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ABSTRACT

In this paper, we study a wave equation with interior source function and linear damping term. We obtain that the
solutions of this equation are global in time and blow-up in finite time under suitable conditions.
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1. INTRODUCTION where a(x) eC'[0,4] and a(x)>0, k and b

In this paper, we consider the following initial-boundary nonnegative constant, f(s) e C(L).
value problem
Models of this type are of interest in applications in
Uy, —ku, —(a(x)u, ), +bu, = f(u), x[0,11x(0,T), various areas in mathematical physics [1, 2, 3] as well as
X in geophysics and ocean acoustics, where for example, the
u@.n=u,0n=ulH=u,@ay=0, te(0.T), coefficient a(x) represents the “effective tension” [6].
u(x,0)=u,(x), u,(x,0)=u,(x), xe[0,1],

In [1], Bayrak and Can considered the following a
(1.1) nonlinear wave equation with initial-boundary conditions
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u, +au, +2pu

XXXX

u(,t)=u@,t)=u,(0,t)=u,(@Lt)=0,
u(x,0) =y (%), U (x,0) =ty (x),

They gave nonexistence of the global solution in time for
the equation (1.2). In [2], Hao et al proved the blow-up
solution in finite time and global solution in time for same
equation under different conditions. In [3], Wu and Li
studied a nonlinear damped system with boundary input
and output. They proved that under some conditions the
system has global solutions and blow up solutions. In [4],
Feng et al considered the wave equation with nonlinear
damping and source terms. They bounded up with the
interaction between the boundary = damping

—|yt(L,t)|m_1 y,(L,t) and the interior source

|y(t)|p7l y(t). Then they found a sufficient condition
for obtaining the blow up solution of their problem. In [5],

~2((a(+b ], + £ )
~[(a() + DT, - AUZu,), = f (u),

XXX

(x1) €[0.1]x (0, T), (12)
te(0,T),

Xe[O,l].

Dinlemez and Aktas studied a nonlinear string equation
with initial and boundary conditions. They proved that the
solution is global in time and the solution with a negative
initial energy blow up in finite time for their problems. In
[7], Takamura and Wakasa were interested in the “almost”
global-in-time existence of classical solutions in the
general theory for nonlinear wave equations. Several
interesting works about blow up and global solutions for
nonlinear wave equations given in [8-15].

First of all we will estimate the energy of problem (1.2).

Multiplying (1.2) with U, and integrating over (0.1), then
we get

dl1, o k 1 ¢ 1 2
| Il [a0uiax- [ | =fu;

(1.3) where

Fu) = f(&)de

So the energy equation of the initial-boundary problem (1.2) is defined by

1 k 1; i
E(t) = §||ut||§ + E||ux||§ + E}[a(x)ufdx —_([ F(u)dx. (1.4)

Therefore we obtain

d 2
G-l

(1.5)
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2. MAIN RESULTS

Now we give the following theorem for global solutions.

Theoreml. Let u(x,t) be a solution of the initial-boundary problem (1.2) with a(x) > 0. There exists a positive constant
A such that the function f (S) satisfies

f?(s)< AF(s) forsell @1
Then the solution u(x, t) is the global solution of the initial-boundary problem (1.2).
Proof: Let
1
G(t) = E(t)+2IF(u)dx. 22)
0
Taking a derivative of G(t) and using (1.5), we obtain
1
G'(t) =—b]u[; +2[ f (uudx. 2:3)
0
1
G'(t)<2 j f (u)u,dx. 2.4)
0

Using  Cauchy-Schwartz’s  inequality = and  Young’s inequality in  (2.4)  respectively, we  get

G0]<2f] W ox,

< 2| f )], Jull, -

Then we obtain

G'(t) s%j; fz(u)dx+277||ut||§, (2.5)
where 77 is positive constant. Now we use (2.1) in (2.5), we yield

IG'(t)| S%QfF(u)dx+2n||ut||§. (2.6)
From defining of G(t) we have
2G(t) =|Ju [ + kJu, | +j.a(x)ufdx + 2} F (u)dx.

0 0

Therefore we get

u, ||§ + 2} F(u)dx<2G(t). @.7)
Using (2.6), we obtain

IG'(t)| < ,B{||ut||§ +2_[ F(u)dx}, 2.8)

A

where [ = max {—,277}.
4n

Thanks to (2.7) and (2.8), we have
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G'(t) <2/G(t).
Then from the Gronwall’s inequality, we have

G(t) <G(0)e?.

Thus, together with the continuous principle and the definition of G(t) , we complete the proof of the Theorem 1.

