Onnannisy Seiance Journal CS7

Multiplicative Mappings of Gamma Rings

Bruno L. M. FERREİRA ${ }^{1 *}$ (D) Ruth N. FERREİRA ${ }^{l(D)}$
${ }^{1}$ Federal Technological University of Paraná,Professora Laura Pacheco Bastos Avenue, 800,

85053-510, Guarapuava, Brazil.

Abstract

Let \mathfrak{M}_{i} and $\Gamma_{i}(i=1,2)$ be abelian groups such that \mathfrak{M}_{i} is a Γ_{i}-ring. An ordered pair (φ, ϕ) of mappings is called a multiplicative isomorphism of \mathfrak{M}_{1} onto \mathfrak{M}_{2} if they satisfy the following properties: (i) φ is a bijective mapping from \mathfrak{M}_{1} onto \mathfrak{M}_{2}, (ii) ϕ is a bijective mapping from Γ_{1} onto Γ_{2} and (iii) $\varphi(x \gamma y)=$ $\varphi(x) \phi(\gamma) \varphi(y)$ for every $x, y \in \mathfrak{M}_{1}$ and $\gamma \in \Gamma_{1}$. We say that the ordered pair (φ, ϕ) of mappings is additive when $\varphi(x+y)=\varphi(x)+\varphi(y)$, for all $x, y \in \mathfrak{M}_{1}$. In this paper we establish conditions on \mathfrak{M}_{1} that assures that (φ, ϕ) is additive.

Keywords: Multiplicative mappings, Additivity, Gamma rings.

Gamma Halkalarında Çarpımsal Dönüșümler

Özet. \mathfrak{M}_{i} ve $\Gamma_{i}(i=1,2)$ değiştirmeli grup ve \mathfrak{M}_{i} bir Γ_{i}-halka olsun. Aşağıdaki özellikler sağlanırsa dönüşümlerin (φ, ϕ) sıralı ikilisine \mathfrak{M}_{1} den \mathfrak{M}_{2} üzerine çarpımsal izomorfizm denir: (i) $\varphi, \mathfrak{M}_{1}$ den \mathfrak{M}_{2}, üzerine bijektif dönüşümdür. (ii) ϕ, Γ_{1} den Γ_{2} üzerine bijektif dönüşümdür. (iii) Her $x, y \in \mathfrak{M}_{1}$ ve $\gamma \in \Gamma_{1}$.için $\varphi(x \gamma y)=$ $\varphi(x) \phi(\gamma) \varphi(y)$ dir ve Her $x, y \in \mathfrak{M}_{1}$ için $\varphi(x+y)=\varphi(x)+\varphi(y)$, olduğunda dönüşümlerin (φ, ϕ) sıralı ikilisine toplamsaldır denir. Bu makalede \mathfrak{M}_{1} üzerinde (φ, ϕ) nin toplamsallı̆̆ını garanti edecek koşulları vereceğiz.

Anahtar Kelimeler: Çarpımsal dönüşümleri, Toplamsallık, Gamma halkaları.
2010 Mathematics Subject Classification. 16Y99

1. INTRODUCTION AND PRELIMINARIES

N. Nobusawa [1] introduced the concept of a Γ-ring which is called the Γ-ring in the sense of Nobusawa. He obtained an analogue of the Wedderburn's Theorem for Γ-rings with minimum condition on left ideals. W. E. Barnes [2] gave the definition of a Γ-ring as a generalization of a ring and he also developed some other concepts of Γ-rings such as Γ-homomorphism, prime and primary ideals, m-systems etc. Γ-rings are closely related to others ternary structures as ternary algebras, associative triple systems and associative pairs, which have been extensively studied see [3], [4] and [5].
Let W and Γ be two abelian groups. If there exists a mapping $W \times \Gamma \times W \rightarrow W$ (the image of (x, α, y) is denoted by $x \alpha y$ where $x, y \in W$ and $\alpha \in \Gamma)$. We call W a Γ-ring if the following conditions are satisfied:

