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Abstract. The algorithms that extract keypoints and descriptors in augmented reality applications are getting 

more and more important  in terms of performance. Criterions like time and correct matching of points gain 

more impact according to the type of application. In this paper, the performance of the algorithms used to 

identify an image using keypoint and descriptor extraction is  studied. In the context of this research, main 

criterion like the number of keypoints and descriptors that the algorithms extract, algorithm execution time, and 

the quality of keypoints and descriptors extracted are considered as the performance metrics. Same data stacks 

were used for obtaining comparison results. In addition to comparisons for a group of well-known augmented 

reality applications, the best performing algorithms for varying applications were also suggested. C++ language 

and OpenCV library were used for the implementation of the augmented reality algorithms compared. 

Keywords: Augmented Reality, Image Processing, Key Point, Descriptor. 

Artırılmış Gerçeklik Algoritmalarının Öznitelik Çıkarma 

Performanslarının Karşılaştırmalı Analizi 

Özet. Artırılmış gerçeklik uygulamalarında kullanılan anahtar nokta ve öznitelik çıkaran algoritmalar 

performansları açısından önem teşkil etmektedirler. Uygulamanın türüne göre zaman, noktaların doğru 

eşleşmesi gibi kriterler önem kazanmaktadır. Bu makalede artırılmış gerçeklik uygulamalarında  kullanılan ve 

bir resmi tanımak amacı ile resim üzerinde anahtar nokta ve öznitelik bulunması için uygulanan algoritmaların 

performansları  incelenmiştir. Çalışma kapsamında,  algoritmaların çıkarabildiği anahtar nokta sayısı, öznitelik 

sayısı,  algoritmanın çalışması sırasında geçen süre, iki resmin eşleştirilmesi sırasında çıkartılan anahtar nokta 

ve özniteliklerin kaliteleri gibi ana kriterler incelenmiştir.  Karşılaştırma sonuçlarının elde edilmesinde,  aynı 

veri kümeleri kullanılmıştır.  Bu çalışmada, iyi bilinen bir grup artırılmış gerçeklik algoritması incelenerek 

performanslarının karşılaştırılmasının yanında, farklı uygulamalar için kullanılabilecek algoritmalar hakkında 

da önerilerde bulunulmuştur.  Artırılmış gerçeklik algoritmalarının karşılaştırılması için C++ dili ve OpenCV 

kütüphaneleri kullanılmıştır. 

Anahtar Kelimeler Artırılmış Gerçeklik, Görüntü İşleme, Anahtar Nokta, Öznitelik. 

 

1. INTRODUCTION  

Augmented reality is the result of combining real 

data and computer generated sound, images, 

graphics and location information in the world  

 

we live in. [1]. In other words, it is the 

enrichment of reality with virtual data in 

computer environment [2, 3]. Various methods 
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are used to recognize the actual images in the 

virtual environment. In order to recognize an 

image from the real world, there are qualified 

points on the image. 

Descriptors of a feature are extracted with 

respect to some of the basic properties of this 

point (pixels) and other points around it. The dots 

on the image that have the feature value for that 

image are then used for virtual recognition of this 

image. Thus, in the virtual environment, a person 

has the values of the picture that they want to be 

recognized. The user can compare the picture 

that he has previously extracted and wanted to 

recognize with the other pictures taken from the 

camera. A “threshold" value should be 

determined during the matching phase. 

Otherwise, if the features taken from the camera 

and extracted from a picture that we do not want 

to recognize actually match the features of the 

picture that is intended to be recognized, a wrong 

match will be made. After setting the threshold 

value, it is possible to match the image to be 

recognized with the images taken from the 

camera. One of the methods used to extract key 

points and features on the image is the Oriented 

Fast and Rotated Brief (ORB) algorithm [4]. 

ORB is a binary algorithm. Within the scope of 

this paper, one of the reasons why ORB 

algorithm is compared with other methods is the 

opinion that it is faster than basic algorithms in 

the literature which extract some key points and 

features. The fact that ORB is based on binary 

descriptor and that pairing between two pictures 

happens while performing matching, supports 

the idea that it is faster than other methods. 

