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ABSTRACT 

 

We consider  inventory model of type (s, S) which is used mostly in stock control policy. It is very important to 
know characteristics of an inventory model of type (s, S), such as stationary distribution. Using the straight line 

approach of Frees [1], we establish estimator for ergodic distribution of inventory model of type (s, S) and 

investigate asymptotic properties of this estimator such as consistency, asymptotic unbiasedness and asymptotic 
normality. 
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1. INTRODUCTION 

 

Renewal process, renewal-reward process, random walk  

and various modifications of these processes have a 

wide range of applications in reliability theory, queuing 

theory, insurance applications and etc. There are many 

valuable studies on these processes in the literature [2-

7]. Many interested problems of stock control are also 

expressed by means of these processes. For example, in 

the analysis of most inventory processes, it is customary 

to assume that the pattern of demands forms a renewal 

process. Most of the standard inventory policies induce 

renewal sequences, e.g., the times of replenishment of 

stock. The stock control policy is one of the important 

topics related to production policy of managements, 

since running a right stock policy for managements will 

increase company's profit. One of the most used 

inventory models is the inventory model of type (s, S). 

The inventory model of type (s, S) has been extensively 

considered in recent years [8-18; etc.]. It is very 

important to know characteristics of an inventory model 

of type (s, S) in real world application, such as 

stationary distribution, moments, etc. For this reason, 

the ergodic distribution of an inventory model of type 

(s, S) is considered in this study. The stationary ergodic 

distribution is obtained by using renewal function of 

demand quantity which has distribution function F. 

However, the functional form of the distribution 

function F or the parameters of the distribution or both 

of them are unknown in many cases. Thus, it is 

desirable to have an estimator of the renewal function. 

Frees (1986a) proposed estimation of a straight line 

approximation of the renewal function instead of direct 

estimation of the renewal function. This approximation 

is based on a limit expression for large values of time 

parameter t. It is easy to apply this estimator in practice, 

especially for large value of t. To estimate of renewal 

function, especially in the cases of fixed values of t, 

there are many studies on this topic in the literature [19-

27]. To calculate these estimators, it is needed to the 
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considerable amount of computation, especially in the 

cases of large values of t. Contrary to Frees's estimator, 

it is a disadvantage for these estimators. Because of 

simple form of Frees's estimator, it can be used as 

estimator for applying in stochastic models including 

the complicated function associated with renewal 

function for large value of t, for example,  estimation of 

ergodic distribution of inventory model of type  (s, S).  

 

1.1. The model 

 

In this section, we define the inventory model of type 

(s, S) and  process expressed this model. Before giving 

the mathematical definition, let us give the essential 

notations as follows: 

 

s       : Stock control level, 

S       : The maximum stock level, 

Y(t)   : Stock level in a depot at time t, 

Xn        : Demand quantity, 

ξn     : Interarrival time, 

τ1    : The first crossing time of the control level s by the 

process Y(t), 

N1    : The necessary number of demands up to the first 

crossing time τ1  

  

It is assumed that stock level (Y(t)) in a depot at the 

initial time (t=0) is Y(0)=Y0=S. Furthermore, it is 

assumed that in a depot at random times T1, T2,...,Tn,... 

the stock level (Y(t)) in the depot decreases according to 

X1, X2,..., Xn,... until the stock level falls below the 

predetermined control level s as follows: 

 

Y(T1)=Y1=S-X1;      Y(T2)=Y2=S-(X1+X2);  ...   ; 

Y(Tn)=Yn=S-(
1

n

ii
X

=∑ ),   ... 

 

where Xn represents the quantity of the nth demand. This 

change of the system continues until the certain random 

time τ1 which is the first crossing time of the control 

level s by the process Y(t). At time τ1, stock level in a 

depot is immediately replenished to the maximum stock 

level S. Thus, the first period has been completed. 

Afterwards, the system continues its variation by  

similar way to the first period.  

The estimator for ergodic distribution makes it possible 

to estimate many characteristics arising in inventory 

model of type (s, S). Although the literature of 

inventory model of type (s, S) include many articles, 

none of them investigate the estimation problem for this 

model. Because of that, in this study, we deal with 

estimator for the ergodic distribution of inventory 

model of type (s, S). Thus the this article is organized as 

follows. In Section 2 it is definded the process which 

expressed the inventory model of type (s, S) and  in 

Section 3 the ergodic distribution of  this process is 

defined. In section 4, we give estimator for ergodic 

distribution of inventory model of type (s, S) based on 

Frees’s estimator. Besides, we investigate some 

important statistical properties of this estimator, such as 

consistency, asymptotic unbiasedness and asymptotic 

normality. In section 5, the estimator is applied to a 

simulated dataset. Concluding remarks are summarized 

in section 6. 

