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Abstract. Let 𝔐𝑖 and Γ𝑖 (𝑖 = 1,2) be abelian groups such that 𝔐𝑖 is a Γ𝑖-ring. An ordered pair (𝜑, 𝜙) of 

mappings is called a multiplicative isomorphism of 𝔐1 onto 𝔐2 if they satisfy the following properties:  (i) 𝜑 

is a bijective mapping from 𝔐1 onto 𝔐2,  (ii) 𝜙 is a bijective mapping from Γ1 onto Γ2 and  (iii) 𝜑(𝑥𝛾𝑦) =
𝜑(𝑥)𝜙(𝛾)𝜑(𝑦) for every 𝑥, 𝑦 ∈ 𝔐1 and 𝛾 ∈ Γ1. We say that the ordered pair (𝜑, 𝜙) of mappings is  additive 

when 𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦), for all 𝑥, 𝑦 ∈ 𝔐1. In this paper we establish conditions on 𝔐1 that assures that 

(𝜑, 𝜙) is additive.  
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Gamma Halkalarında Çarpımsal Dönüşümler 

Özet. 𝔐𝑖 ve Γ𝑖 (𝑖 = 1,2) değiştirmeli grup ve 𝔐𝑖 bir Γ𝑖-halka olsun. Aşağıdaki özellikler sağlanırsa 

dönüşümlerin  (𝜑, 𝜙) sıralı ikilisine 𝔐1 den 𝔐2 üzerine çarpımsal izomorfizm denir: (i) 𝜑, 𝔐1 den 𝔐2, üzerine 

bijektif dönüşümdür.  (ii) 𝜙, Γ1 den Γ2 üzerine bijektif dönüşümdür. (iii) Her 𝑥, 𝑦 ∈ 𝔐1 ve 𝛾 ∈ Γ1.için 𝜑(𝑥𝛾𝑦) =
𝜑(𝑥)𝜙(𝛾)𝜑(𝑦) dir ve Her 𝑥, 𝑦 ∈ 𝔐1 için 𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦), olduğunda dönüşümlerin (𝜑, 𝜙) sıralı 

ikilisine toplamsaldır denir. Bu makalede 𝔐1 üzerinde (𝜑, 𝜙) nin toplamsallığını garanti edecek koşulları 

vereceğiz.  

Anahtar Kelimeler: Çarpımsal dönüşümleri, Toplamsallık, Gamma halkaları. 
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1. INTRODUCTION AND PRELIMINARIES 

N. Nobusawa [1] introduced the concept of a -ring which is called the -ring in the sense of 

Nobusawa. He obtained an analogue of the Wedderburn’s Theorem for -rings with minimum 

condition on left ideals. W. E. Barnes [2] gave the definition of a -ring as a generalization of a ring 

and he also developed some other concepts of -rings such as -homomorphism, prime and primary 

ideals, m-systems etc. -rings are closely related to others ternary structures as ternary algebras, 

associative triple systems and associative pairs, which have been extensively studied see [3], [4] and 

[5]. 

Let  and  be two abelian groups. If there exists a mapping  (the image of 

 is denoted by  where  and ). We call  a  -ring if the following 

conditions are satisfied:   

    1.    
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   2.    

   3.    

    4.    

for all  and  

A nonzero element  is called a multiplicative -identity of  or  -unity element (for some 

) if  for all . A nonzero element  is called a  -idempotent (for 

some ) if  and a  nontrivial -idempotent if it is a -idempotent different from 

multiplicative -identity element of . 

Let  and  be two abelian groups such that  is a -ring and  a nontrivial -idempotent. 

Let us consider  and  two -additive maps verifying the conditions 

 and . Let us denote , 

, ,  and suppose 

 for all  and . Then  and 

, for all  and , allowing us to write  and  as 

a direct sum of subgroups  where   

called  Peirce decomposition of  relative to , satisfying the multiplicative relations:   

    1.   ;  

    2.   if  .  

 For the reader interested in the Peirce decomposition of -rings we indicate [6]. If  and  are 

subsets of a -ring  and  we denote  the subset of  consisting of all finite sums of 

the form  where   and . A  right ideal (resp., left ideal) of a -ring  

is an additive subgroup  of  such that  (resp., ). If  is both a right and a left 

ideal of , then we say that  is an  ideal or  two-side ideal of . 

An ideal  of a -ring  is called  prime if for any ideals ,  implies that  

or . A -ring  is said to be  prime if the zero ideal is prime. 

Theorem 1.1 [7, Theorem 4] If  is a -ring, the following conditions are equivalent:   

 1.   is a prime -ring;  

 2.  if  and , then  or .  

 Let  and   be abelian groups such that  is a -ring . An ordered pair 

 of mappings is called a  multiplicative isomorphism of  onto  if they satisfy the 

following properties:   

 1.   is a bijective mapping from  onto ;  

 2.   is a bijective mapping from  onto ;  

  3.   for all  and .  

