkimesi ile Hidrojen Üretiminde Kullanılması”, Doktora tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, 2018.
  • Kothari, R., Buddhi, D., Sawhney, R.L., 2008, Comparison of environmental and economic aspects of various hydrogen production methods,Renewable and Sustainable Energy Reviews,12, 2, 553-63.
  • Lang, C., Jia, Y., Liu, J., Wang, H., Ouyang, L., Zhu, M., 2017, NaBH4 regeneration from NaBO2 by high-energy ball milling and its plausible mechanism, International Journal of Hydrogen Energy, 42, 18, 13127-35.
  • Mattos, L.V., Jacobs, G., Davis, B.H., Noronha, F.B., 2012, Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation,Chemical Review,112, 7, 4094-4123.
  • Moises, B. R., Araceli, R. P., Andres, R. C., J. Antonio, R. M., Omar, S. F., Antonio, G. G., Ignacio, C. V., 2007, Study of the Flow Fluids and Design Engineering Under PEM Fuel Cell Working Conditions, International Journal of. Electrocheical Science, 2, 820. Moises, B. R., Araceli, R. P., Antonio, R. M., Belen, T. P., Roberto, G.V., 2009, Effect of a Rigid Gas Diffusion Media Applied as Distributor of Reagents in a PEMFC in Operation, Part I: Dry Gases. International Journal of. Electrocheical Science, 4, 1754.
  • Okur, Osman, “Doğrudan Sodyum Borhidrürlü Yakıt Pili Anot ve Katot Elektrokatalizörünün Sentezi ve Karakterizasyonu”, Doktora tezi, Hacatepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2012.
  • Patel, N., Fernandes, R., Miotello, A., (2009). Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: a kinetic study,Journal Power Sources, 188, 1, 411-20.
  • Patel, N., Fernandes, R., Miotello, A., (2010). Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution, Journal Catalysis, 271,2, 315-324.
  • Rodatz, P., Büchi, F., Onder, C., Guzzela, L., (2004). Operational aspects of a large PEFC stack under practical conditions,Journal Power Sources, 128, 1,208.
  • Rongzhong, J., Deryn, C.,(2001). Voltage–time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge, Journal Power Sources, 92, 1, 193.
  • Srinivasan, S., Velev, O. A., Parthasarathy, A., Manko, D. J., Appleby, A. J., (1991). High energy efficiency and high power density proton exchange membrane fuel cells—electrode kinetics and mass transport, Journal Power Sources, 36, 1, 299.
  • Şahin, Ö., İzgi, M.S., Kaya, M., Saka, C., (2015). Effect of Microwave Irradiation on a Co-B Based Catalyst for Hydrogen Generation by Hydrolysis of NaBH4 Solution, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,37, 5, 462-467.
  • Tang, H., Wang, S., Pan, M., Jıang, S.P., Ruan, Y., (2007). Performance of DMFC’s prepared by hot-pressed MEA and catalyst-coated membrane (CCM), Electrochimita Acta, 52, 5, 3714-3718.
  • Wang, L., Husar, A., Zhou, T., Liu, H.,(2003). A parametric study of PEM fuel cell performances,International Journal of Hydrogen Energy, 28, 11, 1263
  • Xiaochen, Y., Biao, Z., Andrzej, S.,(2005). Water and thermal management for Ballard PEM fuel cell stack,Journal Power Sources, 147, 2, 184.
  • Vielstich, W., Lamm, A. G., (2003). Handbook of Fuel cells, Fundamentals technology and applications, Electrocatalysis, Wiley, Volume 2.
  • Yan, Q., Toghiani, H., Causey, H., (2006).Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes,Journal Power Sources, 161, 1, 492.
  • Yılmaz, A., Şefik, S., (2017). Sodyum Borhidrür (NaBH4) Destekli Bir Hidrojen/Hava PEM Yakıt Hücresi İle Elektrik Üretiminin Deneysel Analizi, Batman Üniversitesi Yaşam Bilimleri Dergisi, 7, (2); 216-227.
  • Yılmaz, A., Şefik, S., Yakut, R., (2019). Cell-Based Experimental Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC), BEÜ Fen Bilimleri Dergisi, 8, 4, 1446-1457.

