Structural Stability for a Class of Nonlinear Wave Equations

Ülkü Dinlemez ${ }^{1 \wedge}$
${ }^{1}$ Gazi University, Faculty of Art and Science, Department of Mathematics, Ankara, Turkey

Received: 20..03.2008 Revised:23.01.2009 Accepted: 29.01.2009

Abstract

In this paper we discuss the structural stability of an initial value problem defined for the equation $u_{t}-u_{t x x}+\alpha u u_{x}=\beta u_{x} u_{x x}+u u_{x x x}$ where α, β are constants, $x \in \mathbb{R}, t \in \mathbb{R}^{+}$. For the choices of α and β, (i.1) describe the nonlinear shallow water waves. Upper and lower bounds are derived for energy decay rate in every finite interval $[0, T]$ which reveals that only the lower bound of the energy decays exponentially.

Key Words: Degasperis-Procesi equation, Camassa-Holm equation, traveling wave

1. INTRODUCTION

The Degasperis-Procesi (D-P) equation

$$
\begin{equation*}
u_{t}-u_{t x x}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x} \quad x \in \mathbb{R}, t>0 \tag{1.1}
\end{equation*}
$$

was proposed in [1] as one out of three integral equations within a certain family of third-order nonlinear dispersive partial differential equations; the other two being the well-known Korteweg-de Vries (KdV)
$u_{t}-6 u u_{x}+u_{x x x}=0 \quad x \in \mathbb{R}, t>0$
and Camassa-Holm (C-H) equation [2]
$u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \quad x \in \mathbb{R}, t>0$
which models the shallow water waves.
All weak traveling wave solutions of the D-P equations are classified by Lenells [3]. Similar classification for C-H has also been done in [4]. Degasperis, Holm and Hone [5] investigated D-P equation using the method of asymptotic integrability. This equation has a form similar to $\mathrm{C}-\mathrm{H}$ shallow water wave equation. The exact integrability of the equation (1.1) investigated in [5]. The solitary wave solutions for modified forms of the equations D-P and C-H are developed by Wazwaz [6].
In this work we are interested in the structural stability of the equations D-P and C-H besides the upper and lower bounds of the energy for these equations. For the structural stability, it is fundamental that one wishes to know if a small change in a coefficient of the equation or boundary data, or small change of the equations
themselves will lead to a drastic change in the solution or not. In this article we have proved that
$u_{t}-u_{t x x}+\alpha u u_{x}=\beta u_{x} u_{x x}+u u_{x x x} \quad x \in \mathbb{R}, t>0$
is structurally stable with respect to the coefficients α and β. D-P and $\mathrm{C}-\mathrm{H}$ equations are attained for the choices $\alpha=4, \beta=3$ and $\alpha=3, \beta=2$ respectively. We obtain that upper and lower bounds of the energy for the solutions of equations D-P and C-H are derived in every finite interval $[0, T]$ which shows that only the lower bound of the energy decays exponentially.

2. STRUCTURAL STABILITY

Now we consider the problem
$u_{t}-u_{t x x}+\alpha u u_{x}=\beta u_{x} u_{x x}+u u_{x x x} \quad u \in C_{0}^{4,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$,
$0<t<T$ for fixed T
where $\alpha, \beta>1$ are constants, $C_{0}^{4,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$is the space of functions having compact support which have fourth order and first order derivative with respect to x and t respectively. To do this, we let $\left(u, \alpha_{1}, \beta_{1}\right)$ be the solution of the following problem