 We say that a multiplicative isomorphism  of  onto  is  additive when 

 for all  

 

2. GAMMA RINGS AND THE MULTIPLICATIVE ISOMORPHISMS 

The study of the question of when a multiplicative isomorphism is additive has become an active 

research area in associative ring theory. In this case, one often tries to establish conditions on the ring 
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which assures the additivity of every multiplicative isomorphism defined on it. The first result in this 

direction is due to Martindale III [8] who obtained a pioneer result in 1969, where in his condition 

requires that the ring possesses idempotents. In recent papers [9],[10] Ferreira has studied the 

additivity of elementary maps and multiplicative derivation on Gamma rings. This motivated us in the 

present paper we investigate the problem of when a multiplicative isomorphism is additive for the 

class of gamma rings. 

Let us state our main theorem. 

Theorem 2.1  Let  be a -ring containing a family  of nontrivial -idempotents 

which satisfies:   

    1.  If  is such that  then ;  

    2.  If  is such that  for all  then  (and hence  implies 

);  

    3.  For each  and  if  then 

Then any multiplicative isomorphism  of  onto an arbitrary gamma ring is additive.  

The following lemmas have the same hypotheses of Theorem 2.1 and we need these lemmas for 

the proof of this theorem. Thus, let us consider  a nontrivial -idempotent of  

and . 

Lemma 2.1   

 Proof. Since  is onto, we can choose  such that  Thus 

 

Lemma 2.2    

 Proof. First assume that  and  Since  is onto, let  be an element of 

 such that . For arbitrary  and   we have 

Hence  In a similar way, for   we get 

that  It follows that  

  (1) 

 where . Next, for arbitraries  and   we 

have 

840 



 

  

Ferreira, Ferreira / Cumhuriyet Sci. J., Vol.40-4 (2019) 838-845 

which implies  In a similar way, we get that 

 Hence  

  (2) 

 where , by condition  (i) of the Theorem. From (1) and (2), we 

have , where , which implies 

 and resulting in  by condition  (i) of the Theorem. 

Now assume that  and  Again, we may find an element  of  such that 

 For arbitraries  and   we have 

It follows that  In a similar way, for arbitraries  and 

  we get that  This implies  

  (3) 

 where . Next, for arbitraries  and   we 

have 

It follows that  In a similar way, for arbitraries  and 

  we get that  which implies  

  (4) 

 where , by condition  (i) of the Theorem. From (3) and (4) we have 

 which implies  resulting in 

 by condition  (ii) of the Theorem. 

Similarly, we prove the remaining cases.  

Lemma 2.3     

 Proof. First, let us note that  

. 
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Hence 

, by Lemma 2.2.  

Lemma 2.4   is additive on .  

 Proof. Let  and choose  such that , 

where . For an arbitrary   we have 

which implies . It follows that . In a similar 

way, for an arbitrary   we get that . 

Hence  

  (5) 

 where . Now, for an arbitrary element   we 

have 

, by Lemma 2.3. It follows that  Next, for an arbitrary 

element   we have 

, by Lemma 2.2. It follows that . Hence  

  (6) 

 where , by condition  (i) of the Theorem. From (5) and (6) we have 

 which implies  and resulting in 

, by condition  (i) of the Theorem.  

Lemma 2.5   is additive on   
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 Proof. Let  and choose  such that , 

where . Firstly, let us note that 

It follows that  which results in  Similarly, we prove that 

.This implies  which leads to . Next, for an arbitrary element 

 , applying Lemma 2.4 we get that  

  

  

  

  

  

  

  

  which implies  and 

resulting in . It follows that  

  (7) 

 where , by condition  (i) of the Theorem. 

From (7) we have  which implies 

. It follows that , that is,  

  

 By condition  (iii) of the Theorem we conclude that . 

Lemma 2.6   is additive on .  
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Proof. Let  and  be arbitrary elements and let us write 

 and . It follows that 

 and 

. Hence, by Peirce decomposition properties of 

 and making use of the Lemmas 2.2, 2.4 and 2.5, we can see that  

  

  

  

  

  

  

  

  

  

  

  

 holds true, as desired. 

  Proof of Theorem 2.1. Suppose that  and choose  such that 

. Since  is additive on  for all , by Lemma 2.6, then for an 

arbitrary element  and elements  we have  
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 Hence  which results in  

  

 for all . From condition  (ii) of the Theorem, we conclude that . This shows 

that  is additive on .  

Corollary 2.1 Let  be a prime -ring containing a -idempotent  (  need not have a -

identity element), where . Suppose ,  two -

additive maps such that , , for all , and 

if we denote , , , 

, then  for all  and . Then 

any multiplicative isomorphism  of  onto an arbitrary gamma ring is additive.  

 Proof. The result follows directly from the Theorem 2.1. 

Corollary 2.2 Let  be a prime -ring containing a -idempotent and a -unity element, 

where . Then any multiplicative isomorphism  of  onto an arbitrary gamma 

ring is additive.  
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