In the literature, fps (frame per second), the 

number of key points extracted on one image, the 

number of features extracted on one image and 

the number of features matched correctly 

between the two images are used to compare the 

algorithms used in the extraction of key points 

and features [5-10]. This work will be based on 

the criteria mentioned. At the end of this study, 

the algorithms used for augmented reality an 

developed for the recognition of an image will be 

compared and their performance will be 

benchmarked. At the end of the study, the 

algorithms used for augmented reality and 

developed for the recognition of an image will be 

compared and their performance will be 

benchmarked. Moreover, some suggestions on 

the usage areas will be made. 

2.  COMPARED ALGORITHMS  

Keypoint is a pixel that has a specific meaning on 

an image. In calculating the key point, various 

algorithms can be applied depending on the type 

of application. The ORB algorithm [4] uses the 

FAST [11, 12] algorithm in the background when 

calculating the key points on the image. The 

FAST algorithm basically calculates the key 

points by targeting the corners on the image. 

There may be many meaningless pixels on the 

picture. These insignificant pixels cause loss of 

performance within augmented reality. 

Therefore, it is important to identify and process 

key points. However, in some cases, key points 

may not make sense alone. Feature values should 

be calculated while matching the key points on 

the picture taken from the real world with the 

picture that is required to be recognized within 

the context of augmented reality. Thus, when 

pairing the two images, more accurate matches 

can be made with the feature values of the key 

points extracted from the objects to be 

recognized. 

Feature can be defined as scalable and observable 

information obtained from the image [13, 14]. 

Feature extraction removes a significant set of 

features by discarding unnecessary information 

[15]. Feature extraction aims to reduce 

processing time by reducing the size of high-

dimensional data. Using this data as it is in image 

processing applications increases processing 

complexity. Feature extraction is an important 

part of augmented reality applications in terms of 

application performance [16]. It aims to increase 

the recognition success by expressing the 

information of the pattern in the smallest 

dimension with the most prominent features [17]. 

Dimension reduction is performed by extracting 

unnecessary information that is irrelevant to the 

pattern and obtaining specific properties. This 

process aims to create a more selective set by 
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obtaining a subset of the feature set using 

different methods. The algorithms to be 

compared in this study will perform feature 

extraction. As a result of feature extraction, 

algorithms will be compared according to criteria 

such as time, correct matching, number of 

features.  

2.1. Method Oriented Fast & Rotated BRIEF 

Oriented Fast and Rotated Brief (ORB) [4], 

proposed by Ethan Rublee, Vincent Rabaud, 

Kurt Konolige, and Gary R. Bradski, is an 

effective algorithm alternative for SIFT [18] or 

SURF [19]. ORB is basically a combination of 

the FAST [11, 12] key point and BRIEF [20] 

descriptor, but it also incorporates many 

performance-enhancing modifications. Oriented 

FAST and rotated BRIEF techniques are 

interesting because of their good performance 

and low costs. ORB first finds key points using 

FAST, then applies the Harris corner measure to 

find the top N points between them [21]. ORB 

also uses the pyramid to produce multi-scale 

features. With the method called rBRIEF [22], it 

searches for all possible binary tests to find high 

variance, as well as averages close to 0.5, as well 

as non-correlated ones. 

2.2. Scale-Invariant Feature Transform 

Scale-Invariant Feature Transform (SIFT) [18] is 

an algorithm proposed by David Lowe for 

identifying and describing regional features in an 

image. The key points are extracted by the SIFT 

sensor and their descriptors are calculated by the 

SIFT descriptor. The SIFT sensor or SIFT 

descriptor can also be used independently of each 

other (such as calculating key points without 

descriptors or calculating descriptors without 

special key points) [23]. Along with linked 

descriptors, SIFT has created a new field of 

research on image-based matching and 

recognition with many application areas. Multi-

image matching, object recognition, object 

category classification and robotics are among 

the known uses of this algorithm [24]. 