[^0]$u_{t}-u_{t x x}+\alpha_{1} u u_{x}=\beta_{1} u_{x} u_{x x}+u u_{x x x} \quad u \in C_{0}^{4,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right), 0<t<T$ for fixed T
$u(x, 0)=u_{0}(x) \quad x \in \mathbb{R}$
and $\left(v, \alpha_{2}, \beta_{2}\right)$ be the solution of
$v_{t}-v_{t x x}+\alpha_{2} v v_{x}=\beta_{2} v_{x} v_{x x}+v v_{x x x} \quad v \in C_{0}^{4,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right), 0<t<T$ for fixed T
$v(x, 0)=u_{0}(x) \quad x \in \mathbb{R}$
where $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}>1$ are constants. Now, we define the difference of these solutions
by $w=u-v, \alpha=\alpha_{1}-\alpha_{2}, \beta=\beta_{1}-\beta_{2}$ where we assume that $\alpha_{1}>\alpha_{2}$ and $\beta_{1}>\beta_{2}$. Then from (2.3)-(2.6), we find that (w, α, β) satisfies the following initial value problem
$w_{t}-w_{t x x}+\alpha u u_{x}+\alpha_{2}\left(w u_{x}+v w_{x}\right)-\beta u_{x} u_{x x}-\beta_{2}\left(w_{x} u_{x x}+v_{x} w_{x x}\right)-\left(w u_{x x x}+\nu w_{x x x}\right)=0$
$w(x, 0)=0$
We may state our result on structural stability for the problem defined by (2.1)-(2.2) as :
Theorem 1: Let w be the solution of the problem (2.7) and (2.8). Then w satisfies the estimate
$\|w\|^{2}+2\left\|w_{x}\right\|^{2}+2\left\|w_{x x}\right\|^{2}+\left\|w_{x x x}\right\|^{2} \leq\left(\alpha K_{1}+\beta K_{2}\right)\left(\frac{e^{\gamma T}-1}{\gamma}\right)$
for fixed T where K_{1}, K_{2} and γ are positive constants and $\left\|\left\|\|\right.\right.$ denotes the L_{2} norm of functions.
Proof. Taking the inner product of (2.7) by w yields
$\left(w_{t}, w\right)-\left(w_{t x x}, w\right)+\left(\alpha u u_{x}, w\right)+\left(\alpha_{2}\left(w u_{x}+v w_{x}\right), w\right)-\left(\beta u_{x} u_{x x}, w\right)-\left(\beta_{2}\left(w_{x} u_{x x}+v_{x} w_{x x}\right), w\right)-\left(w u_{x x x}+v w_{x x x}, w\right)=0$
which
$\frac{1}{2} \frac{d}{d t}\left\{\|w\|^{2}+\left\|w_{x}\right\|^{2}\right\}=-\alpha \int u u_{x} w d x-\alpha_{2} \int\left(w u_{x}+v w_{x}\right) w d x+\beta \int u_{x} u_{x x} w d x+\beta_{2} \int\left(w_{x} u_{x x}+v_{x} w_{x x}\right) w d x+\int\left(w u_{x x x}+v w_{x x x}\right) w d x$

Since $u, v \in C_{0}^{4,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$then there exists a generic constant such that the functions u and v together with their derivatives are all bounded by a generic constant D. For the first integral on the right hand side of (2.11) we obtain,
$-\alpha \int u u_{x} w d x \leq \alpha C\left\{\|w\|^{2}+\left\|u_{x}\right\|^{2}\right\}$
utilizing Cauchy and Hölder inequalities. For the second integral in the right hand side of (2.11) we get

$$
\begin{equation*}
-\alpha_{2} \int\left(w u_{x}+v w_{x}\right) w d x \leq \alpha_{2} C\left\{\|w\|^{2}+\left\|w_{x}\right\|^{2}\right\} . \tag{2.13}
\end{equation*}
$$

In a similar way, we can compute the estimates for the other terms as

$$
\begin{align*}
& \beta \int u_{x} u_{x x} w d x \leq \beta C\left\{\|w\|^{2}+\left\|u_{x x}\right\|^{2}\right\} \tag{2.14}\\
& \beta_{2} \int\left(w_{x} u_{x x}+v_{x} w_{x x}\right) w d x \leq \beta_{2} C\left\{\|w\|^{2}+\left\|w_{x}\right\|^{2}+\left\|w_{x x}\right\|^{2}\right\}, \tag{2.15}\\
& \int\left(w u_{x x x}+v w_{x x x}\right) w d x \leq C\left\{\|w\|^{2}+\left\|w_{x x x}\right\|^{2}\right\} \tag{2.16}
\end{align*}
$$

Substituting the estimates (2.12)-(2.16) in (2.11) we find
$\frac{d}{d t}\left\{\|w\|^{2}+\left\|w_{x}\right\|^{2}\right\} \leq C\left\{\alpha\left\|u_{x}\right\|^{2}+\beta\left\|u_{x x}\right\|^{2}\right\}+C\left\{\alpha+\beta+\alpha_{2}+\beta_{2}+1\right\}\|w\|^{2}+C\left\{\left(\alpha_{2}+\beta_{2}\right)\left\|w_{x}\right\|^{2}+\beta_{2}\left\|w_{x x}\right\|^{2}+\left\|w_{x x x}\right\|^{2}\right\}$