 

2. MATHEMATICAL CONSTRUCTION OF THE 

PROCESS Y(t)  

 

Let ( ){ }
1

, X
∞

=
ξi i i

 be a sequence of independent and 

identically distributed pairs of positive random 

variables defined on some probability space {Ω,F,P} 

We denote 

( )1( ) ,t P tΦ = ξ ≤

( ) ( ) [ ]1 , , , 0.F x P X x x s S t= ≤ ∈ ≥
 

Define the 

renewal sequences {Tn} and {Zn} as follows: 

 

0 0

1 1

, , 1, 0,
= =

= ξ = ≥ = =∑ ∑
n n

n i n i

i i

T Z X n T Z  

 

and a sequence of integer valued random variables 

{Nn}, n≥0 as 

 

{ }0 1 10; min 1: ; min 1: .k n n k NN N k S Z s N k N S Z Z s= = ≥ − < = ≥ + − − <

( ){ }0 1 10; min 1: ; min 1: .
nk n n k NN N k S Z s N k N S Z Z s+= = ≥ − < = ≥ + − − <  

 

nth crossing time of the control level s by the process 

Y(t) can be written as  

 

0

1

, 1, 0.
n

n

N

n N i

i

T n
=

τ = = ξ ≥ τ =∑  

 

Then the desired stochastic process (Y(t)) expressed by 

inventory level at time t can be written as   

 

( ) 1( ) , , 0,1,2,...,
nv t N n nY t S Z Z t n+= − + τ ≤ < τ =  

where { }( ) max 0: , 0.nv t n T t t= ≥ ≤ >   

This model is known as an inventory model of type (s, 

S). A sample path of the process Y(t) is given in Figure 

1. 
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Figure 1. A sample path of the process Y(t) 

 

 

 

3. ERGODIC DISTRIBUTION FOR THE 

INVENTORY MODEL OF TYPE (s, S) 

 

The ergodic distribution
 
of the process Y(t) is given as 

( ) ( )lim Y( ) , [ , ).
t

Q x P t x x s S
→∞

= ≤ ∈  Nasirova et 

al. [28] obtained the ergodic distribution as following 

Lemma 3.1.  

 

Lemma 3.1. Suppose that E(ξ n)<∞, then, the ergodic 

distribution of the process Y(t) is given as:  

 

 ( ) ( )
( )

1 , s   S (3.1)
X

X

U S x
Q x x <

U S s

−
= − ≤

−
                (3.1) 

 

Here UX (z) is the renewal function generated by the 

sequence of {Xn, n=1,2,…}. Note that  UX (S-x) and UX 

(S-s) can be written as follows for sufficiently large 

values of  (S-s) and (S-x) [29]: 

 

( ) ( )
2

2

1 1

(1)
2

− µ
− = + +

µ µX

S s
U S s o

 
 

and  

 

( ) ( ) 2

2

1 1

(1),
2

X

S x
U S x o

− µ
− = + +

µ µ
 

 

where ( ) , 1,2k

k nE X kµ = =  is kth moment of the 

demands. Then the ergodic distribution Q (x) can be 

represent as follows when β =S-s→∞: 

 

( ) 1 1 2( ; , ) (1). (3.2)Q x Q x o= µ µ +          (3.2) 

 

Here  
( ) 1

1 1 2

1 2

2
( ; , )

2

x s
Q x

− µ
µ µ =

βµ +µ
. 

 

Note that if ξ1 and X1 are mutually independent and 

( )10 ,E< ξ <∞  then the ergodic distribution of the 

process Y(t) is independent from the moments of the 

random variable ξ1. 

 

4. ESTIMATOR FOR ERGODIC DISTRIBUTION 

OF INVENTORY MODEL OF TYPE (s, S) 

 

In this section, we give estimator for ergodic 

distribution of inventory model of type (s, S) based on 

Frees’s estimator [1] of renewal function.  

 

( ) ( )
( )1

ˆ
ˆ 1 , (4.1)

ˆ

−
= − ≤ <

−
X

n

X

U S x
Q x s x S

U S s

         (4.1) 

 

where  

 

( ) ( )
2

2

1 1

ˆˆ
ˆ ˆ2

X

S s
U S s

− µ
− = +

µ µ
 

and 

( ) ( )
2

2

1 1

ˆˆ .
ˆ ˆ2

X

S x
U S x

− µ
− = +

µ µ
 

 

Here 
1 1

ˆ
n

ii
X X n

=
µ = = ∑  and 

2 2

2 1
ˆ

n

ii
X X n

=
µ = = ∑   are estimators of µ1 and µ2 

based on the random sample 
1 2, ,..., .nX X X  Then this 

estimator can be rewritten as follows: 

 

 ( )1
2

2( )ˆ .
2

n

x s X
Q x

X X

−
=

β +
                (4.2) 

 

We first investigate some important statistical 

properties of the proposed estimator 1
ˆ ( )nQ x

 
for 
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1 1 2( ; , )Q x µ µ . After that we will show that the 

proposed estimator 1
ˆ ( )nQ x   converges in probability 

to ( )Q x  when the value of parameter β =S-s is 

sufficiently large and n→∞. 

