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Abstract 

Autoclaved aerated concrete (AAC) provides advantageous material characteristics such as high thermal 
insulation and environmentally friendly properties. Besides its non-structural applications, AAC is being 
considered as a structural material due to its characteristics such as lighter weight compared to normal concrete. 
In this study, main focus is to test the usability of artificial neural networks (ANNs) in predicting the shear 
resistance of reinforced AAC slabs. A large experimental database with 271 data points extracted from eleven 
sources is used for ANN training and testing. Network training is accomplished via multi-layer backpropagation 
algorithm. Based on random selection, the dataset is partitioned into two portions, 75% for network training and 
25% is for testing the validity of the network. Different models with a varying number of hidden neurons are 
developed to capture the network with optimum hidden neuron numbers. The results of each model are presented 
in terms of correlation coefficient (R2) and mean squared error (MSE). Results suggest that the ANN model with 
seven hidden neurons is the simplest model with most accurate predictions and ANNs can provide excellent 
prediction ability with insignificant error rates.  
 
Keywords: Artificial neural networks; autoclaved aerated concrete; reinforced concrete slab; shear strength; 
modelling. 

1. Introduction 

Being a porous and light building material, autoclaved aerated concrete (AAC) is made of cement or lime 

mortar containing air voids entrapped in the matrix by means of an expansion agent. It has been used in the 

construction industry for non-structural and structural applications since mid-1920s. By volume, 70-80% of 

AAC consists of air voids, resulting in lower density which minimizes the design cost [1]. AAC is considered to 

be environmentally friendly material as it reduces 70% and 40% energy per material volume as compared to 

normal concrete and bricks, respectively. It also provides high thermal insulation [2, 3].  

Production of AAC panel elements with reinforcement can offer an alternative for low-rise precast 

construction. 60% of new building constructions in Europe are built with different types of AAC elements [4].  

In the housing industry in China, reinforced AAC materials for exterior walls are preferred to other materials [4].  

Shear resistance of reinforced normal concrete or AAC slabs without shear reinforcement is a complex 

phenomenon. It is known that the shear resistance depends not only on the concrete properties but also on the 

shear-span-to-depth (a/d) ratio as well as the presence of tensile reinforcement (Fig. 1). Aroni and Cividini 
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(1989) proposed a formulation (Eq. 1a, Eq.1b) for the shear strength of reinforced AAC slabs with a 

modification to the formulation available for normal concrete slabs [5]. Fig. 2 shows a typical shear resistance 

test setup of reinforced AAC slab.  

Fig. 1. Typical test setup 

053.0)/(163.1035.0  adf cu  ; within the normal range (1a) 

075.0)/(82.0039.0  adf cu  ; outside the normal range (1b) 

Where τu is the ultimate shear stress in MPa (τu = Vu/bd), fc is the compressive strength of AAC in MPa, ρ is 

reinforcement ratio (100As/bd), d is the effective depth in mm, a is the shear span in mm.  

Fig. 2. Test setup 

To date, research related to ANN modeling has aspired to gain insight into estimation possibility and 

revealing the relationship between concrete properties and components. This study focuses on developing an 

ANN based model expressed in explicit format involving all concrete and reinforcement properties.  

2. Data Collection

The collected experimental database contains 271 data points extracted from previously published papers [6-

15], reported in [5]. Table 1 summarizes the origins and product types for the tests. All data points were included 

in the modeling process. Data inputs are fc (compressive strength), d/a (span-to-depth ratio) and ρ (reinforcement 

ratio), the output is τu (ultimate shear stress, V/bd). Table 2 presents the statistical variations of input and output 

parameters. Some specimens contained compression reinforcement consisting of two or three bar. Possible 

contributions of these bars in shear strength have been neglected.  

Table 1 References and types of test product 

Series 
No. 

Reference Product type 

1 Bernon [14] (France) Siporex 

2 Blaschke [13] (Germany) Ytong 

3 Briesemann [12] (Germany) Hebel 

4 Cividini [11] (Yugoslavia) Siporex, Ytong 

5 Dalby [10] (Sweden) Siporex 

6 Edgren [10] (Sweden) Siporex 

7 Kanoh ’66 [9] (Japan) Siporex 

8 Kanoh ’69 [8] (Japan) Hebel 

9 Matsamura [7] (Japan) ALC 

10 Newarthill [6] (UK) Siporex 

11 Regan [15] (UK) Durox 
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Table 2 Statistics of experimental data 

fc 
(MPa) d/a ρ 

τu 
(Mpa) 

Minimum 2.3 0.08 0.12 0.107 

Maximum 7.8 0.766 1.349 0.836 

Mean  3.78 0.24 0.41 0.24 

Standard deviation 1.31 0.16 0.26 0.14 

Coeff. of variation 0.35 0.66 0.62 0.56 

3. Overview of Artificial Neural Networks

Artificial neural networks are computational models that can give answers to demanding questions by

simulating the biological nervous system. An ANN has powerful characteristics of learning and processing the 

data, and it has the potential for the solution of engineering problems [16].  

An ANN consist of highly connected neurons aligned in layers. Most commonly used ANN architectures are 

feed-forward multilayer perception network and multilayer back-propagation network. According to [17], back 

propagation algorithm is the most popular paradigm in which the model training is processed within the neural 

networks with a set of input-output data. Back propagation algorithm generally consists of an input layer, one or 

more hidden layers and an output layer (Fig. 3). In the output layer, the error between desired and calculated 

values is compared and then propagated back to the network where updated weights are assigned. Then, the 

process is repeated for the number of epochs until a pre-determined accuracy rate is achieved. When the network 

training is terminated, after validation, the network is then used for testing stage in which a brand new dataset is 

substituted to the network.   