2.3. Speeded Up Robust Feature 

The Speed Up Robust Feature (SURF) is a 

powerful regional feature sensor presented by 

Herbert Bay and friends, which can be used in 

computer image tasks such as object recognition 

or 3D reconstruction [19]. SURF is partly 

inspired by the SIFT [18] descriptor, but the 

standard versions of SURF work much faster 

than SIFT. It is also stated that SURF is more 

powerful than SIFT against different image 

transformations. SURF is based on the sum of 2D 

Haar small wave elements and enables the 

effective use of integral images [19]. In addition, 

SURF was advanced over SIFT by applying box 

filter approximation to the convolution kernel of 

the Gaussian derivative operator. Experiments 

on camera calibration and object identification 

also reveal that SURF has a large potential for 

computer vision applications [25]. 

2.4. Fast Retina Keypoint  

Fast Retina Keypoint (FREAK) is a key point 

descriptor presented by Alexandre Alahi and 

friends. [26]. The creation of FREAK was 

inspired by the human visual system and the 

retina. The cascading of binary sequences is 

calculated by effective comparison of image 

densities on the retinal sampling pattern. In their 

experiments, Alexander Alahi and colleagues 

showed that FREAK was generally more 

powerful and faster in computing with lower 

memory load than SIFT [18], SURF [19] or 

BRISK [27]. FREAK is therefore considered to 

be a competitive alternative to existing 

algorithms, especially for embedded applications 

[27]. 

3. EXPERIMENTS AND RESULTS  

In order to analyze the performance of the 

algorithms, a framework has been developed in 

Visual Studio 2012 using C ++ language and 

OpenCV library. This application can run the 

algorithms ORB [4], SURF [19], SIFT [18] and 

FREAK [26]. The application first reads a fixed 

image and extracts key points and features from 

that image. The key values and features of this 

image will then be used for comparison for each 

image (frame) taken from a video taken with the 

camera. In the next step, the application reads a 

video for use in comparing algorithms. The 

prepared video is a video of the first fixed picture  

taken from different heights and angles.  
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The prepared video is used separately for each 

algorithm. Thus, it was considered to obtain the 

correct values. After reading the prepared video, 

the application takes individual pictures 

(frames). The key points and feature values are 

extracted from these images (frames) as in the 

fixed image. These extracted feature values are 

then assigned to a matching function with the 

feature values extracted from the fixed image. 

This allows you to see if the features match 

correctly. The application calculates the duration 

of each function for all algorithms. 

 

Figure 1. Fixed Image with Key Points Features                 

Used in Testing 

The image to be used as a fixed image is shown 

in Figure 1 and it is taken to video to be used in 

augmented reality subjects. In the testing phase 

and taken into the video is an image used in 

augmented reality subjects. The number of edges 

on the image, the plurality of curves, the richness 

of key points and features are the main reasons 

for the selection of said image. 

 

Figure 2. Screen Shot Taken During Application Run 

During the operation of the application, key 

points and features are extracted from the fixed 

picture (Figure 1) and the pictures are taken from 

the video (frame) to be given to the matching 

function. In addition, key points that provide the 

threshold value are shown (Figure 2). Moreover, 

the number of the picture (frame) taken from the 

video, the number of key points and features that 

the algorithm generates for that picture (frame), 

and the number of features matching the 

threshold value are shown. There are 576 images 

(frames) in the video used to compare the 

algorithms. The threshold values 50, 100, 120 

and 150 were used in the test procedures. The bit-

based features are included in the comparison 

process, and as a result, the fs below the threshold 

value are calculated. Features below the 

threshold value correspond to a more accurate 

comparison result. As the threshold value 

increases, the number of matching features 

increases for algorithms. 

As can be seen from the results in Table 1, the 

SIFT algorithm is the longest-running algorithm 

when the threshold is 50. However, the SIFT 

algorithm also provides the most accurate 

matchings. ORB algorithm is the fastest working 

algorithm according to the results. However, in 

the matching of features, SIFT and SURF 

algorithms gave worse results. From the results, 

the FREAK algorithm is both relatively slow and 

has poor results in the feature matching phase. 

