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ABSTRACT 

 

This article gives some goodness of fit tests for the Geometric distribution. The tests used in this study are 
Anderson Darling test, Cramer-von Mises test, Kolmogorov Smirnov test, test based on partition of Chi-square 
and some new alternatives based on smooth tests. The performance of these tests is compared by simulation 
study according to type-I errors and powers of tests. The power comparisons indicate that the modified version 
of smooth test statistic has the highest power value of test for Negative Binomial, Binomial and Poisson 

distributions. Also, Kolmogorov Smirnov, Anderson Darling, Cramer-von Mises and 
2

2V  test statistics can be 

preferred for large sample sizes. 
 
Keywords: Anderson Darling test, Cramer-von Mises test, Kolmogorov Smirnov test, Chi-square test. 

 

1. INTRODUCTION 

 

Count data is a type of data in which the observations 
can take only the non-negative integer values 

{0,1,2,...} , here these integers arise from counting 

rather than ranking. In general, the Poisson distribution 
is used in studies analyzing count data. The Poisson 
distribution can be used in quality control statistics to 
count the number of defects of an item, or biology to 
count the number of bacteria, in physics to count the 
number of particles emitted from a radioactive 
substance [1]. Also, some important application about 
count data using Poisson distribution can be seen at 
[2,3]. However, Geometric distribution is one of the 
best known discrete probability distributions modelling 
count data. There are some reasons to prefer Geometric 
distribution to Poisson distribution. Firstly, the time 
interval of interest, a treatment, is not of fixed duration. 

Secondly, the Poisson distribution is characterized by 
equality of the mean and variance of the distribution 
and finally Poisson model allows for the occurrence of 
zeros in the data [4]. 
 
Geometric distribution has many useful application and 
these applications are often arise in some areas 
including agricultural and reliability studies. For 
example, the pesticide application method you choose 
depends on the nature and habits of the target pest, the 
characteristics of target site, the properties of the 
pesticide, the suitability of the application equipment. 
Since the number of applications to analyze a given pest 
is dependent on the probability of achieving successful 
control with a given application, another important 
method is the number of pesticide applications made by 
farmers. So, farmers must decide how many times to 
apply the chosen pesticides. These frequencies can be 
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modelled by Geometric distribution [4]. The Geometric 
probability function is defined as 

 

( ; ) (1 )  , =0,1,2,...   =1-xf x q q q x q p= −    (1) 

 
where p  is the success probability of any trial.  

 
In order to determine whether the random sample of 
size n  comes from a Geometric distribution, null and 
alternative hypothesis are as seen below: 

 :oH The random sample is drawn from population has 

Geometric distribution. 

1  :H The random sample is not drawn from population 

has Geometric distribution.                                         (2) 
 

Goodness of fit tests are used to test 0H  against 1H . 

Pearson's Chi-square
2( )χ is one of the most popular 

goodness of fit test. However, Pearson's 
2χ  

approximation which is commonly used is not adequate 
for small samples. Therefore, further studies have also 
suggested in the literature.  
 
Choulakian et al. [5] suggested Cramer-Von Mises test 
statistic in order to test goodness of fit of discrete 
distributions. Lancaster [6] partitioned into components 

Pearson's 
2χ  statistic by using orthonormal 

polynomials. Best and Rayner [7] suggested alternative 
test by taking advantage of these components and 
defined Kolmogorov-Smirnov statistic for the 
Geometric distribution take into consideration the 
approach of Henze [8] for the Poisson distribution. Also 
Best and Rayner [9,10] proposed the smooth test 
statistics in order to test goodness of fit of the 
Geometric distribution. 
 

