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ABSTRACT

In the present paper, we propose a modification for a certain family of summation integral type operators. We
study direct results on the modified operators. It is also observed that our modified operators have better

estimates over the original operators.
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1. INTRODUCTION

Let f be a local integrable function on the interval [0, OO). In [8], a certain family of summation integral type operators is

defined by

G, (9 =13 1, (O] P GOS WA+ Py (1S (1)

where

(_x)k ()
pn,k (x’ C) = k‘ ¢n,c (X),
@) if ¢n . (x)=e for ¢ =0, then the operators are
reduced to the Phillips operators introduced in [6,7] and
Giy it @, _(x)=(1+cx)™" for c € N—{0}, then
the operators are reduced to the perators studied in [3].
Ispir and Yuksel [5] introduced the Bézier variant of

these operators for approximation of functions of
bounded variation. Yuksel and Ispir [9] studied weighted
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approximation of these operators. Later, Gupta and Ivan
[4] studied the rate of simultaneous approximation for the
Bézier variant of these operators. It is known that these
operators do not preserve the linear functions. Recently,
Duman, Ozarslan and Della Vecchia [2] introduced a
modifed Szasz- Mirakjan- Kantorovich type operators
which preserve the linear functions. Our aim is to obtain
better error estimates for a certain family of summation
integral type operators.
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2. CONSTRUCTION OF THE OPERATORS

In this section, we modify the operators given by (1) such that the linear functions are preserved. To obtain linear positive
—C

*
operators which preserve the linear functions, for 72 > ¢, we define 7, (x) = X. We replace X in the operators

Gn’c (f,x) by 7': (X). Then we give the following modification of the Gn’c (f,x) :

B, (fsx) =1 P, (1](0,0) [ Procss (6,00 f @)t + p, o (17 (x),¢) £(0) @
k=1 0

where for c =0, p, (rn* (x),O) = P, (x,0) and for c € N—{0},

T(n/c+k)(er! (x))
KT/ o) (14 er, (0)"

pn,k (”;:(X),C) =

Here I denotes the Gamma function and the basis element DPrieia (t , C) are defined in (1). By simple calculations, we
obtain the following lemmas.

Lemma 2.1. For X € [0,00) and the test functions €, (x) = xi, i=0,1,2, we get

) B, .(e,,x)=1,

(i) B, .(e,x)=x,
_ 2
i) B, (e,,x) = (n—c)(n+c)x” + 2nx.
’ n(n—2c)
—nx k-1
Proof. For ¢ =0, since D (t, O) = ﬂ, we easily obtain the integral
’ (k—1)!
o 1 £ uk+m—l
t,0)"dt = e du
.([pn,k—l( ) I’lmH z'). (k—l)'
1 , form=0 &)
_ n
-1 '
% , form e N—{O}

_ T(n/c+k)ct)™
(k=DIT(n/c+)(1+ct)" ™’
bod k+m—1
S AL
" (k=D!T(n/c+1)y (1+u)"

For c € N—{O}, since P, .1 (Z,C)

by a direct calculation we get

j Dreers (t0)"dt =
0

1
— , form=0 4
. n
ke (k+m—1 '
(;m) , form eN—{O}
n...(n—mc)
Therefore, combining the formulas (3) and (4), for every C € N we can write
1
" — , form=0
n
Ipl7+c,k—l (ta C)tmdt = _ . )
) ko (k+m—1) formeN-{0}

n...(n—mc)



GU J Sci, 25(1):97-106 (2012)/ Ismet YUKSEL 99

From (5), the proof of (i) is obvious. By using (5) we write

Bn c (el > x) Z pn k (rn* (x)’ C). (6)
In (6), writing C = 0 we have
e ™ (nx)
B (e,x)= 7
0@ X) =12 = TR ™

and similarly, for ¢ € N — {0} , we obtain
I'(n/c+k) (cr*(x))k
T (k=D)IC(n/ c+1)(1+cr) (x)

(7) and (8) completes the proof of (ii). Using the formula (5), we write

< k(k+1)
B (e,x)= ) —————p, c 9
(o) = Y s Pas (5 (). ©)
In (9), using the equality

k(k+1)=k(k-1)+2k, (10)

for ¢ =0, we have

1 Se™mx) 2 &e™(nx
Bn’O(ez’x):_ZZ#J’_TZ#

nlc

Ms

Bn ¢ (el ,X) - )n/c+k = X. (8)

(1
2 2
=X +—X.
n
In (9), using the equality (10), for ¢ € N — {0} , we get
. k
B (e).x)= nicn/c+l) & F(n/c+k)(crn(x))
T = =20) G (k-2 e+ ) (14 e (v)
" k
e & T(n/c+k)(cr, (x))
Z nlc+k (12)
(n )n=20) = (k—1)IT(n/c+1)(1+cr; (x))

n—c)(n+c 2

=9+ o 2
n(n—2c) n—2c

(11) and (12) gives proof of (iii).