1. $x \alpha y \in \mathfrak{W}$,

[^0]2. $(x+y) \alpha z=x \alpha z+y \alpha z, x \alpha(y+z)=x \alpha y+x \alpha z$,
3. $x(\alpha+\beta) y=x \alpha y+x \beta y$,
4. $(x \alpha y) \beta z=x \alpha(y \beta z)$,
for all $x, y, z \in \mathfrak{M}$ and $\alpha, \beta \in \Gamma$.
A nonzero element $1 \in \mathfrak{M}$ is called a multiplicative γ-identity of $\mathfrak{M l}$ or γ-unity element (for some $\gamma \in \Gamma$) if $1 \gamma x=x \gamma 1=x$ for all $x \in \mathbb{M}$. A nonzero element $e_{1} \in \mathfrak{M}$ is called a γ_{1}-idempotent (for some $\gamma_{1} \in \Gamma$) if $e_{1} \gamma_{1} e_{1}=e_{1}$ and a nontrivial γ_{1}-idempotent if it is a γ_{1}-idempotent different from multiplicative γ_{1}-identity element of \mathfrak{M}.
Let Γ and \mathfrak{M} be two abelian groups such that \mathfrak{M} is a Γ-ring and $e_{1} \in \mathfrak{M}$ a nontrivial γ_{1}-idempotent. Let us consider $e_{2}: \Gamma \times \mathfrak{M} \rightarrow \mathfrak{M}$ and $e_{2}^{\prime}: \mathfrak{M} \times \Gamma \rightarrow \mathfrak{M}$ two \mathfrak{M}-additive maps verifying the conditions $e_{2}\left(\gamma_{1}, a\right)=a-e_{1} \gamma_{1} a$ and $e_{2},\left(a, \gamma_{1}\right)=a-a \gamma_{1} e_{1}$. Let us denote $e_{2} \alpha a=e_{2}(\alpha, a)$, $a \alpha e_{2}=e_{2}(a, \alpha), \quad 1_{1} \alpha a=e_{1} \alpha a+e_{2} \alpha a, \quad a \alpha 1_{1}=a \alpha e_{1}+a \alpha e_{2} \quad$ and \quad suppose $\left(a \alpha e_{2}\right) \beta b=a \alpha\left(e_{2} \beta b\right)$ for all $a, b \in \mathfrak{M}$ and $\alpha, \beta \in \Gamma$. Then $1_{1} \gamma_{1} a=a \gamma_{1} 1_{1}=a$ and $\left(a \alpha 1_{1}\right) \beta b=a \alpha\left(1_{1} \beta b\right)$, for all $a, b \in \mathfrak{M}$ and $\alpha, \beta \in \Gamma$, allowing us to write $1_{1}=e_{1}+e_{2}$ and \mathfrak{M} as a direct sum of subgroups $M_{l}=M_{11} \oplus M_{12} \oplus M_{21} \oplus M_{22}$, where $M_{i j}=e_{i} \gamma_{1} M{ }_{l} \gamma_{1} e_{j}(i, j=1,2)$, called Peirce decomposition of \mathfrak{M} relative to e_{1}, satisfying the multiplicative relations:

1. $M_{i j} \Gamma \prod_{k l} \subseteq M_{l i l}(i, j, k, l=1,2)$;
2. $m_{i j} \gamma_{1} M_{k l}=0$ if $j \neq k(i, j, k, l=1,2)$.

For the reader interested in the Peirce decomposition of Γ-rings we indicate [6]. If \mathfrak{A} and \mathfrak{B} are subsets of a Γ-ring \mathfrak{M} and $\Theta \subseteq \Gamma$, we denote $\mathscr{\mathscr { H }} \boldsymbol{\mathcal { B }}$ the subset of \mathfrak{M} consisting of all finite sums of the form $\sum_{i} a_{i} \gamma_{i} b_{i}$ where $a_{i} \in \mathscr{Q}, \gamma_{i} \in \Theta$ and $b_{i} \in \mathfrak{B}$. A right ideal (resp., left ideal) of a Γ-ring \mathfrak{M} is an additive subgroup \Im of \mathfrak{M} such that $\Im \Gamma \mathfrak{M} \subseteq \mathfrak{\Im}$ (resp., $\mathfrak{M} \Gamma \Im \subseteq \Im$). If \Im is both a right and a left ideal of \mathfrak{M}, then we say that \Im is an ideal or two-side ideal of \mathfrak{M}.
An ideal \mathfrak{B} of a Γ-ring \mathfrak{M} is called prime if for any ideals $\mathfrak{N}, \mathfrak{B} \subseteq \mathfrak{M}, \mathfrak{2} \Gamma \mathcal{B} \subseteq \mathfrak{F}_{3}$ implies that $\mathfrak{Q} \subseteq \mathfrak{R}_{B}$ or $\mathfrak{B} \subseteq \mathfrak{F}$. A Γ-ring \mathfrak{M} is said to be prime if the zero ideal is prime.
Theorem 1.1 [7, Theorem 4] If \mathfrak{M} is a Γ-ring, the following conditions are equivalent:

1. \mathfrak{M} is a prime Γ-ring;
2. if $a, b \in \mathfrak{M}$ and $a \Gamma \mathfrak{M} \Gamma b=0$, then $a=0$ or $b=0$.

Let \prod_{i} and $\Gamma_{i}(i=1,2)$ be abelian groups such that \prod_{i} is a Γ_{i}-ring $(i=1,2)$. An ordered pair (φ, ϕ) of mappings is called a multiplicative isomorphism of M_{1} onto M_{2} if they satisfy the following properties:

1. φ is a bijective mapping from \prod_{1} onto \prod_{2};
2. ϕ is a bijective mapping from Γ_{1} onto Γ_{2};
3. $\varphi(x y y)=\varphi(x) \phi(y) \varphi(y)$ for all $x, y \in M_{1}$ and $y \in \Gamma_{1}$.