2. GOODNESS OF FIT TESTS 

In this section, goodness of fit tests for Geometric 
distribution are investigated. Suppose that 

1 2 nX ,X ,…,X  be random sample of size n  from 

population with unknown distribution and 1 2 nx ,x ,…,x  

be the sample data. By the definition of the Geometric 

distribution observed values are 0,1,...,j k= . In this 

case, we will have 1k +  classes. Let jN  be 

frequencies of these classes ( 0,1,...,j k= ). In order to 

test the hypothesis in Equation 2, Pearson's 
2χ  is given 

as  

2 2

0

( ) ( )
k

j j j
j

N np np
=

= −∑χ ,                                    (3) 

 where 0 kn N N= + +L  and jp  is the probability of 

an observation lying in the 
thj  class under 0H . This 

statistic is approximately distributed as 
2.kχ  

The other popular goodness of fit tests for Geometric 
distribution are Kolmogorov-Smirnov, Cramer-von 
Mises and Anderson-Darling tests. These tests and 
alternative tests suggested by Best and Rayner [7,9,10] 
are given in the rest of this section. 

2.1. Kolmogorov-Smirnov Goodness of Fit Test 

Best and Rayner [7] modified Kolmogorov-Smirnov 
test statistic ( KS ) for the Geometric distribution. Let 

1 2( , , , )nm max x x x= K , 

0 1 1
ˆ ˆ ˆ ˆ1m mp p p p −= − − − −L  

0 1 0 1
ˆ ˆ ˆ( )j j jR N N N n p p p= + + + − + + +L L   for 

0,1, 2, , .j m= K  Here ˆ
jp  is the estimator of jp . Then 

the KS  test statistic can be defined as 

( )0 1, , , .mKS max R R R= K                              (4) 

2.2. Cramer-von Mises Goodness of Fit Test 

Choulakian et al. [5] proposed Cramer-Von Mises test 

statistic ( 2C ); 

2 1 2

0

.
k

j j
j

C n Z p−

=

= ∑                                                   (5) 

Here ( )
0

j

j i i
i

Z O E
=

= −∑  ( iO  and iE  are the observed 

and expected frequencies in thi  class respectively).  

2.3. Anderson-Darling Goodness of Fit Test 

The Anderson-Darling test statistic ( AD ) for the 
Geometric distribution was modified by Best and 
Rayner [7] by using the work of Spinelli and Stephens 
[11] for Poisson distribution. Put 0,1, 2, ,j m= K  and 

0 1
ˆ ˆ ˆ

j jH p p p= + + +L , then  

{ }2

0

ˆ (1 ) . 
m

j j j j
j

AD n R p H H
=

= −∑                          (6) 

m  is determined so that 310mp n−<  and 0mN = . 

Adding other terms to summation formula will not 
significantly change the value of test statistic [11]. 

If the KS , AD  and 2C  test statistics are greater than 

their critical values cα  at level α , then hypothesis 

0H  is rejected. Since the asymptotic distributions of 

these statistics under 0H  depend on the unknown 
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parameter, the critical values are estimated from the 
data. Therefore, the p -values of these tests are 

obtained by using parametric bootstrap [12]. 

2.4. Smooth Goodness of Fit Tests 

Best and Rayner [9,10] suggested the smooth test 

statistic cS  which is defined by means of components   

1

ˆ( ; )  
n

r r j
j

U h X q n
=

=∑ for 1,2, , 1r c= +K                 (7) 

where 
2

0

ˆ( ; ) ( ) !( )!( )
r

x r i
r j r i i

i

h X q K C C i r i a−
=

= − −∑  

are Meixner orthonormal polynomials with 

(1 )a q q= −  and 
1 2 / 2!( ) .rK r a a− = +  Notation 

n
kC  is the number of k -combinations from a given set 

S  of n  elements. Then the cS  statistic is given by 

2 2
2 1.c cS U U += + +L                                                 (8) 

q̂  is used as maximum likelihood estimator of q  for 

ungrouped data, the components asymptotically rU  

( 2,3,4, )r = K  have the standard normal distribution 

and are asymptotically mutually independent. Thus cS  

has asymptotically 
2
cχ  distribution. If 2

c cS > χ , then 

0H  is rejected.  