 

Let us investigate the asymptotic unbiasedness of this 

estimator. To show unbiasedness properties of this 

estimator, we first need to prove following Proposition 

4.1 about the covariance between X  and 
2X . 

 

Proposition 4.1. Let 
1 2, ,..., nX X X

 
be independent 

and identically distributed random variables with 

distribution function F and µi (i=1,2,...) are ith moment 

of the distribution F. 
1

nk k

ii
X X n

=
=∑  (k=1,2,...) 

and 
1

nm m

ii
X X n

=
=∑  (m=1,2,…) are kth and mth 

sample moment, respectively. The covariance between 

kX  and 
mX  can be given as: 

( ) ( ), .k m

k m k m
Cov X X n+= µ −µ µ

 
 

Proof: See the Appendix A.                                                                   

 

Theorem 4.1. Suppose that ( )4

4 1µ = < ∞E X , then 

 

( ) 1
1 1 1 2

1 2

2( )ˆ ( ) ( ; , )
2

lim n

n

x s
E Q x Q x

→∞

− µ
= = µ µ

βµ + µ
 

 

holds, that is, 
1

ˆ ( )nQ x
 

is asymptotic unbiased 

estimator of 1 1 2( ; , )Q x µ µ .  

Hereafter, for simplicity, we take 1 1 2( , )µ µQ  instead 

of 1 1 2( ; , )Q x µ µ .  

 

Proof. Let us first find the second order Taylor 

expansion of 
1

ˆ ( )nQ x  at µ1 and µ2 

 

 

 

 

 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )

( )
( ) ( )

( )

( )( ) ( )
( ) ( )

1 1
2 2

2
2

1
1

2
2

2
2

1
2

2

2
2

11 1

1 1 1 2 1 2

2
2

2
2

1 12

2 2
2 2

12

1 2 21
2

ˆ ˆ
ˆ ,

2

ˆ ˆ

2

ˆ
ˆ , (4.3)

n n

n

X X
X X

n n

X X
X X

n

X

X

XQ x Q x
Q x Q X

X X

XQ x Q x
X

X X

Q x
X X R

X X

=µ =µ
=µ =µ

=µ =µ
=µ =µ

=µ

=µ

   − µ∂ ∂  = µ µ + − µ +
   ∂ ∂   

   − µ∂ ∂  + − µ +   ∂  ∂    

 
∂ + − µ − µ + ∂ ∂ 

 

 

 

where 21R̂  is the remainder term in Lagrange form. The expected value of 
1

ˆ ( )nQ x could be given as follows. 

 

 

( )( ) ( )( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )
( )( ) ( )

( ) ( )

1
1

2 12
2 22

2

1
1

2
2

2
2

2
2

11 1 12

1 1 1 2 1 22
2

2
2

2
2

1 12

1 22
22

ˆ ˆ ˆ
ˆ ,

2

ˆ ˆ
ˆ

2

n n n

n

X X
X

X X X

n n

XX
XX

E XQ x Q x Q x
E Q x E Q E X E X

X X X

E X Q x Q x
E X X E R

X XX

=µ =µ =µ
=µ =µ =µ

=µ=µ
=µ=µ

    − µ∂ ∂ ∂   = µ µ + − µ + + − µ     ∂ ∂ ∂      

   − µ ∂ ∂   + + − µ − µ +   ∂ ∂ ∂    

( )21 (4.4)
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 It is seen that ( )1 0,−µ =E X  ( )2

2
0,−µ =E X  ( )( ) ( )2 2

1 2 1 ,E X n−µ = µ −µ  ( ) ( )
2

2 2

2 4 2E X n−µ = µ −µ
 

and ( )( )( ) ( ) ( )2 2

1 2 3 1 2,E X X Cov X X n−µ −µ = = µ −µ µ
 

from Proposition 4.1. It can be proved that 

( ) 3

21
ˆE R D n≤ (see, Appendix B). So ( )( )1

ˆ
nE Q x  is obtained as below: 

 

( )( ) ( )
( )

( )
( )

( )( )
( )

2
21 2 1

1 3

1 2 1 2

2
1 1 2 3 2 14 2

3 3

1 2 1 2

42( )ˆ
2 2

2 2 2 1

2 2

n

x sx s
E Q x

n

x s x s
o

n n n

 − − βµ  − µ µ − µ
 = +   βµ + µ βµ + µ   

   − µ − βµ − µ  µ − µ µµ − µ       + + +          βµ + µ βµ + µ    
 

 

By simplifying, we get: 

 

( )( ) 1
1 1

2( ) 1ˆ ( ) , (4.5)n

x s A
E Q x Q x o

n n

−  = + +  
 

 

 

where 
( )

( )

2

3 1 2 4 1 3 2

1 3

1 2

2 ( )
.