We say that a multiplicative isomorphism (φ, ϕ) of M_{1} onto M_{2} is additive when $\varphi(x+y)=\varphi(x)+\varphi(y)$ for all $x, y \in M_{1}$.

2. GAMMA RINGS AND THE MULTIPLICATIVE ISOMORPHISMS

The study of the question of when a multiplicative isomorphism is additive has become an active research area in associative ring theory. In this case, one often tries to establish conditions on the ring
which assures the additivity of every multiplicative isomorphism defined on it. The first result in this direction is due to Martindale III [8] who obtained a pioneer result in 1969, where in his condition requires that the ring possesses idempotents. In recent papers [9],[10] Ferreira has studied the additivity of elementary maps and multiplicative derivation on Gamma rings. This motivated us in the present paper we investigate the problem of when a multiplicative isomorphism is additive for the class of gamma rings.

Let us state our main theorem.

Theorem 2.1 Let \mathfrak{M} be a Γ-ring containing a family $\left\{e_{\alpha} \mid \alpha \in \Lambda\right\}$ of nontrivial γ_{σ}-idempotents which satisfies:

1. If $x \in \mathscr{P}$ is such that $x \Gamma \mathscr{P}=0$, then $x=0$;
2. If $x \in \mathfrak{M}$ is such that $e_{\alpha} \Gamma \mathfrak{M} \Gamma x=0$ for all $\alpha \in \Lambda$, then $x=0$ (and hence $\mathbb{M} \Gamma x=0$ implies $x=0$);
3. For each $\alpha \in \Lambda$ and $x \in \mathbb{M o}_{,}$if $\left(e_{\alpha} Y_{\sigma} x Y_{\sigma} e_{\alpha}\right) \Gamma \mathfrak{M} \Gamma\left(1_{\alpha}-e_{\alpha}\right)=0$ then $e_{\alpha} Y_{\alpha} x Y_{\alpha} e_{\alpha}=0$.

Then any multiplicative isomorphism (φ, ϕ) of \mathbb{M} onto an arbitrary gamma ring is additive.
The following lemmas have the same hypotheses of Theorem 2.1 and we need these lemmas for the proof of this theorem. Thus, let us consider $e_{1} \in\left\{e_{\sigma} \mid \alpha \in \Lambda\right\}$ a nontrivial γ_{1}-idempotent of \mathbb{P} and.

Lemma $2.1 \varphi(0)=0$.

Proof. Since φ is onto, we can choose $x \in \mathbb{P}$ such that $\varphi(x)=0$. Thus $\varphi(0)=\varphi\left(0 \gamma_{1} x\right)=\varphi(0) \phi\left(\gamma_{1}\right) \varphi(x)=\varphi(0) \phi\left(\gamma_{1}\right) 0=0$.
$\operatorname{Lemma} 2.2 \varphi\left(x_{i i}+x_{j k}\right)=\varphi\left(x_{i i}\right)+\varphi\left(x_{j k}\right), j \neq k$.
Proof. First assume that $i=j=1$ and $k=2$. Since φ is onto, let z be an element of $\mathbb{M}_{\text {such that }} \varphi(z)=\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right)$. For arbitrary $\gamma \in \Gamma$ and $a_{1 l} \in \mathfrak{M}_{1 l}(l=1,2)$ we have $\varphi\left(z Y_{1} e_{1} \gamma a_{11}\right)=\varphi(z) \phi\left(\gamma_{1}\right) \varphi\left(e_{1} \gamma a_{11}\right)=\left(\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right)\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{1} \gamma a_{11}\right)=$ $\varphi\left(x_{11} \gamma_{1} e_{1} \gamma a_{11}\right)+\varphi\left(x_{12} \gamma_{1} e_{1} \gamma a_{1 V}\right)=\varphi\left(x_{11} \gamma_{1} e_{1} \gamma \alpha_{1 V}\right)+\varphi(0)=\varphi\left(\left(x_{11}+x_{12}\right) \gamma_{1} e_{1} \gamma a_{11}\right)$. Hence $\left(z-\left(x_{11}+x_{12}\right)\right) y_{1} e_{1} \gamma a_{1 l}=0$. In a similar way, for $a_{2 l} \in M_{2 l} \quad(l=1,2)$ we get that $\left(z-\left(x_{11}+x_{12}\right)\right) y_{1} e_{1} \gamma a_{2 l}=0$. It follows that

$$
\begin{equation*}
\left(z-\left(x_{11}+x_{12}\right)\right) \gamma_{1} e_{1} y a=0 \tag{1}
\end{equation*}
$$

where $a=a_{11}+a_{12}+a_{21}+a_{22}$. Next, for arbitraries $\gamma \in \Gamma$ and $a_{1 l} \in \mathbb{m}_{1 l}(l=1,2)$ we have