Furthermore, a modified version of the smooth test 

statistic 1S  defined by Best and Rayner [7] is  

( )* 2
1 1 2

1

ˆ; .
n

j
j

S nS h X q
=

= ∑                                        (9)  

Test statistic *
1S  has asymptotically 2

1χ  distribution. If 
* 2
1 1S > χ  , then 0H  is rejected. 

2.5. Goodness of Fit Test Based on Partition of Chi-

square 

Lancaster [6] considered that 
2χ  statistic can be 

partitioned into components 2
rV  ( 1,2, , )r k= K . 

Required notations are given as  

0

k

j
j

jp
=

=∑µ , 
0

( ) ,
k

r
r j

j

j pµ µ
=

= −∑ 2,3,...r = .(10)                                               

 If 2 2 0.5
4 3 2 2( )b −= − −µ µ µ µ , then the first three 

orthonormal polynomials can be written as follows [7]: 

 

0 ( ) 1g j =  

1 2( ) ( ) /g j j= − µ µ  

{ }2
2 3 2 2( ) ( ) ( ) .g j b j j= − − − −µ µ µ µ µ             (11) 

It is possible to derive orthonormal functions { }( )rg j  

for 3,4,r = K  by using recurrence relations in 

Emerson [13]. Take 

0

( )  , 1,...,   
k

r j r
j

V N g j n r k
=

= =∑                      (12) 

and then, as in Lancaster [6], the statistic 
2χ  is 

obtained as 

2 2 2
1 .... kV V= + +χ                                                 (13) 

2  ( 2,..., )rV r k=  components have asymptotically 2
1χ  

distribution. Moreover, these components can be used 
as test statistic. 

Note: If not much pooling is done then the rV  will be 

numerically close to the corresponding smooth 

components rU . In addition, a large value of rU  

indicates deviations of data from the hypothesized 

distribution in the thr  moment [14]. 

In this study, we used MATLAB R2009a software to 

compare 2 * 2
2 3 1 2,  , , , ,  S , S ,  S ,  2 2

2KS AD C V Uχ  and 
2
3U  tests in terms of type I errors and powers of tests. 

Obtained results and their discussions are given the 
following section. 

3. SIMULATION STUDY 

 

In this section, we compared goodness of fit tests 
described in the previous section in terms of type-I 
errors and powers of tests. For this purpose, 2000 
random numbers of size n  from the Geometric 
distribution with 0.5q =  were generated for different 

sample sizes 25(25)100n =  and different nominal 

values 0.05, 0.1=α . Also, similar results were 

obtained for  0.25,0.4,0.6,0.75q = . Thus these 

results were not given in this study. On the other hand, 
since the theoretical distribution of the test statistics 

* 2
2 3 1 2,  , ,  ,  S , S ,  S ,  2 2

2KS AD C V U  and 2
3U  could 

not be obtained, the parametric bootstrap method was 
used by performing also 2000 repetition to obtain p  

values for these tests.  
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Same processes for power values of these tests were 
performed by generating random numbers of size n  
from  
 

Negative Binomial, Binomial and Poisson distributions 
with different parameters. Probability functions of these 
distributions are given as 
 
 
 
 

Distributions Probability Functions 

Negative Binomial 
1

( ; , ) (1 ) , 0,1,...k xk x
f x k p p p x

x

+ − 
= − = 
 

 

 Binomial ( ; , ) (1 ) , 0,1,...,x m xm
f x m p p p x m

x
− 

= − = 
 

 

Poisson ( ; ) , 0,1,...
!

xe
f x x

x

−

= =
λλ

λ  

 
        

            Table 1.  Empirical type-I errors of the tests for 0.05,0.1=α   

 n  KS  AD  
2C  

2χ  
2

2V  2S  3S  *
1S  

2
1 2S U=  

2
3U  

 