One of the main reasons why the SIFT and SURF 

algorithms are slower than the ORB algorithm is 

the time it takes to extract key points and 

features. In Figure 3, the application algorithm is 

run for threshold 50 and the slowest running 

algorithm is observed as SIFT. ORB is the fastest 

completing algorithm. While the SIFT algorithm 

takes 1.182 seconds, the ORB algorithm 

performs key point and feature extraction in an 

average of 0.016 seconds, or the SURF algorithm 

it is 0.172 seconds and for the FREAK algorithm 

it is 0.655 seconds. Figure 4 shows the key and 

feature extraction times of the algorithms for 

threshold 50. According to the results, while the 

fastest running algorithm is ORB, the slowest 

running algorithm is SIFT. Figure 5 shows that 

the SIFT algorithm is most prominent with 

matching. The SURF algorithm has the most 

features matching after SIFT. Because the 

threshold value is 50; while the ORB algorithm 

performed 0.458 matching in an average picture 

(frame), the FREAK algorithm performed 0 

matching. As can be seen from the results in 

Table 2, when the threshold value is given 120, 

the algorithm that runs the slowest and performs 

the highest number of matches, such as the 
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results obtained at the threshold value 50, is 

SIFT. 

  

Figure 3: Total Execution Time for Threshold Value 50. 

 

 

 

Figure 5: Average Number of Feature Matches for 

Threshold Value 50. 

The ORB has more number of matches than 

SURF, according to the results observed at the 

threshold 50. ORB is seen to run faster than the 

other three algorithms. When matching numbers 

are compared, SURF has more feature matching 

numbers than other algorithms. FREAK was 

unable to match the feature in addition to running 

slowly. According to the results in the threshold  

 

Figure 4: Average Time Spent for Key Point and Feature 

Extraction for Threshold Value 50 

 

 

 

value 50, the number of SURF algorithm 

matching features decreased. In Figure 6, the 

application algorithm threshold is run for 100 

and the slowest running algorithm is observed as 

SIFT. ORB was the fastest completing 

algorithm. ORB completes the application in 

38.541 seconds, while SIFT completes the 

application in 701.598 seconds (~ 11 minutes). 

For SURF, this time is 129.537 seconds, while 

FREAK finishes the application in 405.680 

seconds. In order to obtain the results shown in 

Figure 7, the application worked with the 

threshold 100. SIFT takes an average of 1.159 

seconds to extract key points and features from a 

picture (frame). This time directly affects the 

performance of the application. ORB is the 

fastest algorithm, as in the results with a 

threshold of 50, and takes an average of 0.015 

seconds to extract key points and features from 

an image. SURF performs the processing in an 

Table 1: Algorithm Performance for Threshold Value 50 

  ORB SIFT SURF FREAK 

Base image keypoint size: 

Base image time for keypoint extracting (seconds): 

Base image descriptor size: 

Base image time for descriptor extracting (seconds): 

Base Image Total Feature & Descriptor Extracting Time (seconds): 

Total Time (seconds): 

Average Execute Time (seconds): 

Total  Feature Extracting Time (seconds): 

Average  Feature Extracting Time (seconds): 

Total Descriptor Extracting Time (seconds): 

Average Descriptor Extracting Time (seconds): 

Total Feature & Descriptor Extracting Time (seconds): 

Average Feature & Descriptor Extracting Time (seconds): 

Total Match Time (seconds): 

Average Match Time (seconds): 

Total Draw Time (seconds): 

Average Draw Time (seconds): 

Average Match Size: 

NULL 251 268 251 

NULL 0.761 0.114 0.764 

253 

0.018 

0.018 

38.120 

0.066 

NULL 

NULL 

9.259 

0.016 

9.259 

0.016 

5.075 

0.008 

7.216 

0.012 

0.458 

251 

0.496 

1.257 

714.094 

1.239 

393.397 

0.682 

287.975 

0.499 

681.372 

1.182 

6.415 

0.011 

9.625 

0.016 

68.151 

268 

0.113 

0.227 

127.543 

0.221 

52.961 

0.091 

46.550 

0.080 

99.511 

0.172 

4.773 

0.008 

6.895 

0.011 

17.644 

227 

0.085 

0.849 

404.836 

0.702 

371.75 

0.645 

5.821 

0.010 

377.571 

0.655 

4.574 

0.007 

5.895 

0.010 

0 
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acceptable time of 0.169 seconds. FREAK, like 

SIFT, has been working for a long time to affect 

performance. In Figure 8, the application 

threshold is run for 100 and the features extracted 

by the algorithms are compared with the features 

extracted from the base image and divided by the 

total number of frames, the average feature 

matching numbers are obtained. SIFT 

demonstrates the advantage of slow operation 

here. SIFT obtained an average number of 

feature matching of 123.11 images from the end 

of the video. ORB and SURF have very close 

matches. The SURF gave results close to the 

threshold value 50, while ORB increased the 

number of feature matching from 0.458 to 

18.946. 