$$
\begin{aligned}
& \varphi\left(z \gamma_{1} e_{2} \gamma a_{11}\right)=\varphi(z) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{1 l}\right)=\left(\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right)\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{11}\right)= \\
& \varphi\left(x_{11} \gamma_{1} e_{2} \gamma \alpha_{1 l}\right)+\varphi\left(x_{12} \gamma_{1} e_{2} \gamma a_{11}\right)=\varphi(0)+\varphi\left(x_{12} \gamma_{1} e_{2} \gamma a_{1 l}\right)=\varphi\left(\left(x_{11}+x_{12}\right) \gamma_{1} e_{2} \gamma \alpha_{1 l}\right)
\end{aligned}
$$

which implies $\left(z-\left(x_{11}+x_{12}\right)\right) \gamma_{1} e_{2} \gamma a_{11}=0$. In a similar way, we get that $\left(z-\left(x_{11}+x_{12}\right)\right) y_{1} e_{2} \gamma a_{2 l}=0$. Hence

$$
\begin{equation*}
\left(z-\left(x_{11}+x_{12}\right)\right) y_{1} e_{2} \gamma a=0, \tag{2}
\end{equation*}
$$

where $a=a_{11}+a_{12}+a_{21}+a_{22}$, by condition (i) of the Theorem. From (1) and (2), we have $\left(z-\left(x_{11}+x_{12}\right)\right) y_{1} 1_{1} \gamma a=0$, where $a=a_{11}+a_{12}+a_{21}+a_{22}$, which implies $\left(z-\left(x_{11}+x_{12}\right)\right) \Gamma \mathfrak{M}=0$ and resulting in $z=x_{11}+x_{12}$, by condition (i) of the Theorem.

Now assume that $i=k=1$ and $j=2$. Again, we may find an element z of \mathfrak{M} such that $\varphi(z)=\varphi\left(x_{11}\right)+\varphi\left(x_{21}\right)$. For arbitraries $\gamma \in \Gamma$ and $a_{l 1} \in \mathscr{M}_{l 1}(l=1,2)$ we have $\varphi\left(a_{i 1} \gamma e_{1} \gamma_{1} z\right)=\varphi\left(a_{i 1} \gamma e_{1}\right) \phi\left(\gamma_{1}\right) \varphi(z)=\varphi\left(a_{i 1} \gamma e_{1}\right) \phi\left(\gamma_{1}\right)\left(\varphi\left(x_{11}\right)+\varphi\left(x_{21}\right)\right)=$ $\varphi\left(a_{l 1} \gamma e_{1} \gamma_{1} x_{11}\right)+\varphi\left(a_{l 1} \gamma e_{1} \gamma_{1} x_{21}\right)=\varphi\left(a_{l 1} \gamma e_{1} \gamma_{1} x_{11}\right)+\varphi(0)=\varphi\left(a_{l 1} \gamma e_{1} \gamma_{1}\left(x_{11}+x_{21}\right)\right)$. It follows that $a_{i 1} \gamma e_{1} \gamma_{1}\left(z-\left(x_{11}+x_{21}\right)\right)=0$. In a similar way, for arbitraries $\gamma \in \Gamma$ and $a_{l 2} \in \mathfrak{M}_{l 2}(l=1,2)$ we get that $a_{l 2} \gamma e_{1} \gamma_{1}\left(z-\left(x_{11}+x_{21}\right)\right)=0$. This implies

$$
\begin{equation*}
\operatorname{are}_{1} \gamma_{1}\left(z-\left(x_{11}+x_{21}\right)\right)=0, \tag{3}
\end{equation*}
$$

where $a=a_{11}+a_{12}+a_{21}+a_{22}$. Next, for arbitraries $\gamma \in \Gamma$ and $a_{l 1} \in \mathfrak{M}_{l 1}(l=1,2)$ we have
$\varphi\left(a_{i 1} \gamma e_{2} \gamma_{1} z\right)=\varphi\left(a_{i 1} \gamma e_{2}\right) \phi\left(\gamma_{1}\right) \varphi(z)=\varphi\left(a_{i 1} \gamma e_{2}\right) \phi\left(\gamma_{1}\right)\left(\varphi\left(x_{11}\right)+\varphi\left(x_{21}\right)\right)=$ $\varphi\left(a_{i 1} y e_{2} \gamma_{1} x_{11}\right)+\varphi\left(a_{i 1} \gamma e_{2} \gamma_{1} x_{21}\right)=\varphi(0)+\varphi\left(a_{i 1} \gamma e_{2} \gamma_{1} x_{11}\right)=\varphi\left(a_{l 1} \gamma e_{2} \gamma_{1}\left(x_{11}+x_{21}\right)\right)$.
It follows that $a_{i 1} \gamma e_{2} \gamma_{1}\left(z-\left(x_{11}+x_{21}\right)\right)=0$. In a similar way, for arbitraries $\gamma \in \Gamma$ and $a_{l 2} \in \mathfrak{M}_{l 2}(l=1,2)$ we get that $a_{l 2} \gamma e_{2} \gamma_{1}\left(z-\left(x_{11}+x_{21}\right)\right)=0$ which implies