Polymer Electrolyte Membrane Fuel Cell Indirect Operation with Sodium Borohydride

Yıl 2021, Cilt: 11 Sayı: 2, 1 - 16, 29.12.2021

Öz

Proton exchange membrane (PEM) fuel cells have drew great notice of last years as a promising modification for traditional engines. The performance of PEM fuel cells is known to be affected by many parameters such as operating temperature and humidification of the gas streams. In the present study, an experimental design for the production and application of Pt / C supported single cell PEM fuel cell was designed. The performance tests of the PEM fuel cell were examined depending on the fuel cell operating temperature and catalyst amounts parameters. Polarization curves were obtained by using different amounts of catalysts and different fuel cell operating temperatures. As a result of the data obtained; As a result of the experiments carried out using the Ni-B catalyst for the Co-B catalyst, 88% relative to the ideal voltage, 56% based on the power and the efficiency based on the Ni-B catalyst, the efficiency was calculated as 83% and the yield based on the power was 54%. In addition, ideal voltage values were measured between 0.87 volts and 1.1 volts.

Proje Numarası

2017-SİÜSYO-31

Kaynakça

  • Amirinejad, M., Rowshanzamir, S., MohammadEikani, H., 2006, Effects of operating parameters on performance of a proton exchange membrane fuel cell, Journal Power Sources, 161, 2, 872.
  • Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Petillo, K.J., 2000, A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst, International Journal of Hydrogen Energy, 25, 10, 969-75.
  • Bauen, D.H., 2000, Assessment of the environmental benefits of transport and stationary fuel cells,Journal Power Sources, 86, 2, 482.
  • Bilodeau, A., Agbossou K., 2006, Control analysis of renewable energy system with hydrogen storage for residential applications,Journal Power Sources, 162, 2, 757.
  • Buxbaum, R., Lei H., 2003, Power output and load following in a fuel cell fueled by membrane reactor hydrogen,Journal Power Sources, 123, 1, 43.
  • Ceraolo, M., Miulli, C., Pozio, A., 2003, Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description,Journal Power Sources, 113, 1, 131.
  • Costamagana, P., Srinivasan, S., 2001, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects, Journal Power Sources, 102, 1, 242.
  • Das, V., Padmanaban, S., Venkitusamy, K., Selvamuthukumaran, R., Blaabjerg, F., Siano, P. 2017, Recent advances and challenges of fuel cell based power system architectures and control–A review. Renewable and Sustainable Energy Reviews, 73, 10-18.
  • Dinçer, K., 2013, Pem Yakıt Hücresinin Katod Tarafı Performansının Geliştirilmesi, Selçuk-Teknik Dergisi, 12, 2. Dincer, K., Şahin, O., Yayla, S., Avcı, A., 2014, Anot tarafı elektrospin metodu ile YSZ+SDC+nacaniboile kaplanmış PEM yakıt hücresinin performansının deneysel olarak incelenmesi, Selçuk Üniversitesi.
  • ELSayed,Y., Khairia, E. A., Moataz, H. K., 2010, Lumped Model for Proton Exchange Membrane Fuel Cell (PEMFC),International Journal of. Electrocheical Science, 5, 267.
  • Hoşgün, Seda,. “Kobalt ve Nikel İçerikli Destekli Katalizörlerin Sentezi, Karakterizasyonu ve Sodyum Borhidrürden Hidroliz Tepkimesi ile Hidrojen Üretiminde Kullanılması”, Doktora tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, 2018.
  • Kothari, R., Buddhi, D., Sawhney, R.L., 2008, Comparison of environmental and economic aspects of various hydrogen production methods,Renewable and Sustainable Energy Reviews,12, 2, 553-63.
  • Lang, C., Jia, Y., Liu, J., Wang, H., Ouyang, L., Zhu, M., 2017, NaBH4 regeneration from NaBO2 by high-energy ball milling and its plausible mechanism, International Journal of Hydrogen Energy, 42, 18, 13127-35.