Obviously, for § € N, we choose the natural constants ay,...,d, assuch that the equality

H(k+J) Za H(k 7 (13)
i=0 j=0
holds. From (13), for m € N —{0}, we can obtain the formula

& (n=o)""'n.(n+(m-1-i)) .
B9 =24 (n—c)...(n—mc) g

(14

ml

Notice that the operators B e ( f , x) preserve the linear functions, that is, for h(f ) =at+ b, a, be R, we get
B, .(h,x) = h(x).

Lemma 2.2. For x €[0,00),n,m € N —{0} and with the notation @ (t)=t—x for t €[0,00) we have

0B, . (p,,x)=0,
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c(2n-c)x* +2nx
(i) B, (¢}, x)= ( )
n(n—2c)

i B, (¢ ,x) = O(n 1" 71),

b

Proof. From linearity of BM (f, x) operators we write the equality BM (gox , x) = BM (t, x) — xBM (1, x).
(t*,x)=2xB, (t,x)+ szn’C (1, x)

n,c

Using Lemma 2.1, we obtain the proof of (i). If we write Bn . (¢f, x) =B

n,c

n—c)(n+c

=0+ .,
n(n—2c)

For the proof of (iii), using the equality (14), we obtain

then, using Lemma 2.1, we get Bn L,((Dz , x) = ( , which completes the proof of (ii).

n—2c

m N il m—j
B, (@, x)=) (-1) ; X'B, (t"7,x)
j=0

_ O(n—[[<m+1)/2]])
Let C B [0, OO) be the space of all real valued continuous bounded functions on [0,00), equipped with the norm

”f” = sup |f(x)| The Peetre’s K — functional is defined by
x€e[0,0)

K,(f,0)=inf{|f -g|+J]g"
where Woj = {g € Cy[0,00): g,g"e CB[O,OO)} . By [1], there exists a positive constant C' such that
K,(f,8)<Ca,(f,5) (15)
where @, (f,+/6) = sup sup |f(x+2h)=2f(x+h)— f(x)|.

0<h< 5 xe[0,00)

:ger},5>O

Theorem 2.3. Let f € CB [0,00). Then there exists a positive constant C such that for every X €[0,00) and for

n>2c, we have

c(2n—c)x* +2nx
n(n—2c)

B, (f.x)- f(x)|< Ca, f,\/
Proof. Let g € Woj and X € [0,00). Using Taylor’s expansion

2() = g(¥)+g' ()t =x)+ [ (1=u)g"(w)du,

Lemma 2.1 and Lemma 2.2, we have

B, (g,x)—g(x)=B,, U (t—u)g"(u)du, xJ.

Using the inequality

t
[(t—x)g"@)du
atid from Lemma 2.2, we write

B, (g,%)-g(x)| < B, ((t—x).x)|¢'|

_c(2n —c)x’ +2nx ” ,,”
- n(n—2c)

<lga

Hence, in view of Lemma 2.1,
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B, (f,x)— f(x)|<

20/~ s

B, .(f~gx)~(/~g)(x)|+|B,.(g.%) - 2(x)|
c(2n—c)x* +2nx ” ,,”
n(n—2c) '

Now taking infimum over g € ij on the right side of the above inequality and using the inequality (15) we get the desired

result.

3. BETTER ERROR ESTIMATION

In this section, we compute the rate of convergence of the operators B ( f ,x) given by (2). Then, we show that the

n,c

operators B e ( f , x) have a better error estimation than the operators Gn c ( f , x) given by (1).

Theorem 3.1. For every f € CB[O,OO),X € [0,00) and 7 > 2¢, we have

B, (f, )~ f(0)|<20(f.n,)

c(2n—c)x* +2nx
where 7] = ( ) and a)( f,n ) is the first modulus of continuity of f .
! n(n—2c) *

Proof. Let f € CB [0,00) and X € [O, OO). Using linearity and monotonicity of Bn c(f,x) we easily get, for every
0 >0 and n > 2c, that

B,.(f.2) - f(2) < 2w<f,5>{1 +§ B, (gof,x)}.