0.05α =
 

25 0.0420 0.0385 0.0385 0.0280 0.0505 0.0450 0.0445 0.0440 0.0420 0.0440 

50 0.0600 0.0580 0.0595 0.0335 0.0545 0.0550 0.0520 0.0565 0.0485 0.0520 

75 0.0485 0.0425 0.0475 0.0310 0.0460 0.0480 0.0485 0.0590 0.0530 0.0450 

100 0.0490 0.0455 0.0460 0.0315 0.0485 0.0505 0.0450 0.0455 0.0475 0.0485 

0.1α =  

25 0.0905 0.0835 0.0900 0.0645 0.1015 0.0895 0.0935 0.0915 0.0940 0.0890 

50 0.0965 0.0940 0.1010 0.0605 0.1010 0.0945 0.0925 0.0995 0.0950 0.1005 

75 0.1165 0.1205 0.1195 0.0765 0.1130 0.1140 0.1060 0.1140 0.1110 0.1105 

100 0.0955 0.0940 0.0985 0.0595 0.1075 0.0965 0.0975 0.0980 0.0995 0.0985 

 
 
Type-I errors of the tests are given in Table 1. It is 
observed that for both 0.05=α and 0.1=α ,  type-I  
 

 

error rates of the tests except Pearson's 
2χ  test statistic 

are close to the value of nominal α . 

 
 

 

 

 

 

 

 



 GU J Sci, 26(3):369-375 (2013)/ D. ÖZONUR, E. GÖKPINAR, F. GÖKPINAR, H. BAYRAK, H. H. GÜL  373 

Table 2. Power values of tests under the alternative Negative Binomial distribution for 0.05=α   

[ ],k p  n  KS  AD  2C  2χ  2
2V  2S  3S  *

1S  
2

1 2S U=  2
3U  

 

 

[ ]2,0.9  

 

25 0.0215 0.0210 0.0085 0.0165 0.0195 0.0175 0.0185 0.0205 0.0155 0.0215 

50 0.0260 0.0215 0.0225 0.0080 0.0360 0.0230 0.0230 0.0665 0.0255 0.0340 

75 0.0400 0.0170 0.0320 0.0095 0.0370 0.0260 0.0240 0.0930 0.0200 0.0310 

 100 0.0480 0.0180 0.0435 0.0125 0.0525 0.0350 0.0280 0.1095 0.0275 0.0370 

 

 

[ ]2,0.7  

 

25 0.1175 0.0970 0.1210 0.0530 0.1140 0.0710 0.0680 0.1730 0.0465 0.0930 

50 0.1760 0.1475 0.1770 0.0505 0.1705 0.1020 0.0855 0.2570 0.0745 0.1060 

75 0.2415 0.2105 0.2435 0.0600 0.2050 0.1390 0.1200 0.3185 0.1195 0.1300 

 100 0.2865 0.2800 0.2965 0.0825 0.2730 0.1870 0.1610 0.3885 0.1755 0.1525 

 

 

[ ]2,0.5  

 

25 0.1900 0.2040 0.2145 0.1190 0.1650 0.1345 0.1190 0.3055 0.0910 0.1665 

50 0.3375 0.3810 0.3845 0.1360 0.3240 0.2560 0.2265 0.4685 0.2160 0.2650 

75 0.4875 0.5195 0.5275 0.1780 0.4525 0.3695 0.3345 0.6105 0.3280 0.3420 

 100 0.6035 0.6505 0.6570 0.2290 0.5770 0.5040 0.4645 0.7035 0.4740 0.4360 

 

[ ]2,0.3   

25 0.2935 0.2555 0.2630 0.2035 0.1755 0.2485 0.2255 0.4615 0.1700 0.2970 

50 0.5230 0.5055 0.5265 0.2620 0.4385 0.4660 0.4390 0.7015 0.3905 0.4745 

75 0.7265 0.7205 0.7420 0.3470 0.6270 0.6620 0.6405 0.8275 0.5855 0.6430 

 100 0.8400 0.8320 0.8495 0.4050 0.7655 0.7925 0.7890 0.8945 0.7455 0.7625 

 