2
A

β µ µ −µ + µ µ −µ µ
=

βµ + µ
 If µ4<∞,  A1<∞  for all 0<β<∞. We have the bias of 

1
ˆ ( )nQ x  as  

follows: 

 

( ) 1
1

2( ) 1ˆ ( ) , ( , ]. (4.6)n

x s A
Bias Q x o x s S

n n

−  = + ∈ 
 

 

 

Thus, ( )1
ˆ ( ) 0n

nBias Q x →∞→
 

holds. That is, it is seen that 
1

ˆ ( )nQ x  is asymptotic unbiased estimator for  
1( )Q x .                                                                           

                                                                                                                                                                                                                                                                

We need to obtain the variance of  
1

ˆ ( )nQ x before show that 
1

ˆ ( )nQ x  is a consistent for 
1( )Q x .  Thus, Lemma 4.1 

gives the variance of 
1

ˆ ( ).nQ x       

                                              

Lemma 4.1. Suppose that ( )4

4 1 .µ = <∞E X  Then, the variance of 
1

ˆ ( )nQ x  can be represented as follows as n→∞ 

( )( ) 22
1

4 1ˆ ( ) ,n

A
Var Q x x s o

n n

 = − +  
 

 

 

where  
( )

( )

2 3 2 2 2 2 3

3 1 2 1 2 1 4 1 3 2 1 2 1 2

2 4

1 2

2 2 3 5 3 4 2
.

2
A

 β µ µ + µ µ − µ µ + µ µ − µ µ µ − µ µ + µ =
βµ +µ

 

 

 

Proof. It is known that 

   

( )( ) ( )( ) ( )( )
2

2

1 1 1

22

2 2

ˆ ˆ ˆ

2( ) 2( )
. (4.7)

2 2

n n nVar Q x E Q x E Q x

x s X x s X
E E

X X X X

 = −
 

    − −
= −        β + β +     
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For calculating the first term in Eq. (4.7), we need to obtain the second order Taylor expansion of 

( )( )
2

2 2

1
ˆ ( ) 2( ) 2nQ x x s X X X= − β +  at  µ1 and µ2 as given  Eq. (4.8). We have the following result: 

 

( ) ( ) ( )
( )

( )
( ) ( )

( )
( )

( )( )
( ) ( )

1 1
2 12

2 22
2

1
2

2

2
2 2 2 2

12 2 21 1 1
1 1 1 2 1 22

2

2
2

2 2 2
2

21 1
1 22

22

ˆ ˆ ˆ( ) ( ) ( )ˆ ( ) ,
2

ˆ ˆ( ) ( )

2

n n n
n

X X X
X X X

n n

XX

X

XQ x Q x Q x
Q x Q X X

X X X

X Q x Q x
X X

X XX

=µ =µ =µ
=µ =µ =µ

=µ

=µ

    − µ∂ ∂ ∂   = µ µ + − µ + + − µ     ∂ ∂ ∂      

   − µ  ∂ ∂ + + − µ − µ   ∂ ∂ ∂     1
2

2

22
ˆ . (4.8)

X

R

=µ

=µ

+

 

The expected value of 
2

1
ˆ ( )nQ x  could be given as shown below: 

 

   

( )
( )

( )

( )
( )

2 2 2 2 2 32 2
4 1 3 2 1 2 1 21

2 42
1 2 1 2

2 3 2 2

2 1 2 1 3 1

4

1 2

8( ) 3 2 24( )2( )

2 22

16( ) 2 1
.

2

x sx sx s X
E

nX X

x s
o

nn

− µ µ − µ µ µ − µ µ + µ  − µ−
= +   βµ + µ βµ + µβ + 

− β µ µ − µ µ + µ µ  + +  
 βµ + µ

                          (4.9)

 
 

The second term given in Eq. (4.7) is the square of the expression given in Eq. (4.5), i.e., 

 

( )

2
2 2

21 1 2

2 2 22

1 2

4( )2( ) 1
4( ) , (4.10)

22

x s B Bx s X
E x s o

n n nX X

   − µ−    = + − + +         βµ + µβ +   
 

 

where 
( )

( )

2 2 2

3 1 2 1 4 1 3 2 1

1 4

1 2

2 ( )

2
B

β µ µ −µ µ + µ µ −µ µ µ
=

βµ + µ
 and 

 

( ) ( )
( )

2 2 2 2 2 4 2 2 2 3 2 2 2 2

3 1 3 2 1 2 4 3 1 4 2 1 3 2 1 3 2 4 1 4 3 2 1 3 2

2 6

1 2

4 2 4 2
.