Similarly taking the inner product of (2.7) by $w_{x x}$, we find $\frac{d}{d t}\left\{\left\|w_{x}\right\|^{2}+\left\|w_{x x}\right\|^{2}\right\} \leq D\left\{\alpha\left\|u_{x}\right\|^{2}+\beta\left\|u_{x x}\right\|^{2}\right\}+C\left\{\left(\alpha_{2}+1\right)\|w\|^{2}+\alpha_{2}\left\|w_{x}\right\|^{2}\right\}+\left\{C\left(\alpha_{2}+\beta_{2}+1\right)+\beta D\right\}\left\|w_{x x}\right\|^{2}+C\left\|w_{x x x}\right\|^{2}$

Now let us differentiate equation of (2.7) with respect to x :
$w_{t x}-w_{t x x x}+\alpha\left(u_{x}^{2}+u u_{x x}\right)+\alpha_{2}\left(w_{x} u_{x}+w u_{x x}+v_{x} w_{x}+v w_{x x}\right)-\beta\left(u_{x} u_{x x x}+u_{x x}^{2}\right)-\beta_{2}\left(w_{x x} u_{x x}+w_{x} u_{x x x}+v_{x x} w_{x x}+v_{x} w_{x x x}\right)$
$-\left(w_{x} u_{x x x}+w u_{x x x x}+v_{x} w_{x x x}+v w_{x x x x}\right)=0$.
Taking the inner product of (2.19) by $w_{x x x}$, we find
$\frac{d}{d t}\left\{\left\|w_{x x}\right\|^{2}+\left\|w_{x x x}\right\|^{2}\right\} \leq C\left\{\alpha\left\|u_{x x}\right\|^{2}+\beta\left\|u_{x x x}\right\|^{2}\right\}+C\left\{\left(\alpha_{2}+1\right)\|w\|^{2}+\left(\alpha_{2}+\beta_{2}+1\right)\left\|w_{x}\right\|^{2}+\left(\alpha+\alpha_{2}+\beta+\beta_{2}\right)\left\|w_{x x}\right\|^{2}\right\}$
$+C\left(\alpha+\alpha_{2}+\beta+\beta_{2}+1\right)\left\|w_{x x x}\right\|^{2}$.
Adding up the inequalities (2.17), (2.18), (2.20) we have
$\frac{d}{d t}\left\{\|w\|^{2}+2\left\|w_{x}\right\|^{2}+2\left\|w_{x x}\right\|^{2}+\left\|w_{x x x}\right\|^{2}\right\} \leq \alpha K_{1}+\beta K_{2}+\gamma\left\{\|w\|^{2}+2\left\|w_{x}\right\|^{2}+2\left\|w_{x x}\right\|^{2}+\left\|w_{x x x}\right\|^{2}\right\}$
where $K_{1}=(C+D)\left\|u_{x}\right\|^{2}+C\left\|u_{x x}\right\|^{2}, \quad K_{2}=(C+D)\left\|u_{x x}\right\|^{2}+C\left\|u_{x x x}\right\|^{2}$ and
$\gamma=C \max \left\{\left(\alpha+\beta+3 \alpha_{2}+3+\beta_{2}\right),\left(3 \alpha_{2}+1+2 \beta_{2}\right),\left(\alpha+\beta+\alpha_{2}+2 \beta_{2}\right),\left(\alpha+\beta+\alpha_{2}+\beta_{2}+2\right)\right\}$
Thus, from (2.20) we have
$\frac{d}{d t} \Psi(t)-\gamma \Psi(t) \leq \alpha K_{1}+\beta K_{2}$
where $\Psi(t)=\|w\|^{2}+2\left\|w_{x}\right\|^{2}+2\left\|w_{x x}\right\|^{2}+\left\|w_{x x x}\right\|^{2}$. Solving the differential inequality (2.22), we arrive at
$\|w\|^{2}+2\left\|w_{x}\right\|^{2}+2\left\|w_{x x}\right\|^{2}+\left\|w_{x x x}\right\|^{2} \leq\left(\alpha K_{1}+\beta K_{2}\right)\left(\frac{e^{\gamma T}-1}{\gamma}\right)$
for fixed T. And so we have completed the proof of the theorem.
Remark 2. ${ }^{\mathcal{W}}$ and its ${ }^{X}$ derivatives of order up to ${ }^{3}$, tends to zero as $\alpha \rightarrow 0, \beta \rightarrow 0$ for finite T
So, the solutions of (2.22) depend continuously on α and β in $C_{0}^{4,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$which means that (2.1)-(2.2) is structurally stable with respect to the coefficients α and β.