Now applying Lemma 2.2 and choosing o= 17, the proof is completed.
Remark 3.1. For the operator Gn C(f,x) given by (1) we may write that, for every f € CB [0,0), x €[0,90) and
n>2c,

G, (/. )~ f()|<20(f.v,)

2¢(n+c)x” +2nx
where V= .
(n—c)(n—2c)
Now we claim that the error estimation in Theorem 3.1 is better than that of Remark 3.1 provided
f S CB [0,00), X e [0,00) and 71 > 2c. Indeed, considering the equality

n+c n—-c/2 3c/2
= +

, we get 7], < V.., which corrects our claim.
n—c n—c¢ n—c¢

Now we can compute the rate of convergence of the operators B ( f , x) by means of the elements of the Lipschitz class

n,c

LipM (ﬂ), 0< ,B <1. Asusual, we say that f S CB [0,00) belongs to LipM (,B) if the inequality
B
|f(O) = f(x)|<M|t—x| (16)
holds for all X, € [0,0).
Theorem 3.2.1f f € Lip,,(f),x €[0,0) and n > 2c, then we have

5 B2

c(2n—c)x” +2nx
n(n—2c) '

Proof. Since f € Lip % ( ﬂ) and X € [0,00), using the inequality (16) and then applying the Holder inequality with
2 2

p=—and g = , we get

B 2-p

B,.(fx)~ ()] < M{
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%)

B, (f,x)—f(x)|<|B
< MB,, ( -

X’ ,x)
SM{BM ((/)f,x)}ﬂ/z

2 2 4 onx |
SM{c( n—c)x + nx} .

n(n—2c)

Remark 3.2. Following the proof of Theorem 3.2, using Gn . ((05 N x) instead of Bn . ((Dj 5 x) , we get following result:

R B2
B 2c(n+c)x” +2nx
G, (/.0 S| <M { (n=e)n—20) }

We conclude the paper with the study of the rate of convergence for bounded variation functions. To this result, we consider
the Bézier variant of Bn’c (f,x).

4. BEZIER VARIANT OF THE OPERATORS B, _,(f,X)

We define the Bézier variant of the operators B ( f x) given by (2) as follows:

n,c,a

B,..(f, x)-nz (7 (x).c I Pricsr (60 f (D)t + 0. (17 (x),¢) £(0) (1)

where :l,o;c) (rn* (‘x)i C) J}?k (r ('x) C) n, k+1 ( n* (‘x)i C) and "]n,k (rn* (x)7c) = an,j (rn* (x)) C)'
j=k
Alternatively we may rewrite the operators B e ( f , x) given by (17) as
Bn,c,a (f’ .X) = J.Kn,c,a (x7 t)f(t)dt
0
where
K, (0= nz (1 (2),€) Prress (6.0)+ O (17 (x),¢) O(2) (18)

and 6() is the Dirac delta function.
Lemma 4.1 ([8]). Forall X € (0, oo),n > ¢ and k € N we have the inequality

» k(r*(x) C)S\/l+c((n—c)/n)x.

2e(n—c)x
Lemma4.2. Let X € (0, OO) and Kn,c,a (x, t) be defined by (18). Then, for A > 2 and for sufficiently large 77, we
have
y
oAx(1+x
(i ﬁ”a(x,y)=J-K“,a(x,t)dt<¥ for 0<y <x,
w w nx-y
aAx(1+ cx)

for x <z <o,

i) 1=, (x.2) = ij( 1)t <
n(z-

Proof. In view of Lemma 2.2 and using inequality ‘a“ , 0<a, b<1and o 21, we have
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¥y
x— t)
j K, (1)t
0

a 2
S 2 Bn,c((ox"x)’
(x-)
which gives (i). The proof of (ii) is similar.
Theorem 4.3. Let f be a bounded variation function on every finite subinterval of [O,OO) and let satisfy the growth
condition f(£) = O(1+t"),t > 0. If x €(0,0),a >1,m €N and A > 2 are given, then there exists a constant

C ( f ,a,m, x) such that for 71 sufficiently large we have

B, (f:x)- [—f(x+)+—f(x } J“f;_“(”n VX ey - £ (xo)
+—6MS; CX)ZV;j;f (g.)+C(f,a,m,x)a2" (1—;x)’" om™),

where

J@O—-f(x-),0<t<x
g ()= 0 Jgt=x
J@O)—f(x+),t>x
Vab (gx) is the total variation of g on [a,b].

Proof. For any bounded variation function f', it is known that

(@) =Lf(X+)+Lf(x_)+ Sx+)—f(x-) (Sgnx(t)Jra—_lj
a+l a+l a+l

2
x+)+ f(x—
+gx(t)+5x(r){f(r)—f( Lo )}
where
-1,0<t<x
1, t=x
sgn (1)=40 ,t=x and 5x(t)={
0,t#x
1,t>x
It follows that

B, a(fs0)= [—f(X+)+—f(x )}‘

< lf@n-roos

-1
e a(Signx,x)‘F—a (19)
” a+1

D+ S|
2 |

For the operators Bn . a( f X), it is obvious that Bn . a(§ x)=0. Considering the equality

B, (5., %)|+|B,..(g,.%)

jpn+ck(t c)dt = ank(x C), we may write Bma(Slgl’l ,X) as

j=0
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0

B, ., (sign,,x) =—1+2nZQ,§“) r, “(x),c I Dores (t,0)dt

k=1 .