2
B

β µ µ − µ µ µ + µ + β µ µ µ −µ µ µ −µ µ µ + µ µ + µ µ − µ µ µ µ + µ µ
=

βµ + µ
 

 

Consequently, the variance of 
1

ˆ ( )nQ x , by using the results shown in Eq. (4.9) and Eq. (4.10), is given by 

 

( ) 2 2
1

1ˆ ( ) 4( ) ,n

A
Var Q x x s o

n n

  = − +  
  

 

 

where 
( )

( )

2 3 2 2 2 2 3

3 1 2 1 2 1 4 1 3 2 1 2 1 2

2 4

1 2

2 2 3 5 3 4 2
.

2
A

β µ µ + µ µ − µ µ + µ µ − µ µ µ − µ µ + µ
=

βµ + µ
 

 

This completes the proof.                                                                                                           □ 

 

Corollary 4.2. It can be shown that   

 

 

( )( ) 2

1 2
ˆ 4( ) ,nnVar Q x x s A→ −  as n→∞.                                                                              (4.11) 
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 Now we can show the consistency property of estimator 
1

ˆ ( )nQ x   as given in Lemma 4.2. 

Lemma 4.2. Suppose that ( )4

4 ,iE X =µ <∞  then, 
1

ˆ ( )nQ x  is a consistent estimator of 
1( )Q x . 

 

Proof. Recall that ( )1 1
ˆlim ( ) ( )n

n
E Q x Q x

→∞
=

 
from Theorem 4.1. To show that 

1
ˆ ( )nQ x  is a consistent estimator of 

1( )Q x , we need to prove that ( )1 1
ˆlim ( ) ( ) 0n

n
P Q x Q x

→∞
− ≥ ε = . It is well known that 

( ) ( )2
2

1 1 1 1
ˆ ˆ( ) ( ) ( ) ( )

n n
P Q x Q x E Q x Q x− ≥ ε ≤ − ε  from Markov inequality. Then, we need to show that 

( )2

1 1
ˆ ( ) ( ) 0.lim

n
n

E Q x Q x
→∞

− =  It is seen that  

( ) ( ) ( )( ) ( )( )2 2 22 2

1 1 1 2 1
ˆ ˆ ˆ( ) ( ) ( ) ( ( )) 4( ) 2( ) 0,lim lim lim

n n n
n n n

E Q x Q x Var Q x Bias Q x x s A n x s A n
→∞ →∞ →∞

− + = − + − ==

that is, 
1

ˆ ( )nQ x  is consistent estimator for 
1( )Q x .       

 

Now we can show that 
1

ˆ ( )nQ x   converges in probability to ( )Q x when the value of parameter β is sufficiently large. 

                  

Theorem 4.2. Suppose that ( )4

4 ,iE X =µ <∞  then, 1
ˆ ( ) ( )P

n n
Q x Q x→∞→

 
when the value of parameter β is 

sufficiently large. 

 

 

Proof. It is known that  

( ) ( ) ( )( )1 1 1 1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )n nP Q x Q x P Q x Q x Q x Q x− < ε = − + − < ε  

                            ( ) ( )( )1 1 1
ˆ ( ) ( ) 2 and ( ) ( ) 2 .nP Q x Q x Q x Q x≥ − < ε − < ε  

We have ( )( )1 1
ˆ ( ) ( ) 1nP Q x Q x− < ε →

 
from Lemma 4.2. It is possible to find a number of β0>0 for each 0 ,β > β  

so that ( )1( ) ( )Q x Q x− < ε  and ( )( )1( ) ( ) 1.P Q x Q x− < ε =  If En and Fn are two sequences of events, then 

( ) ( )1, 1n nn n
P E P F→∞ →∞→ →   implies ( ) 1n n n

P E F
→∞

∩ →  (Lemma 2.1.2 in [30]).  
 

Thus, ( ) ( )( )1 1 1
ˆ ( ) ( ) 2 and ( ) ( ) 2 1,nP Q x Q x Q x Q x− < ε − < ε → implies ( )( )1

ˆ ( ) ( ) 1nP Q x Q x− < ε → , 

that is, 1
ˆ ( ) ( )P

n n
Q x Q x→∞→   when the value of parameter β is sufficiently large.                                                                                                  

 

Remark. Since 1
ˆ ( ) ( )P

n n
Q x Q x→∞→  then 

1
ˆ ( )nQ x  is a consistent and asymptotic unbiased estimator for ( )Q x  

when the value of parameter β is sufficiently large. 

 To show asymptotic normality of the estimator 1
ˆ ( )nQ x ,  we first need to following Lemma 4.3. 