Theorem 2. Let u(x, t) be a solution of the initial-boundary problem (1.2). Assume that

(i) f(s) satisfies the following condition
sf(s) > 4F(s), for sell,
(i1) The initial values satisfy

E(0) <0, 0<Jl.u0(x)u1(x)dx,

satisfies

(iii) u(x,t)
(2.12)
Then the solution U(X,t) blows up in finite time T__. and
1-y
Tax S ———
ayL7(0)
where ( is a positive constant and y is a positive constant such that 0 < y < i.
Proof: Let
H(t) =—E(t)

and

1
L(t):=H7 (t) + j uu,dx.
0
Combining (1.5), (2.10) and (2.13), we obtain

L
dt

therefore we get

H(t)>H(0)>0, fort>0.

H(t)=b|u; >0

Taking a derivative of (2.14) and using (2.15), we have

d B 1
pm L) =b(L—»)H7 ) u |} +|u.]; + j uu,dx.
0

From the initial-boundary problem (1.2), we write

U, = ku,, +(a(x)u, ), —bu, + f (u).

(2.9)

(2.10)

1> |ul-

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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Then, multiplying (2.18) with U and integrating over[O,l], using integration by parts and boundary conditions when
necessary, we obtain

1 1 1 1
Iu U dx =k u,|> - I a(x)u’dx — bju u,dx +_[ f (u)udx. (2.19)
0 0 0 0

And then using (2.19) in (2.17), we get

d B 1 1 1

5 {0 =[=7)H7 @b [; +[uel; —kJlu,]; - [a()uidx—bfuu,dx+ [ f (u)udx.
0 0 0 (2.20)

By recalling the definitions of E(t) and H(t) we have

1 1
4H (1) = -2uy|l; - 2k u, [, - 2[ a@uZdx+ 4] F (u)dx . (2.21)
0 0

Hence applying (2.21) in (2.20) we write

d B 1 1 1
SO =D/ H7Ou [5 + lufl; =K [u, ] = faG)uZdx—buu,dx+ [ f (u)udx
0 0 0

L L (2.22)
+4H (1) + 2|ug[; + 2k Ju, [, + 2] a(uZdx—4[ F (u)dx
then we yield i ’
d ) 1 1
" L(t)=b(1-y)H7(t) ||ut||§ +3||ut||§ + k||ux||§ —bjuutdx+.[( f (u)u—4F(u))dx +4H ().
0 0 2.23
By using Cauchy-Schwartz’s inequaity and Young’s inequality respectively, we have @29
h h b 1
Jute < [luufcbe< ulfu|< 2 Julf + o Jul:- 021
0 0
From (2.23) and (2.24), we obtain
d o 2 2 2 bP 2 1, 2
3¢ FO2bA=7)HT O u, +3fuf, +ku [, == ul, =5 lul,
1 (2.25)
+j( f (u)u—4F (u))dx+4H (t).
0
Using (2.9) and Poincare inequality for K ||ux||§ respectively in the equation (2.25), we get
2
% L(t) > g”ut ||§ +AH () + (ﬂ,k —%J”u”z >0 (2.26)

2
where K is positive constant such that K> 7 . Thanks to (2.26) and the definition of L(t) , We have

L(t)>L(0)>0.
1
Next, we will estimate L' (t) . Using Halder inequality, we obtain
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1 1
qudx:sjhquxs”uL”q”z,
0 0

then we get
1

] o (1 e SR
qudx s[jqudxj <Jullr Juglls -
0 0

By Young’s inequality

' —®
XY<5—X§ ° —Y, X,Y >0 forall 6 >0, 1+l=1,
¢ @ { o
with @ =2(1— ) and szfl_zy),weyield

1 1
qudx
0

- 2
<c| 7 +Juf |

where C depends on y. Using (2.11) and considering the relation 2 <

<4, we get
1-2y

1 1
qudx
0

1
Now we estimate L7 (t) .

- 2
< c[nun;” +u ||§} <C|Julf +[ul; |<c| Il +lul; |

(.27

It follows from the definition of L(t) for all t >0 and using (2.27) and the following inequality for p>1, a,b >0

(a+b)? <2°*(a® +b"), we obtain
1

kaa):(Hl7a)+juuﬂley,

1
1-y

r
<2V H(t)+

1
qudx
0

<[ H@+ul} +lul; ]
7
where £ =2"7C.

From (2.26) and (2.28) we get

d I(;(t) Ll—y (t)

(2.28)

(2.29)
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b2

. |5
where @ = ﬁ, A =min > AK —— |+ and using Gronwall’s inequality in (2.29), we obtain
K

2

e
L7 (1) > — L

LQ(O)—atli

Then, (2.30) shows that L(t) blows-up in time

T v
Y

ay*7 (0)

Therefore the proof is completed.
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