 

Figure 6: Total Execution Time for Threshold Value 100. 

 

Figure 7: Average Time Spent for Key Point and Feature 

Extraction for Threshold Value 100 

 

Figure 8: Average Number of Feature Matches for  

Threshold Value 100 

 

As can be seen from the results in Table 2, when 

the threshold value is given 120, the slowest 

running algorithm is the SIFT as in the other 

threshold values. ORB, as the fastest running 

algorithm, has also increased the number of 

feature matchings obtained at threshold 100. 

FREAK was unable to match the feature in 

addition to running slowly. SURF completed the 

implementation within a reasonable time and 

again achieved an acceptable number of matches. 

In Figure 9, the application threshold is run for 

120 and the slowest running algorithm is 

observed as SIFT. ORB is the fastest completing 

algorithm. ORB completed the application in 

42,048 seconds, while SIFT completed the 

application in as long as 719.802 seconds (~ 11 

minutes). SURF has completed the application in 

a suitable time of 125.222 seconds. FREAK 

completed the application in 423,282 seconds. 

 
Figure 9: Total Execution Time for Threshold Value 120. 

 

 
Figure 10: Average Time Spent for Key Point and Feature  

Extraction for Threshold Value 120 

 

 
Figure 11: Average Number of Feature Matches for  

Threshold Value 120 
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In Figure 10, the application is run and divided 

by the total number of frames (frames), the 

average time taken for a picture taken from the 

video is calculated for the key point and feature. 

While ORB completed key-point and feature 

extraction operations in a very small average 

time of 0.016, SIFT performed this operation on 

average for 1.183 seconds for an image, which 

means that an SIFT-powered application would 

run slowly. SURF completes key point and 

feature extraction in an acceptable average time 

of 0.167 seconds. FREAK completes key point 

and feature extraction in approximately 0.670 

seconds.  In Figure 11, the application is operated 

for the threshold 120. ORB increased the number 

of feature matches from 18.946 to 101.916  

 

 

compared to the threshold 100. ORB removes an 

average of 253 features from an image and 

matches 101,916 of these features. SIFT can 

match an average of 189,159 features. SURF has 

maintained the 17,644 feature matching counts 

of threshold 100 for threshold 120. FREAK did 

not match any features. As the results in Table 3 

show, when the threshold is set to 150, the 

slowest running algorithm is SIFT. ORB, as the 

fastest running algorithm, has increased the 

number of feature matches at threshold 120. 

FREAK has a very low number of features as 

well as slow operation. SURF completed the 

application within an acceptable time and 

matched the number of features obtained at the 

threshold 120. 

 

Table 3: Algorithm Performance for Threshold Value 150. 

Table 2: Algorithm Performance for Threshold Value 120. 

  ORB SIFT SURF FREAK 

Base image keypoint size: 

Base image time for keypoint extracting (seconds): 

Base image descriptor size: 

Base image time for descriptor extracting (seconds): 

Base Image Total Feature & Descriptor Extracting Time (seconds): 

Total Time (seconds): 

Average Execute Time (seconds): 

Total  Feature Extracting Time (seconds): 

Average  Feature Extracting Time (seconds): 

Total Descriptor Extracting Time (seconds): 

Average Descriptor Extracting Time (seconds): 

Total Feature & Descriptor Extracting Time (seconds): 

Average Feature & Descriptor Extracting Time (seconds): 

Total Match Time (seconds): 

Average Match Time (seconds): 

Total Draw Time (seconds): 

Average Draw Time (seconds): 

Average Match Size: 