 

[ ]3,0.9  

 

25 0.0455 0.0275 0.0320 0.0110 0.0475 0.0375 0.0375 0.0585 0.0210 0.0480 

50 0.0760 0.0300 0.0715 0.0210 0.0660 0.0505 0.0485 0.1350 0.0325 0.0655 

75 0.1155 0.0255 0.1100 0.0205 0.0940 0.0630 0.0550 0.1960 0.0490 0.0705 

 100 0.1390 0.0330 0.1315 0.0205 0.1105 0.0675 0.0580 0.2220 0.0605 0.0655 

 

 

[ ]3,0.7  

 

25 0.2730 0.2725 0.2925 0.1385 0.2425 0.1990 0.1830 0.3625 0.1350 0.2290 

50 0.4335 0.4525 0.4565 0.1615 0.4095 0.3200 0.2875 0.5550 0.2625 0.3310 

75 0.6235 0.6470 0.6490 0.2465 0.6030 0.5125 0.4665 0.7455 0.4670 0.4790 

 100 0.7395 0.7680 0.7655 0.3280 0.7210 0.6420 0.6010 0.8310 0.6200 0.5770 

 

 

[ ]3,0.5  

 

25 0.4530 0.4840 0.5005 0.2800 0.3085 0.4265 0.4045 0.6660 0.3150 0.4845 

50 0.7620 0.7865 0.7965 0.4275 0.6760 0.7300 0.7035 0.8745 0.6520 0.7410 

75 0.9305 0.9435 0.9485 0.6085 0.8950 0.9130 0.8965 0.9640 0.8715 0.8970 

 100 0.9845 0.9835 0.9875 0.7380 0.9665 0.9725 0.9760 0.9835 0.9580 0.9665 

 

[ ]3,0.3   

25 0.6725 0.5070 0.5190 0.3795 0.1020 0.6605 0.6530 0.8645 0.5420 0.7200 

50 0.9450 0.8340 0.8595 0.6605 0.7690 0.9310 0.9310 0.9820 0.8770 0.9480 

75 0.9950 0.9715 0.9760 0.8410 0.9570 0.9970 0.9945 0.9975 0.9835 0.9945 

 100 1.0000 0.9940 0.9980 0.9130 0.9925 1.0000 0.9995 0.9995 0.9990 0.9995 
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From Table 2, one can see that, when the sample sizes 

are large, *
1S  has the highest power value among the 

others for 2k =  and all p  parameters. On the other 

hand, ,  KS AD  and 2C  perform better results 

compared to the other tests when p  is small. When 

 p  is small and sample sizes are large, it is observed 

that *
1S  has the highest power value for 3k = . In 

addition, the powers of   2KS, AD, C  and *
1S  are quite 

close to each other when p  is small and sample sizes 

are large. 

Table 3. Power values of tests under the alternative Binomial distribution for 0.05=α   

[ ],m p  n  KS  AD  2C  2χ  2
2V  2S  3S  *

1S  
2

1 2S U=  2
3U  

[ ]10, 0.1  

25 0,6025 0,6035 0,6335 0,3405 0,6240 0,5510 0,5180 0,7500 0,4430 0,6020 

50 0,8905 0,8915 0,9015 0,6080 0,9035 0,8655 0,8295 0,9615 0,8195 0,8635 

75 0,9685 0,9760 0,9750 0,8125 0,9745 0,9670 0,9525 0,9925 0,9595 0,9555 

100 0.9945 0.9970 0.9960 0.9190 0.9965 0.9935 0.9880 0.999 0.9935 0.9860 

[ ]20, 0.1  

25 0.9060 0.9310 0.9345 0.7355 0.8905 0.9295 0.9170 0.9785 0.8810 0.9395 

50 0.9995 0.9995 0.9995 0.9740 0.9980 1.0000 1.0000 1.0000 0.9990 1.0000 

75 1.0000 1.0000 1.0000 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

From Table 3, it can be see that particularly *
1S  has 

higher power values of test than the others for 10m =  

and all sample sizes. Also, the powers of ,  ,  2AD KS C  

and 2
2V  give better results than the other tests when the 

sample sizes are large. In addition, *
1S  has the highest 

power values of test for 20m = and 25.n =  
However, when sample sizes are large all tests have 
similar results with respect to power values of tests.  