 

Lemma 4.3. (Multivariate Delta Method, [31]) Define the random vector Z=(Z1,...,Zr) with mean µ=(µ1,...,µr) and 

covariances ( ),Zi j ijCov Z =σ . Let Z1),...,Z(n) be a random samples of the population Z and 
( )

1

ˆ n k

i ik
Z Z

=
=∑ , i=1,...,r 

be the sum of observation for each variables. For a given function g(Z) with continues first partial derivatives and a 

specific value of µ=(µ1,...,µr) for which ( ) ( )2
0.ij i ji j

g g′ ′τ = σ >∑ ∑ µ µµ µµ µµ µ   Then  

( ) ( )(1) ( ) 2

1
ˆ ˆ(Z ,...,Z ) ( ,..., ) 0, .

dn

p n
n g g N→∞− µ µ → τ  Here  ( ) ( )1,...,i r ig g′ = ∂ µ µ ∂µµµµµ

 
(i=1,…r). Now we 

can give asymptotic normality of the estimator 
1

ˆ ( )nQ x . 

 

Theorem 4.3. Suppose that ( )4

4 ,iE X =µ <∞  then 
1

ˆ ( )nQ x  is asymptotically normal, that is,
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( ) ( )2

1 1
ˆ ( ) ( ) 0, ,

d

n n
n Q x Q x N→∞− → σ  

 

where 

( )
( )

2
2 2 3

4 1 3 2 1 24

1 2

4( )
2 .

2

x s−
σ = µ µ − µ µ µ +µ

βµ +µ
 

 
  

Proof. 
 
By the Multivariate Delta Method [31] we obtain that

 
 

( )
( )

( )
( )

( ) ( )
( )

( )
( )

2 2

1 1 2 1 1 22 2

1 1

1 2

1 1 2 1 1 22

1 1

1 2

ˆ ˆ, ,
( ) ( )

ˆ ˆ, ,
2 , ,

n n

n n

Q Q
Var X Var X

Q Q
Cov X X

   ∂ µ µ ∂ µ µ
σ = +      ∂ µ ∂ µ   

∂ µ µ ∂ µ µ
+

∂ µ ∂ µ

 

 

where 
2

1 2 1( ) ,Var X = µ −µ  
2 2

1 4 2( )Var X = µ −µ   and ( )2

1 1 3 2 1, .Cov X X = µ −µ µ   

Then, 

 

( )
( )

2
2 2 3

4 1 3 2 1 24

1 2

4( )
2 .

2

x s−
σ = µ µ − µ µ µ + µ

βµ + µ
 

 

Thus, we have that ( )( ) ( )2

1 1
ˆ ( ) 0, .

d

n n
n Q x Q x N→∞− → σ   

 

This completes the proof.     □                                                                                                                                                                                               

As a result, it is shown that 
1

ˆ ( )nQ x  is consistent, asymptotic unbiased and asymptotically normal estimator for ( )Q x  

when the value of parameter β is sufficiently large. 

 

 

 

5. NUMERICAL EXAMPLE 

 

A company operating in the energy sector produces, 

stores, fills, and distributes liquefied petroleum gas 

(LPG). Domestic LPG distribution is carried out 

through pipelines and land transport. Where there is no 

pipeline installation, gas is distributed through land 

transport. LPG is carried from the LPG production 

center (a city in Turkey) to the 30 dealers by tankers. 

After delivering the needed amount of gas to the dealer, 

the tanker waits in its position until the nest order of any 

dealer. Each dealer has a storage capacity of S=30m3. 

Random amounts of LPG (Xn) are sold from these 

storage tanks at random times (ξn) . The level of LPG in 

the tank of the dealer falls below the control level 

s=S/10, a demand signal is automatically sent online to 

the production center. As a response to this demand, the 

nearest tanker to the dealer is directed to the demanding 

dealer. If there is no tanker near to the dealer, a full 

tanker is sent from the production center. The dealers 

fill the full capacity S of their tanks. Therefore, the 

process that expresses the working principle of the 

storage tank can be considered as the renewal process 

with inventory model of type (s, S). A dealer need to 

know ergodic distribution of the process Y(t)  to obtain 

some important characteristics of the process. To do this 

we should know the distribution of demands and its 

parameters at least their first two moments. Knowing 

the distribution or its parameters are almost impossible 

in most of the times. Nevertheless these basic 

characteristics, e.g.  first two moments of the demands 

can be estimated from the calculated data. To obtain 

these moments dealer collected data until full storage 

tank emptied twice. For generating this kind of data we 

use pseudo random numbers from Gamma (2,1). The 

generated data is given at Table 5. 