$$
\begin{equation*}
\operatorname{are}_{2} \gamma_{1}\left(z-\left(x_{11}+x_{21}\right)\right)=0, \tag{4}
\end{equation*}
$$

where $a=a_{11}+a_{12}+a_{21}+a_{22}$, by condition (i) of the Theorem. From (3) and (4) we have $\operatorname{ar} 1_{1} \gamma_{1}\left(z-\left(x_{11}+x_{21}\right)\right)=0$ which implies $\mathfrak{M \Gamma}\left(z-\left(x_{11}+x_{21}\right)\right)=0$ resulting in $z=x_{11}+x_{21}$, by condition (ii) of the Theorem.

Similarly, we prove the remaining cases.
Lemma $2.3 \varphi\left(a_{1 j}+b_{12} \gamma c_{11}\right)=\varphi\left(a_{1 j}\right)+\varphi\left(b_{12} \gamma c_{11}\right)(j, l=1,2)$
Proof. First, let us note that

$$
a_{1 j}+b_{12} \gamma c_{11}=\left(e_{1}+b_{12}\right) \gamma_{1}\left(a_{1 j}+e_{2} \gamma c_{11}\right)
$$

Hence

```
\(\varphi\left(a_{1 j}+b_{12} \gamma c_{11}\right)=\varphi\left(\left(e_{1}+b_{12}\right) \gamma_{1}\left(a_{1 j}+e_{2} \gamma c_{11}\right)\right)=\varphi\left(e_{1}+b_{12}\right) \phi\left(\gamma_{1}\right) \varphi\left(a_{1 j}+e_{2} \gamma c_{11}\right)=\)
\(\left(\varphi\left(e_{1}\right)+\varphi\left(b_{12}\right)\right) \phi\left(\gamma_{1}\right) \varphi\left(a_{1 j}+e_{2} \gamma c_{11}\right)=\varphi\left(e_{1}\right) \phi\left(\gamma_{1}\right) \varphi\left(a_{1 j}+e_{2} \gamma c_{11}\right)+\)
\(\varphi\left(b_{12}\right) \phi\left(\gamma_{1}\right) \varphi\left(a_{1 j}+e_{2} \gamma c_{11}\right)=\varphi\left(a_{1 j}\right)+\varphi\left(b_{12} \gamma a_{1 j}\right)\)
```

, by Lemma 2.2.
Lemma 2.4 φ is additive on \mathfrak{M}_{12}.
Proof. Let $x_{12}, y_{12} \in \mathfrak{M}_{12}$ and choose $z \in \mathfrak{M}_{\text {t }}$ such that $\varphi(z)=\varphi\left(x_{12}\right)+\varphi\left(y_{12}\right)$, where $z=z_{11}+z_{12}+z_{21}+z_{22}$. For an arbitrary $a_{1 l} \in \mathfrak{M}_{1 l} \quad(l=1,2)$ we have $\varphi\left(z \gamma_{1} e_{1} \gamma a_{11}\right)=\varphi(z) \phi\left(\gamma_{1}\right) \varphi\left(e_{1} \gamma a_{11}\right)=\left(\varphi\left(x_{12}\right)+\varphi\left(y_{12}\right)\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{1} \gamma a_{11}\right)=$ $\varphi\left(x_{12} \gamma_{1} e_{1} \gamma a_{11}\right)+\varphi\left(y_{12} \gamma_{1} e_{1} \gamma a_{11}\right)=0$
which implies $z \gamma_{1} e_{1} \gamma a_{1 l}=0$. It follows that $\left(z-\left(x_{12}+y_{12}\right)\right) \gamma_{1} e_{1} \gamma a_{1 l}=0$. In a similar way, for an arbitrary $a_{2 l} \in \mathbb{M}_{2 l}(l=1,2)$ we get that $\left(z-\left(x_{12}+y_{12}\right)\right) \gamma_{1} e_{1} \gamma a_{2 l}=0$. Hence

$$
\begin{equation*}
\left(z-\left(x_{12}+y_{12}\right)\right) y_{1} e_{1} \gamma a=0, \tag{5}
\end{equation*}
$$