 
Table 4. Power values of tests under the alternative Poisson distribution for 0.05=α  

 

λ  
n  KS  AD  2C  2χ  2

2V  2S  3S  *
1S  

2
1 2S U=  2

3U  

 

0.25  

25 0.0365 0.0140 0.0215 0.0080 0.0335 0.0255 0.0260 0.0445 0.0125 0.0375 

50 0.0670 0.0105 0.0625 0.0085 0.0590 0.0415 0.0365 0.1555 0.0205 0.0670 

75 0.1225 0.0150 0.1100 0.0215 0.1140 0.0775 0.0615 0.2465 0.0590 0.0855 

 100 0.1700 0.0215 0.1630 0.0310 0.1490 0.0995 0.0735 0.2865 0.0785 0.0860 

 

 

0.5  

25 0.1770 0.1035 0.1600 0.0520 0.1730 0.1120 0.1135 0.2170 0.0630 0.1580 

50 0.3610 0.2105 0.3260 0.0985 0.3105 0.2455 0.2120 0.4630 0.1815 0.2680 

75 0.4955 0.3090 0.4730 0.1600 0.4505 0.3595 0.3165 0.6080 0.3215 0.3515 

 100 0.6045 0.4045 0.5910 0.2175 0.5785 0.4695 0.4025 0.7175 0.4515 0.4080 

 

0.75  

25 0.3220 0.2685 0.3250 0.1270 0.3230 0.2440 0.2290 0.4345 0.1665 0.2930 

50 0.5910 0.5310 0.5870 0.2475 0.5730 0.4835 0.4330 0.7200 0.4100 0.4900 

75 0.7855 0.7460 0.7850 0.3905 0.7790 0.6855 0.6320 0.8755 0.6485 0.6595 

 100 0.8845 0.8675 0.8915 0.5450 0.8950 0.8345 0.7855 0.9525 0.8235 0.7720 

 

1  

25 0.4745 0.4655 0.4995 0.2295 0.4710 0.3980 0.3710 0.6195 0.2825 0.4665 

50 0.7695 0.7815 0.7860 0.4210 0.7820 0.7150 0.6635 0.8810 0.6535 0.7225 
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75 0.9260 0.9320 0.9330 0.6285 0.9320 0.8985 0.8655 0.9705 0.8775 0.8745 

 100 0.9780 0.9810 0.9825 0.8010 0.9755 0.9650 0.9575 0.9900 0.9615 0.9485 

 

 

25 0.8430 0.8665 0.8730 0.6390 0.8060 0.8570 0.8390 0.9480 0.7830 0.8880 

50 0.9950 0.9955 0.9955 0.9205 0.9905 0.9945 0.9925 0.9995 0.9880 0.9955 

75 1.0000 1.0000 1.0000 0.9920 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

From Table 4, especially *
1S  has higher power value of 

test than the others for different λ  and sample sizes. In 

addition, the test statistics KS , ,2C  AD  and 2
2V  

perform better results according to other tests for higher 
values of λ . 

 
4. CONCLUSION 

 

In this study, we investigated classical tests KS ,

,2C  AD  goodness of fit test based on partition of Chi-

square and alternative goodness of fit tests suggested by 
Best and Rayner [1,2,11] for Geometric distribution. 
Furthermore, we compared these test statistics with 
respect to type-Ι error and power values. It is observed 

that generally *
1S  test statistic has the highest power 

value among the others. Also, ,  ,  ,  2 2
2KS AD  C V  test 

statistics can be used for large sample sizes. 
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