  • Mattos, L.V., Jacobs, G., Davis, B.H., Noronha, F.B., 2012, Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation,Chemical Review,112, 7, 4094-4123.
  • Moises, B. R., Araceli, R. P., Andres, R. C., J. Antonio, R. M., Omar, S. F., Antonio, G. G., Ignacio, C. V., 2007, Study of the Flow Fluids and Design Engineering Under PEM Fuel Cell Working Conditions, International Journal of. Electrocheical Science, 2, 820. Moises, B. R., Araceli, R. P., Antonio, R. M., Belen, T. P., Roberto, G.V., 2009, Effect of a Rigid Gas Diffusion Media Applied as Distributor of Reagents in a PEMFC in Operation, Part I: Dry Gases. International Journal of. Electrocheical Science, 4, 1754.
  • Okur, Osman, “Doğrudan Sodyum Borhidrürlü Yakıt Pili Anot ve Katot Elektrokatalizörünün Sentezi ve Karakterizasyonu”, Doktora tezi, Hacatepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2012.
  • Patel, N., Fernandes, R., Miotello, A., (2009). Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: a kinetic study,Journal Power Sources, 188, 1, 411-20.
  • Patel, N., Fernandes, R., Miotello, A., (2010). Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution, Journal Catalysis, 271,2, 315-324.
  • Rodatz, P., Büchi, F., Onder, C., Guzzela, L., (2004). Operational aspects of a large PEFC stack under practical conditions,Journal Power Sources, 128, 1,208.
  • Rongzhong, J., Deryn, C.,(2001). Voltage–time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge, Journal Power Sources, 92, 1, 193.
  • Srinivasan, S., Velev, O. A., Parthasarathy, A., Manko, D. J., Appleby, A. J., (1991). High energy efficiency and high power density proton exchange membrane fuel cells—electrode kinetics and mass transport, Journal Power Sources, 36, 1, 299.
  • Şahin, Ö., İzgi, M.S., Kaya, M., Saka, C., (2015). Effect of Microwave Irradiation on a Co-B Based Catalyst for Hydrogen Generation by Hydrolysis of NaBH4 Solution, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,37, 5, 462-467.
  • Tang, H., Wang, S., Pan, M., Jıang, S.P., Ruan, Y., (2007). Performance of DMFC’s prepared by hot-pressed MEA and catalyst-coated membrane (CCM), Electrochimita Acta, 52, 5, 3714-3718.
  • Wang, L., Husar, A., Zhou, T., Liu, H.,(2003). A parametric study of PEM fuel cell performances,International Journal of Hydrogen Energy, 28, 11, 1263
  • Xiaochen, Y., Biao, Z., Andrzej, S.,(2005). Water and thermal management for Ballard PEM fuel cell stack,Journal Power Sources, 147, 2, 184.
  • Vielstich, W., Lamm, A. G., (2003). Handbook of Fuel cells, Fundamentals technology and applications, Electrocatalysis, Wiley, Volume 2.
  • Yan, Q., Toghiani, H., Causey, H., (2006).Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes,Journal Power Sources, 161, 1, 492.
  • Yılmaz, A., Şefik, S., (2017). Sodyum Borhidrür (NaBH4) Destekli Bir Hidrojen/Hava PEM Yakıt Hücresi İle Elektrik Üretiminin Deneysel Analizi, Batman Üniversitesi Yaşam Bilimleri Dergisi, 7, (2); 216-227.
  • Yılmaz, A., Şefik, S., Yakut, R., (2019). Cell-Based Experimental Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC), BEÜ Fen Bilimleri Dergisi, 8, 4, 1446-1457.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makale
Yazarlar

Arzu Ekinci 0000-0002-3068-8657

Ömer Şahin 0000-0003-4575-3762

Sabit Horoz 0000-0002-3238-8789

Proje Numarası 2017-SİÜSYO-31
Yayımlanma Tarihi 29 Aralık 2021
Gönderilme Tarihi 24 Haziran 2021
Kabul Tarihi 2 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Ekinci, A., Şahin, Ö., & Horoz, S. (2021). Polimer Elektrolit Membran Yakıt Hücresinin Dolaylı Sodyum Borhidrür İle Çalıştırılması. Batman Üniversitesi Yaşam Bilimleri Dergisi, 11(2), 1-16.