 

 

 

Table 5.1.The demand  quantity collected from dealers 

1,14 1,50 0,28 1,99 2,89 1,62 3,05 1,87 3,32 

1,91 1,90 0,40 1,59 2,62 1,88 1,56 10,42 0,61 

2,56 2,75 3,01 0,29 1,36 0,80 0,77 2,08 1,58 
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Figure 2. A figure of the process according to example 

 

 

The first and second sample moments are 
21.923 and 7.147.= =X X  By using the moments, estimator for 

( )Q x given in Eq. (4.2)   is obtained as 

 

( )
( )1

2

2( )ˆ 0.035 0.104.
2

n

x s X
Q x x

X X

−
= = −

β +
 

 

To compare ( )Q x  and ( )1
ˆ

nQ x  we take different values of x from s to S. Then values of ( )Q x  and ( )1
ˆ

nQ x   are 

obtained for 13 value of x. Also we compare these values according to their absolute difference, ∆= ( ) ( )1
ˆ

nQ x Q x− , 

and accurate percentage (AP) values, AP(%)=100- ( ) ( ) ( )1
ˆ .

n
Q x Q x Q x−  These values are given in Table 5.2. 

 

 

Table 5.2. A comparison of the values of ( )Q x  and ( )1
ˆ

nQ x  

x ( )Q x  ( )1
ˆ

nQ x  
∆ 

AP 

4 0,0351 0,0350 
0.0001 

99,71 

6 0,1053 0,1051 
0.0002 

99,81 

8 0,1754 0,1751 
0.0003 

99,82 

10 0,2456 0,2452 
0.0004 

99,83 

12 0,3158 0,3153 
0.0005 

99,84 

14 0,3860 0,3853 
0.0007 

99,81 

16 0,4561 0,4554 
0.0007 

99,84 

18 0,5263 0,5254 
0.0009 

99,82 

20 0,5965 0,5955 
0.0010 

99,83 

22 0,6667 0,6656 
0.0011 

99,83 

24 0,7368 0,7356 
0.0012 

99,83 

26 0,8070 0,8057 
0.0013 

99,83 

28 0,8769 0,8755 
0.0014 

99,84 
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Here  ( )( ) 2 3 4 1 4 exp( 2 )U z z z= + + −  for Gamma (2,1).
  

As seen from Table 5.2 the all AP values are greater than  99%. These results show that the proposed estimator ( )1
ˆ

nQ x  

for ( )Q x gives very accurate results. 

 

In the rest of this section, we will show the goodness of fit of  ( )1
ˆ

nQ x  to ( )Q x  for Gamma distribution with 

parameter (2,1) by using Kolmogrov-Simirnov One Sample Test.  The test statistics of Kolmogorov-Simirnov is 

( ) ( ){ }max 1
ˆmax ; .= − ∀

n
D Q x Q x x We use different   β=S-s  and n values to obtain the mean and the maximum 

of Dmax . To obtain this values, we generate 10.000 pseudo random number set for each combination of β and n. The 

obtained results are given at the Table 5.3.  

 

 

Table 5.3. The mean and maximum values of Dmax  for Gamma (2,1) 

 

β n 
maxD  Max(Dmax) 

5 10 0.0346 0.2001 

5 20 0.0265 0.1195 

5 30 0.0229 0.1000 

5 50 0.0188 0.0765 

5 100 0.0151 0.0644 

10 10 0.0241 0.1395 

10 20 0.0186 0.0977 

10 30 0.0157 0.0840 

10 50 0.0131 0.0528 

10 100 0.0103 0.0418 

20 10 0.0147 0.0970 

20 20 0.0111 0.0740 

20 30 0.0096 0.0481 

20 50 0.0079 0.0336 

20 100 0.0061 0.0267 

50 10 0.0060 0.0473 

50 20 0.0044 0.0290 

50 30 0.0037 0.0232 

50 50 0.0030 0.0178 

50 100 0.0022 0.0112 

100 10 0.0029 0.0364 

100 20 0.0022 0.0156 

100 30 0.0018 0.0145 

100 50 0.0014 0.0094 

100 100 0.0010 0.0055 

200 10 0.0015 0.0138 

200 20 0.0011 0.0100 

200 30 0.0009 0.0056 

200 50 0.0007 0.0045 

200 100 0.0005 0.0030 
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As seen from Table 5.3, both maximum and mean of 

the  statistics are decreased when n and  are 

increased. Especially for great values of n and , these 

values are very small. This indicates that the estimator 

is much better at the great values of n and  

 

6. CONCLUSION AND REMARKS 

 

In real world application, it is very important to know 

characteristics of an inventory model of type (s, S), such 

as ergodic distribution, moments, etc. The ergodic 

distribution is obtained by using renewal function of 

demand quantity which has distribution function F. 

However, the functional form of the distribution 

function F or the parameters of the distribution or both 

of them are unknown in many cases. Thus, it is 

desirable to have a estimator of the renewal function. 