where $a=a_{11}+a_{12}+a_{21}+a_{22}$. Now, for an arbitrary element $a_{1 l} \in \mathfrak{M}_{1 l}(l=1,2)$ we have
$\varphi\left(z \gamma_{1} e_{2} \gamma a_{11}\right)=\varphi(z) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{11}\right)=\left(\varphi\left(x_{12}\right)+\varphi\left(y_{12}\right)\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{11}\right)=$ $\varphi\left(x_{12} \gamma_{1} e_{2} \gamma a_{11}\right)+\varphi\left(y_{12} \gamma_{1} e_{2} \gamma a_{11}\right)=\varphi\left(x_{12} \gamma_{1} e_{2} \gamma a_{11}+y_{12} \gamma_{1} e_{2} \gamma a_{11}\right)=\varphi\left(\left(x_{12}+\right.\right.$ $\left.y_{12}\right) \gamma_{1} e_{2} \gamma a_{11}$)
, by Lemma 2.3. It follows that $\left(z-\left(x_{12}+y_{12}\right)\right) \gamma_{1} e_{2} \gamma a_{11}=0$. Next, for an arbitrary
element $a_{2 l} \in \mathbb{M}_{2 l}(l=1,2)$ we have
$\varphi\left(z \gamma_{1} e_{2} \gamma a_{2 l}\right)=\varphi(z) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{2 l}\right)=\left(\varphi\left(x_{12}\right)+\varphi\left(y_{12}\right)\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{2 l}\right)=$ $\varphi\left(x_{12}\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{2 l}\right)+\varphi\left(y_{12} \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{2 l}\right)=\left(\varphi\left(e_{1}\right)+\varphi\left(x_{12}\right)\right) \phi\left(\gamma_{1}\right)\left(\varphi\left(e_{2} \gamma a_{2 l}\right)+\right.\right.$ $\left.\varphi\left(y_{12} \gamma_{1} e_{2} \gamma a_{2 l}\right)\right)=\varphi\left(e_{1}+x_{12}\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{2} \gamma a_{2 l}+y_{12} \gamma_{1} e_{2} \gamma a_{2 l}\right)=\varphi\left(e_{1}+x_{12}\right) \gamma_{1}\left(e_{2} \gamma a_{2 l}+\right.$ $\left.y_{12} \gamma_{1} e_{2} \gamma a_{2 l}\right)=\varphi\left(\left(x_{12}+y_{12}\right) \gamma_{1} e_{2} \gamma a_{2 l}\right)$
, by Lemma 2.2. It follows that $\left(z-\left(x_{12}+y_{12}\right)\right) \gamma_{1} e_{2} \gamma a_{2 l}=0$. Hence

$$
\begin{equation*}
\left(z-\left(x_{12}+y_{12}\right)\right) \gamma_{1} e_{2} \gamma a=0, \tag{6}
\end{equation*}
$$

where $a=a_{11}+a_{12}+a_{21}+a_{22}$, by condition (i) of the Theorem. From (5) and (6) we have $\left(z-\left(x_{12}+y_{12}\right)\right) y_{1} 1_{1} \gamma a=0$ which implies $\left(z-\left(x_{12}+y_{12}\right)\right) \Gamma \mathfrak{M}=0$ and resulting in $z=x_{12}+y_{12}$, by condition (i) of the Theorem.

Lemma 2.5 φ is additive on \mathfrak{M}_{11}.

Proof. Let $x_{11}, y_{11} \in \mathfrak{M}_{11}$ and choose $z \in \mathfrak{M}_{\text {such that }} \varphi(z)=\varphi\left(x_{11}\right)+\varphi\left(y_{11}\right)$, where $z=z_{11}+z_{12}+z_{21}+z_{22}$. Firstly, let us note that $\varphi(z)=\varphi\left(x_{11} \gamma_{1} e_{1}\right)+\varphi\left(y_{11} \gamma_{1} e_{1}\right)=\left(\varphi\left(x_{11}\right)+\varphi\left(y_{11}\right)\right) \phi\left(\gamma_{1}\right) \varphi\left(e_{1}\right)=\varphi(z) \phi\left(\gamma_{1}\right) \varphi\left(e_{1}\right)=$ $\varphi\left(z_{11}+z_{21}\right)$
It follows that $z=z_{11}+z_{21}$ which results in $z_{12}=z_{22}=0$. Similarly, we prove that $z_{21}=0$.This implies $z \in M_{11}$ which leads to $z-\left(x_{11}+y_{11}\right) \in M_{11}$. Next, for an arbitrary element $a_{i j} \in \mathbb{M}_{i j}(i, j=1,2)$, applying Lemma 2.4 we get that

$$
\begin{aligned}
& \varphi\left(z \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}\right) \\
& =\varphi(z) \phi(\alpha) \varphi\left(e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}\right) \\
& =\left(\varphi\left(x_{11}\right)+\varphi\left(y_{11}\right)\right) \phi(\alpha) \varphi\left(e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}\right) \\
& =\varphi\left(x_{11}\right) \phi(\alpha) \varphi\left(e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{\imath} \beta e_{2}\right)+\varphi\left(y_{11}\right) \phi(\alpha) \varphi\left(e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}\right) \\
& =\varphi\left(x_{11} \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}\right)+\varphi\left(y_{11} \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{\imath} \beta e_{2}\right) \\
& =\varphi\left(x_{11} \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{t} \beta e_{2}+y_{11} \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{i} \beta e_{2}\right) \\
& =\varphi\left(\left(x_{11}+y_{11}\right) \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}\right)
\end{aligned}
$$

