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ABSTRACT 

 

In this paper, we study a wave equation with interior source function and linear damping term. We obtain that the 

solutions of this equation are global in time and blow-up in finite time under suitable conditions. 
 

Keywords: Global Solution, Blow-up solution, damping term 

 

 

 

1. INTRODUCTION 

 

In this paper, we consider the following initial-boundary 

value problem 
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 (1.1) 

 

where  1( ) [0,1]a x C
 

 and ( ) 0a x  ,  and k b   

nonnegative constant, ( ) ( )f s C . 

 

Models of this type are of interest in applications in 

various areas in mathematical physics [1, 2, 3] as well as 

in geophysics and ocean acoustics, where for example, the 

coefficient ( )a x  represents the “effective tension” [6]. 

 

In [1], Bayrak and Can considered the following a 

nonlinear wave equation with initial-boundary conditions  
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They gave nonexistence of the global solution in time for 

the equation (1.2). In [2], Hao et al proved the blow-up 

solution in finite time and global solution in time for same 

equation under different conditions. In [3], Wu and Li 

studied a nonlinear damped system with boundary input 

and output. They proved that under some conditions the 

system has global solutions and blow up solutions. In [4], 

Feng et al considered the wave equation with nonlinear 

damping and source terms. They bounded up with the 

interaction between the boundary damping 
1

( , ) ( , )
m

t ty L t y L t


  and the interior source 

1
( ) ( )

p
y t y t


. Then they found a sufficient condition 

for obtaining the blow up solution of their problem. In [5], 

Dinlemez and Aktaş studied a nonlinear string equation 

with initial and boundary conditions. They proved that the 

solution is global in time and the solution with a negative 

initial energy blow up in finite time for their problems. In 

[7], Takamura and Wakasa were interested in the “almost” 

global-in-time existence of classical solutions in the 

general theory for nonlinear wave equations. Several 

interesting works about blow up and global solutions for 

nonlinear wave equations given in [8-15].  

 

First of all we will estimate the energy of problem (1.2). 

 

Multiplying (1.2) with tu  and integrating over (0.1), then 

we get 
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 (1.3)  where  

 

0
( ) ( ) .

u

F u f d    

 

So the energy equation of the initial-boundary problem (1.2) is defined by 

 
1 1

2 2 2

2 2

0 0

1 1
      ( ) ( ) ( )
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t x x

k
E t u u a x u dx F u dx     .                                                                                (1.4) 

 

Therefore we obtain 

  

2

2
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d
E t b u

dt
   .                                                                                                                                                 (1.5) 
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2. MAIN RESULTS 

 

Now we give the following theorem for global solutions. 

 

Theorem1. Let ( , )u x t  be a solution of the initial-boundary problem (1.2) with ( ) 0a x  . There exists a positive constant 

A  such that the function ( )f s  satisfies 

 
2       ( ) ( )f s AF s   for s .                                                                                                                              (2.1) 

 

Then the solution ( , )u x t  is the global solution of the initial-boundary problem (1.2). 

Proof: Let  
1

0

           ( ) ( ) 2 ( )G t E t F u dx   .                                                                                                                           (2.2) 

Taking a derivative of ( )G t  and using (1.5), we obtain 

1
2

2

0

      ( ) 2 ( )t tG t b u f u u dx     ,                                                                                                                        (2.3) 

1

0

      ( ) 2 ( ) tG t f u u dx   .                                                                                                                                             (2.4) 

 Using Cauchy-Schwartz’s inequality and Young’s inequality in (2.4) respectively, we get
1

0
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Then we obtain 
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2
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
                                                                                                                        (2.5) 

where  is positive constant. Now we use  (2.1) in (2.5), we yield 

1
2
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2
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
                                                                                                                        (2.6) 

From defining of ( )G t  we have 

1 1
2 2 2

2

0 0

2 ( ) ( ) 2 ( ) .t x xG t u k u a x u dx F u dx       

Therefore we get 
1
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2

0
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Using (2.6), we obtain 

1
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where max ,2 .
4

A
 



 
  

     
Thanks to (2.7) and (2.8), we have 
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( ) 2 ( ).G t G t   

 

 Then from the Gronwall’s inequality, we have 

 
2       ( ) (0) .tG t G e    

 

Thus, together with the continuous principle and the definition of ( )G t , we complete the proof of the Theorem 1. 

 

Theorem 2.  Let ( , )u x t  be a solution of the initial-boundary problem (1.2). Assume that  

 

( )i  ( )f s  satisfies the following condition 

 

        ( ) 4 ( ),      for ,sf s F s s                                                                                                                       (2.9) 

 

( )ii  The initial values satisfy  

1

0 1

0

             (0) 0,       0< ( ) ( ) ,E u x u x dx                                                                                                       (2.10) 

( )iii  ( , )u x t  satisfies 1 .u                                                                                                                                          

(2.11) 

Then the solution ( , )u x t  blows up in finite time maxT  and  

max

1

1
       .

(0)

T

L







 


                                                                                                                                               (2.12) 

where    is a positive constant and 𝛾 is a positive constant such that 0 < 𝛾 ≤
1

4
. 

 

Proof: Let  

            ( ) : ( )H t E t                                                                                                                                                (2.13)    

and                                                                                                                                                                        
1

1

0

           ( ) : ( ) .tL t H t uu dx                                                                                                                            (2.14) 

Combining (1.5), (2.10) and (2.13), we obtain 

 

2

2
           ( ) 0t

d
H t b u

dt
   ,                                                                                                                                (2.15)  

therefore we get                                                                                    

           ( ) (0) 0,   for 0H t H t   .                                                                                                                (2.16) 

 

Taking a derivative of (2.14) and using (2.15), we have 

 

 
1

2 2

2 2

0

           ( ) 1 ( ) t t tt

d
L t b H t u u uu dx

dt

      .                                                                         (2.17) 

 

From the initial-boundary problem (1.2), we write 

 

            ( ) ( )tt xx x tx
u ku a x u bu f u    .                                                                                                    (2.18) 
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Then, multiplying (2.18) with u and integrating over 0,1 , using integration by parts and boundary conditions when 

necessary, we obtain 
1 1 1 1

2 2

2

0 0 0 0

         ( ) ( ) .tt x x tuu dx k u a x u dx b uu dx f u udx                                                                   (2.19)  

 

And then using (2.19) in (2.17), we get 
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By recalling the definitions of  ( ) and ( )E t H t  we have
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By using Cauchy-Schwartz’s inequaity and Young’s inequality respectively, we have
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From (2.23) and (2.24), we obtain 
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Using (2.9) and Poincare inequality for 
2

2xk u   respectively in the equation (2.25), we get 
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where k is positive constant such that  

2b
k


 . Thanks to (2.26) and the definition of ( )L t , we have  

           ( ) (0) 0L t L  . 

Next, we will estimate

1

1 ( )L t
. Using Hölder inequality, we obtain  
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1 1
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By Young’s inequality  
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where C depends on 𝛾. Using (2.11) and considering the relation 
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, we get 
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Now we estimate 

1
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It follows from the definition of ( )L t  for all 0t   and using (2.27) and the following inequality for 1,  , 0p a b 
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where 
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From (2.26) and (2.28) we get 
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 and using Gronwall’s inequality in (2.29), we obtain                                                                       
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Then, (2.30) shows that ( )L t  blows-up in time 
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Therefore the proof is completed. 
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