Fig. 3. Typical ANN structure [18] 

4. Numerical Application

The main purpose of this study is to estimate the results of shear strength of experimentally tested aerated

concrete slabs. For this purpose, a dataset containing 271 data points is extracted from literature and used for 

training and testing the ANN models. Back propagation algorithm is implemented for training the ANN models. 

The data is divided into two portions (75% as training set, 25% as testing set) based on random selection. 

Statistical norms (correlation coefficient, R2 and mean squared error, MSE) are used for performance evaluation. 

Correlation coefficient (R2) measure the relationship between predicted and experimental data, i.e., R2 = 1 means 

significant correlation and R2 = 0 means no correlation. Eq. 2 and Eq. 3 are used for calculating R2 and MSE, 

respectively.  
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where oi is the experimental value of ith data, ti is the predicted value of ith data, N is the number of data used for 

training and testing of ANN models. 

Proper determination of hidden neuron number is of paramount importance as it has a strong influence on the 

network stability, e.g., over-fitting or under-fitting of the network. To overcome this concern, some software 

applications provide grid search to find the optimum neuron number. In this study, the number of hidden neurons 

is changed for each ANN model and, R2 and mean squared error (MSE) results are evaluated for each hidden 

neuron number (Fig. 4 and Fig. 5). It is observed from the Fig4. And Fig. 5 that, although increasing the number 

of hidden neurons does not change R2 results significantly, MSE values vary with changing the number of hidden 

neurons.  Although the model with fifteen hidden neurons yields slightly lower MSE values and almost the same 

correlation coefficient, the model with seven hidden neurons was selected for simplicity and due to insignificant 

performance difference between models.    

Fig. 4. Correlation Coefficient (R2) versus Number of Hidden Layer Neurons 

Fig. 5. Mean Squared Error (MSE) versus Number of Hidden Layer Neurons 
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Eq. 4 gives the explicit form of the proposed ANN model, in which INi stands for the ith input layer, HLi 

stands for the ith hidden layer and OUT is the output layer.  

f(x) = 1/(1+e-x) 

IN0 = fc*0.181818 - 0.418182 

IN1 = d/a*1.45773 - 0.116618 

IN2 = ρ*0.81367 - 0.0976404 

HL0 = f ( 2.60996* IN0+ 5.31494* IN1 - 11.095* IN2 - 2.00434 ) 

HL1 = f ( -1.00293* IN0- 0.431671* IN1 - 0.843113* IN2 - 1.94844 ) 

HL2 = f ( -5.42479* IN0+ 2.5434* IN1 - 5.75894* IN2 - 1.21496 ) 

HL3 = f ( -3.59968* IN0- 10.1168* IN1 + 9.34802* IN2 + 3.84899 ) 

HL4 = f ( -0.661362* IN0- 11.1715* IN1 + 0.0419012* IN2 - 0.402511 ) 

HL5 = f ( 0.957958* IN0- 0.82052* IN1 + 2.82522* IN2 - 3.24439 ) 

HL6 = f ( 2.29788* IN0+ 6.98132* IN1 + 2.46502* IN2 - 8.79253 ) 

OUT = ( f( -3.93857* HL0 - 0.757745* HL1 - 4.16034* HL2 - 3.19664* HL3 - 6.60983* HL4 + 1.87884* 

HL5 + 3.73098* HL6 + 2.5187 ) + 0.146776 ) / 1.37174 

(4) 

Fig. 6 compares the estimated and experimental values and their differences for testing and training dataset. It 

is apparent that the deviations are significantly small both for training and testing datasets.   

Fig. 6. Experimental versus predictions of ANN model 

According to [19], if the correlation coefficient R2 is greater than 0.8 and the error values are at a desirable 

range, there is a strong correlation between predicted and real values. Regarding Fig. 7, proposed ANN model 

has a R2 value of 0.937, 0.882 and 0.926 for the training, testing and whole set, respectively, and the error is 

acceptable.  
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a. Training data

b. Testing data

c. Whole data

Fig. 7. Experimental versus predicted data 

5. Conclusions

In this study, we provide ANNs model to estimate the ultimate shear resistance of reinforced autoclaved 

aerated concrete slabs by the use of an experimental database reported in the literature. The dataset is partitioned 

into two sets for the purpose of training and testing the developed models. A different number of neurons is 

assigned to each model to avoid over-fitting and under-fitting problems. Each model is analyzed statistically to 

determine the prediction performance. For this, mean squared error (MSE) and correlation coefficient (R2) are 

used. In this regard, conclusions drawn from this study are: 

 Proper selection of hidden neuron numbers plays an important role in prediction performance i.e., R2 and
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MSE values vary considerably as the number of hidden neurons change. 

 ANN model with seven hidden neurons yields the most accurate results (R2 = 0.928, MSE = 0.001695).

Although model with fifteen hidden neurons yields slightly lower MSE values, model with seven neuron was

selected for the sake of simplicity. ANN model is expressed as a discrete formulation format. Estimations are

quite close to experimental values both for training and testing sets.

 In general, proposed ANN models yield high accuracy and have applicability with respect to predicting the

shear resistance of AAC slabs. Moreover, it is shown that the ANNs can be an important alternative to

provide predictive models based on inhomogeneous data samples.
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