$(k, l=1,2) \quad$ which implies $z \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}=\left(x_{11}+y_{11}\right) \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{l} \beta e_{2}$ and resulting in $\left(z-\left(x_{11}+y_{11}\right)\right) \alpha e_{k} \gamma_{1} a_{i j} \gamma_{1} e_{i} \beta e_{2}=0$. It follows that

$$
\begin{equation*}
\left(z-\left(x_{11}+y_{11}\right)\right) \alpha e_{k} \gamma_{1} a \gamma_{1} e_{l} \beta e_{2}=0(k, l=1,2), \tag{7}
\end{equation*}
$$

where $a=a_{11}+a_{12}+a_{21}+a_{22}$, by condition (i) of the Theorem.

From (7) we have $\left(z-\left(x_{11}+y_{11}\right)\right) \alpha 1_{1} \gamma_{1} a \gamma_{1} 1_{1} \beta e_{2}=0$ which implies $\left(z-\left(x_{11}+y_{11}\right)\right) \alpha a \beta e_{2}=0$. It follows that $\left(z-\left(x_{11}+y_{11}\right)\right) \Gamma \mathfrak{M} \Gamma\left(1_{1}-e_{1}\right)=0$, that is,

$$
\left(e_{1} \gamma_{1}\left(z-\left(x_{11}+y_{11}\right) y_{1} e_{1}\right) \Gamma M \Gamma\left(1_{1}-e_{1}\right)=0 .\right.
$$

By condition (iii) of the Theorem we conclude that $z=x_{11}+y_{11}$.
Lemma 2.6 φ is additive on $e_{1} \Gamma$ M.

Proof. Let $x, y \in \mathfrak{M}$ and $\lambda, \mu \in \Gamma$ be arbitrary elements and let us write $x=x_{11}+x_{12}+x_{21}+x_{22}$ and $y=y_{11}+y_{12}+y_{21}+y_{22}$. It follows that $e_{1} \lambda x=e_{1} \lambda x_{11}+e_{1} \lambda x_{12}+e_{1} \lambda x_{21}+e_{1} \lambda x_{22}$ and $e_{1} \mu y=e_{1} \mu y_{11}+e_{1} \mu y_{12}+e_{1} \mu y_{21}+e_{1} \mu y_{22}$. Hence, by Peirce decomposition properties of \mathfrak{M} and making use of the Lemmas 2.2, 2.4 and 2.5, we can see that

$$
\begin{aligned}
& \varphi\left(e_{1} \lambda x+e_{1} \mu y\right)=\varphi\left(\left(e_{1} \lambda x_{11}+e_{1} \lambda x_{12}+e_{1} \lambda x_{21}+e_{1} \lambda x_{22}\right)\right. \\
& \left.+\left(e_{1} \mu y_{11}+e_{1} \mu y_{12}+e_{1} \mu y_{21}+e_{1} \mu y_{22}\right)\right) \\
& =\varphi\left(\left(e_{1} \lambda x_{11}+e_{1} \mu y_{11}\right)+\left(e_{1} \lambda x_{21}+e_{1} \mu y_{21}\right)\right. \\
& \left.+\left(e_{1} \lambda x_{12}+e_{1} \mu y_{12}\right)+\left(e_{1} \lambda x_{22}+e_{1} \mu y_{22}\right)\right) \\
& =\varphi\left(\left(e_{1} \lambda x_{11}+e_{1} \mu y_{11}\right)+\left(e_{1} \lambda x_{21}+e_{1} \mu y_{21}\right)\right) \\
& +\varphi\left(\left(e_{1} \lambda x_{12}+e_{1} \mu y_{12}\right)+\left(e_{1} \lambda x_{22}+e_{1} \mu y_{22}\right)\right) \\
& =\varphi\left(e_{1} \lambda x_{11}+e_{1} \lambda x_{21}\right)+\varphi\left(e_{1} \mu y_{11}+e_{1} \mu y_{21}\right) \\
& +\varphi\left(e_{1} \lambda x_{12}+e_{1} \lambda x_{22}\right)+\varphi\left(e_{1} \mu y_{12}+e_{1} \mu y_{22}\right) \\
& =\varphi\left(e_{1} \lambda x_{11}+e_{1} \lambda x_{21}+e_{1} \lambda x_{12}+e_{1} \lambda x_{22}\right) \\
& +\varphi\left(e_{1} \mu y_{11}+e_{1} \mu y_{21}+e_{1} \mu y_{12}+e_{1} \mu y_{22}\right) \\
& =\varphi\left(e_{1} \lambda x\right)+\varphi\left(e_{1} \mu y\right)
\end{aligned}
$$