NULL 251 268 251 

NULL 0.782 0.088 0.079 

253 

0.018 

0.018 

42.048 

0.073 

NULL 

NULL 

9.429 

0.016 

9.429 

0.016 

5.972 

0.010 

11.876 

0.020 

101.916 

251 

0.512 

1.294 

719.802 

1.249 

390.273 

0.677 

291,465 

0.506 

681.738 

1.183 

5.870 

0.010 

15.504 

0.026 

189.159 

268 

0.073 

0.161 

125.222 

0.217 

50.569 

0.087 

45.786 

0.079 

96.355 

0.167 

4.389 

0.007 

7.010 

0.012 

17.644 

227 

0.085 

0.864 

423.282 

0.734 

380.600 

0.660 

5.875 

0.010 

386.475 

0.670 

5.136 

0.009 

6.026 

0.010 

0.000 

  ORB SIFT SURF FREAK 

Base image keypoint size: 

Base image time for keypoint extracting (seconds): 

Base image descriptor size: 

Base image time for descriptor extracting (seconds): 

Base Image Total Feature & Descriptor Extracting Time (seconds): 

Total Time (seconds): 

Average Execute Time (seconds): 

Total  Feature Extracting Time (seconds): 

Average  Feature Extracting Time (seconds): 

Total Descriptor Extracting Time (seconds): 

Average Descriptor Extracting Time (seconds): 

Total Feature & Descriptor Extracting Time (seconds): 

Average Feature & Descriptor Extracting Time (seconds): 

Total Match Time (seconds): 

Average Match Time (seconds): 

Total Draw Time (seconds): 

Average Draw Time (seconds): 

Average Match Size: 

NULL 251 251 251 

NULL 0.782 0.759 0.766 

253 

0.018 

0.018 

49.391 

0.085 

NULL 

NULL 

9.241 

0.016 

9.241 

0.016 

8,017 

0.013 

18.369 

0.031 

248.876 

251 

0.512 

1.294 

719.802 

1.249 

390.273 

0.677 

291,465 

0.506 

681.738 

1.183 

5.870 

0.010 

15.504 

0.026 

189.159 

251 

0.493 

1.252 

699.518 

1.214 

371.997 

0.645 

286.577 

0.497 

658.574 

1.143 

5.096 

0.008 

18.826 

0.032 

250.737 

227 

0.086 

0.852 

412.129 

0.715 

378.546 

0.657 

5.875 

0.010 

384.421 

0.667 

4.896 

0.008 

6.104 

0.010 

0.029 
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 Tosun / Cumhuriyet Sci. J., Vol.40-4 (2019) 958-966  

 

4.  CONCLUSIONS 

According to the results obtained, ORB is the 

fastest working algorithm. SIFT has the highest 

value in feature extraction criteria. Increasing the 

threshold value causes the fall of feature matching 

quality. In other words, increasing the threshold 

value causes the number of matching features 

generated by the algorithms to increase. As a result 

of this work, it was observed that SIFT and SURF 

performed more accurate feature matches. ORB 

has better results than the other three algorithms in 

terms of FPS (frame per second) time. In addition 

to being a slow algorithm like SIFT, FREAK is not 

successful in feature matching. Although SURF is 

relatively slow compared to ORB, it cannot provide 

feature matches such as SIFT. If it is an application 

where the simultaneous pictures taken from a 

camera are processed or pictures taken from a 

video are processed; extracting features for each 

image may cause a slowdown. If the desired 

number of features is matched on the picture, the 

feature may not be matched again on the next 

picture to be processed. Instead, features matched 

in the previous picture can be given to the follow-

up phase depending on the type of application; 

thus, time can be saved as the follow-up phase runs 

faster than the feature matching phase. At this 

point, it is important to note that the key points that 

are processed as a result of feature matching during 

the follow-up phase are correctly matched key 

points. As a result, ORB works faster than the other 

three algorithms compared, and fewer features 

match with SIFT and SURF. Algorithm selection 

with respect to the application area of the 

augmented reality application to be implemented 

would be beneficial. For example, if a mobile 

application is to be realized, time will be an 

important criterion and ORB will give a good 

performance in this regard. SIFT or SURF will be 

more appropriate in high performance applications 

where time is not critical and correct feature 

matching is more important. 
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