For this reason, in this article, we give an estimator for 

ergodic distribution of  inventory model of type (s, S) 

by using the straight line approach for Frees [1]. We 

show that the proposed estimator is consistent, 

asymptotically unbiased  and asymptotically normal for 

large values of β. The proposed estimator is also applied 

to a dataset. The results indicate that the accurate 

percentage (AP) values are all above 99%. It is meant 

that the estimator gives the results very close to 

( ).Q x  However, it is observed that the AP values get 

smaller as the x values get closer to S.  The estimator 

given in this study can be applied to other complex 

stochastic models including renewal function. 

Therefore, in future studies, it can be considered to 

apply this estimator in different inventory models of 

type (s, S). 
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Appendix A 

 

Proof. The covariance between 
kX  and 

mX  is obtained as follows: 

 

( ) ( )( ) ( ), .k m k m k m

k m k mCov X X E X X E X X = −µ −µ = −µ µ  
                                                  

 

Here  ( )k mE X X  term is obtained as  
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Then, ( ) ( ), .k m

k m k mCov X X n+= µ −µ µ
  

                                                                                                          

Corollary A.1. The covariance between X  and 
2X  can be given as ( ) ( )2

3 1 2, .Cov X X n= µ −µ µ
 

 

Remark. As it is seen from Corollary 4.1, ( )2lim , 0
n

Cov X X
→∞

=  when ( )3

3 1 .E Xµ = <∞ This result shows that X  

and 
2X  are asymptotically uncorrelated.  

By using Corollary 4.1, we can prove that the estimator 
1

ˆ ( )nQ x
 
is an asymptotic unbiased estimator of 1( )Q x . 

 

 

Appendix B 

 

The expected value  of remainder term 2R̂
 
goes to zero as n→∞. To show this, initially, we need to obtain Lagrange form 

of the remainder term 2R̂  as follows: 
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where 0<θ<1 and ( )( ) ( )1 1 1 2 22 .C X X = + − + + − β µ θ µ µ θ µ  According to law of large numbers, 

1

PX µ→  and 
2

2 ,PX µ→  then n can be chosen so large that  
1

1
2

− <X
n

δ
µ  and 

2 2
2

2
− <X

n

δ
µ   where 

0<δ1;δ2<1. Hence we have inequality as shown below: 

( ) 1
1 1 1

2
+ − ≥ −X

n

θδ
µ θ µ µ   and ( )2 2

2 2 2 .
2

+ − ≤ +X
n

θδ
µ θ µ µ  

Then, we obtain the upper bound of 21R̂  as follows: 
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 − β µ + θδδ δ − β    + −    
     

 − β µ + θδδ δ −   + −   
     

−δ +  
 

x s nx s
R X X

n C C

x s nx s

n n C C

x s nx s

n n C C

n

( )( )1 1

4

2

( ) 2
(A.1)

 − µ + θδ 
 
  

x s n

C

 

   

where ( ) ( )2 1 1 2 22 2 2 . = − + − C n nβ µ θδ µ θδ  δ1 (0<δ1<1) and δ2 (0<δ2<1)  are chosen so small that let 

( )1 1 12 2− ≥µ θδ µ  and ( )2 2 22 2.− ≥µ θδ µ  In this case, Eq. (A.1) similarly holds by using 

[ ]3 1 22 2 2= +C β µ µ
 
instead of C2. 

 

δ1 (0<δ1<1) and δ2 (0<δ2<1) are chosen so small that let  
1 12 ≤θδ µ

 
and 2 22 .≤θδ µ

 
Then, 
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( )
3 23 22

2 1 1 1 2 1
21 3 4 3 4

3 3 3 3

2 3

1 2 1 2 1

3 4 4

3 3 3

32 ( ) 48( )8 ( ) 8( )ˆ ,
2 2 2

24 ( ) 4( )2( )
.

2 2 2

   δ β − µ δ δ − β µβ − − β     ≤ − + −       
        

   δ δ β − µ δ − − µ−    + − +       
       

x s x sx s x s
R X X

n C C n n C C

x s x sx s

n n C C n C

 

 

Let max(δ1; δ2)= δ, then 

 

( ) ( ) ( )2 3 23
12

21 3 3 4

3 3

( ) 1/ 4 ( ) 4 6 3 1/ 2
ˆ ,

 − β +β+ − µ β + β + β+δ  
≤ − 

  

x s x s
R X X

n C C
 

 

 

Then, 

 

( )2

21 3
ˆ , ,

D
R X X

n
≤

 

( ) ( )2 3 2

13

3 4

3 3

( ) 1 / 4 ( ) 4 6 3 1/ 2
where

 − β +β + − µ β + β + β + 
= δ − 

  

x s x s
D

C C
 . 

 

It is known that if X1≤ X2 in probability 1, then ( ) ( )1 2≤E X E X . So, 

( )( ) ( )( ) ( )2 2 3 3

21 21
ˆ ˆ, ,E R X X E R X X E D n D n≤ ≤ = . Therefore, ( )( )2 3

21
ˆ ,E R X X D n≤ . 