holds true, as desired.
Proof of Theorem 2.1. Suppose that $x, y \in \mathfrak{M}$ and choose $z \in \mathfrak{M}$ such that $\varphi(z)=\varphi(x)+\varphi(y)$. Since φ is additive on $e_{\alpha} \Gamma \mathfrak{M}$ for all $\alpha \in \Lambda$, by Lemma 2.6, then for an arbitrary element $r \in \mathfrak{M}$ and elements $\lambda, \mu \in \Gamma$ we have

$$
\begin{aligned}
& \varphi\left(e_{\kappa} \lambda r \mu z\right)=\varphi\left(e_{\alpha}\right) \phi(\lambda) \varphi(r) \phi(\mu) \varphi(z) \\
& =\varphi\left(e_{\alpha}\right) \phi(\lambda) \varphi(r) \phi(\mu)(\varphi(x)+\varphi(y)) \\
& =\varphi\left(e_{\alpha}\right) \phi(\lambda) \varphi(r) \phi(\mu) \varphi(x)+\varphi\left(e_{\alpha}\right) \phi(\lambda) \varphi(r) \phi(\mu) \varphi(y)
\end{aligned}
$$

$$
\begin{aligned}
& =\varphi\left(e_{\kappa} \lambda r \mu x\right)+\varphi\left(e_{\kappa} \lambda r \mu y\right) \\
& =\varphi\left(e_{\kappa} \lambda r \mu x+e_{\kappa} \lambda r \mu y\right) \\
& =\varphi\left(e_{\kappa} \lambda r \mu(x+y)\right) .
\end{aligned}
$$

Hence $e_{\propto} \lambda r \mu z=e_{\propto} \lambda r \mu(x+y)$ which results in

$$
e_{\alpha} \Gamma \mathfrak{M} \Gamma(z-(x+y))=0
$$

for all $\alpha \in \Lambda$. From condition (ii) of the Theorem, we conclude that $z=x+y$. This shows that φ is additive on \mathfrak{M}.

Corollary 2.1 Let $\mathfrak{W}_{\text {be a prime }} \Gamma$-ring containing a γ_{1}-idempotent $e_{1}\left(\mathfrak{W}_{\text {need }}\right.$ not have a γ_{1} identity element), where $\gamma_{1} \in \Gamma$. Suppose $e_{2}: \Gamma \times \mathfrak{M} \rightarrow \mathfrak{M}, e_{2}^{\prime}: \mathfrak{M} \times \Gamma \rightarrow \mathfrak{M}$ two \mathfrak{M} additive maps such that $e_{2}\left(\gamma_{1}, a\right)=a-e_{1} \gamma_{1} a, e_{2},\left(a, \gamma_{1}\right)=a-a \gamma_{1} e_{1}$, for all $a \in \mathfrak{M}$, and if we denote $e_{2} \alpha a=e_{2}(\alpha, a)$, $a \alpha e_{2}=e_{2},(a, \alpha), 1_{1} \alpha a=e_{1} \alpha a+e_{2} \alpha a$, $a \alpha 1_{1}=a \alpha e_{1}+a \alpha e_{2}$, then $\left(a \alpha e_{2}\right) \beta b=a \alpha\left(e_{2} \beta b\right)$ for all $\alpha, \beta \in \Gamma$ and $a, b \in \mathfrak{M}$. Then any multiplicative isomorphism (φ, ϕ) of \mathfrak{M} onto an arbitrary gamma ring is additive.

Proof. The result follows directly from the Theorem 2.1.

Corollary 2.2 Let $\mathfrak{M z}$ be a prime Γ-ring containing a γ_{1}-idempotent and a γ_{1}-unity element, where $\gamma_{1} \in \Gamma$. Then any multiplicative isomorphism (φ, ϕ) of \mathfrak{M} onto an arbitrary gamma ring is additive.

REFERENCES

[1] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964) 81-89.
[2] W. E. Barnes, On the gamma Nobusawa, Pacific J. Math., 18 (1966) 411-422.
[3] M.R. Hestenes, On a ternary algebra, Scripta Math., 29 (1973) 253-272.
[4] O. Loos, Assoziative Triplesysteme, Manuscripta Math., 7 (1972) 103-112.
[5] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971) 37-55.
[6] R. N. Mukherjee Some results on Г-rings, Indian J. pure appl. Math., 34 (2003) 991-994.
[7] S. Kyuno, On prime gamma rings, Pacific J. Math., 75 (1978) 185-190.
[8] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969) 695-698.
[9] B. L. M. Ferreira, Multiplicative derivation of gamma rings, Algebra, Groups and Geometries, 34 (2017) 401-406.
[10] B. L. M. Ferreira, Additivity of elementary maps on gamma ring, Extracta Mathematicae, 34 (2019) 61-76.

[^0]: * Corresponding author. Email address: brunoferreira@utfpr.edu.br
 http://dergipark.gov.tr/csj ©2016 Faculty of Science, Sivas Cumhuriyet University