:—1+2ZQ(Q)(I’ (x), C)ipn](x c)

=-1+ 22 P, (X0 (rn (x),c).
j=0
Hence, we get

a-1 > i) [ *
Bn,c,a(sgnx,th:z;pn el (0, c)—a—Z 0 (1 (x),¢)

since ZQ(MI) (7”: (x), C) =1.

By the mean value theorem, it follows

01" (1 (e) = I (1 (oe) = T (1 (he) = @+ Dp, , (17 (0)se) 7, (17 (e )
where J, ., (rn* (x),c) <V, (rn*(x),c) <J,; (rn* (x),c).

Hence, using Lemma 4.1, we obtain

< 2imax{pn,_,(x,0)»l’n,_,( (%), C)}

-1
Bnca(sgnv,x)+a—
” ’ o+

(@)= (r e

<20y max (P, ()1, (77 CO)lp, (7 ()sc) (20)

J=0

£4a\/l+c((n—c)/n)x.

2e(n—c)x

Using Lemma 4.2, we can estimate Bn e ( g, x). By Lebesgue- Stieltjes integral representation, we have
x—x/"In x+x/"In )
Bn,c,a (gx’x) - ( J. + .[ + ,[ )KVl,c,a (X, t)gx (t)dt

0 x—x/"In x+x/\n (21)
=F +E,+E,.
Firstly we estimate EZ. For t € [x - x/\/;,x + x/\/;] we have
x+x/In
E|< | a0 1)dL.
x—x/\/;

b
Since |gx (l‘)| V;jﬁ(gx) and 0 < J.Kn,c,a (x,2)dt <1, for (a,b) < [0,0), we conclude

|E |< z x+x/f 22)

Next we estimate F' |- Writing y =X —X / \/; and using Lebesgue- Stieltjes integration by parts, we have
v v

E =[g.0d,(B,..x.00) =2, (DB, .. () + [ B,..(x.)d, (~2.(1)).
0 0

—V;X ( gx) is a nondecreasing function of Z. Since

g, (y)| < V}x (gx) we conclude that
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B <V ()80 )+ [ B (60)d, (V' (2)))-

Lemma 4.2 implies that

|E|<V (g,

aAx(1+ cx) aix(1+cx) 1 _[
n(x—y)’ n
Integrating the last term by parts, we get
5 < x| K (g) +2f v, (gx)dt}
n X

e d,(-7(g,).

Now replacing the variable f in the last integral by X — X / \/; we obtain

GAxr )| aprig )i Vf_x/ﬁ(gx)}'

|| <
n L k=1

Hence,

|E]| < 2a/1(1+cx)z o X/[(g ) )

Finally we estimate F' 3 We put

1-8,.,(x1), 0<t<2x
Vn,c,a (x’t) = O . t= 2X :

andZ=x+x/\/; then
E,=- jg(r)d Vyea(61)) = <2x>jK,,w<xt)dz+jg(t)d (Brca(0)

=FE, +E,+E;;.

We write

24

2x
= g.(2W, ., () + I Viea (504, (2,(0))
where v, (X,f) is normalized form of Vv, . (x,f). Since Vv, . (x,z=)=v,  ,(x,z) and

g.(z=) <V (g,), wehave

2x

Ey <V (8V, 00 (x, z>+j Vew (50, (V1 (8,))-
Applying Lemma 4.2
. aix(1+cex)  aix(1+cx) 1 e
L e J e d,(-V!(g,))
PV (g ) [ K,
o cadx(l+ex)  aix(l+ex)’F 1
L N S A WAL

N % o (g.)+ Ax(1+cx) .

Thus arguing similarly as in estimate of El , we get
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2041+ X) & s
5| < 2D S g ), @
nx k=1
Again Lemma 4.2, we get
A1+ X) 5 in
|E32|S—( )ZVX F(g,). 26)
nx k=1

Finally for n > m, we can write

|E,s| < MT K, .(x t)l:(l +0)" +(1 +x)’“]dz.
2x

1+ x)" 1+ x)"
For ¢>2X, using the inequalities (1+7)" <2" %(l _x)Zm and (1+x)" <2" %(f _x)Zm’
X m X m

considering Lemma 2.1 and Lemma 2.2, we obtain

(1+x)" _

|Ey|<C(f,a,m, x)a2" xTO(n ™). 27)

Combining the estimates of (19)-(27) we reach the required result. This completes proof of the theorem.
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