3. UPPER AND LOWER BOUNDS ON THE ENERGY

Let u be a solution to the initial-value problem (2.1), (2.2) with $\alpha>1$ and $\beta>1$. By similar computations given in Section 2, we find
$\frac{d}{d t}\left\{\|u\|^{2}+2\left\|u_{x}\right\|^{2}+2\left\|u_{x x}\right\|^{2}+\left\|u_{x x x}\right\|^{2}\right\}=(2-\beta-\alpha) \int u^{2} u_{x x x} d x-(2 \beta+1) \int u_{x} u_{x x x}^{2} d x+(1-2 \beta-5 \alpha) \int u_{x} u_{x x}^{2} d x$

If we use Cauchy and Hölder inequalities in (3.1) we obtain
$\frac{d}{d t}\left\{\|u\|^{2}+2\left\|u_{x}\right\|^{2}+2\left\|u_{x x}\right\|^{2}+\left\|u_{x x x}\right\|^{2}\right\} \geq\left(1-\frac{\beta}{2}-\frac{\alpha}{2}\right) \max u^{2}\|u\|^{2}+2\left(-\frac{5 \alpha}{4}-\beta\right)\left\|u_{x}\right\|^{2}+2\left(\frac{1}{4}-\frac{\beta}{2}-\frac{5 \alpha}{4}\right) \max u_{x x}^{2}\left\|u_{x x}\right\|^{2}$
$+\left(1-\frac{\beta}{2}-\frac{\alpha}{2}-\left(\beta+\frac{1}{2}\right) \max u_{x x x}^{2}\right)\left\|u_{x x x}\right\|^{2}$
Taking
$\eta=\max \left\{\left(1-\frac{\beta}{2}-\frac{\alpha}{2}\right) \max u^{2},\left(-\frac{5 \alpha}{4}-\beta\right),\left(\frac{1}{4}-\frac{\beta}{2}-\frac{5 \alpha}{4}\right) \max u_{x x}^{2},\left(1-\frac{\beta}{2}-\frac{\alpha}{2}-\left(\beta+\frac{1}{2}\right) \max u_{x x x}^{2}\right)\right\}$
and
$Y(t)=\|u\|^{2}+2\left\|u_{x}\right\|^{2}+2\left\|u_{x x}\right\|^{2}+\left\|u_{x x x}\right\|^{2}$,
we have
$\frac{d}{d t} Y(t)-\eta \mathrm{Y}(t) \geq 0$
Solving the inequality (3.3) we arrive at
$e^{\eta T}\left\{\|u(x, 0)\|^{2}+2\left\|u_{x}(x, 0)\right\|^{2}+2\left\|u_{x x}(x, 0)\right\|^{2}+\left\|u_{x x x}(x, 0)\right\|^{2}\right\} \leq\|u(x, t)\|^{2}+2\left\|u_{x}(x, t)\right\|^{2}+2\left\|u_{x x}(x, t)\right\|^{2}+\left\|u_{x x x}(x, t)\right\|^{2}$
where $\eta \leq 0$. This inequality gives a lower bound for the energy.
Now we will derive an upper bound for the energy. From (3.1) we have $\frac{d}{d t}\left\{\|u\|^{2}+2\left\|u_{x}\right\|^{2}+2\left\|u_{x x}\right\|^{2}+\left\|u_{x x x}\right\|^{2}\right\} \leq\left|1-\frac{\beta+\alpha}{2}\right| \max \left|u\| \| u\left\|\left.^{2}+2\left\{\left.\frac{1-5 \alpha-2 \beta}{4}|\max | u_{x x}\left|+\left(\frac{\beta}{2}+\frac{1}{4}\right) \max \right| u_{x x x} \right\rvert\,\right\} \right\rvert\, u_{x}\right\|^{2}\right.$
$+2\left|\frac{1-5 \alpha-2 \beta}{4}\right| \max \left|u_{x x}\right|\left|u_{x x}\left\|\left.^{2}+\left\{\left|1-\frac{\beta+\alpha}{2}\right| \max |u|+\left(\beta+\frac{1}{2}\right) \max \left|u_{x x x}\right|\right\} \right\rvert\, u_{x x x}\right\|^{2}\right.$
Taking
$\mu=\max \left\{\left|1-\frac{\beta+\alpha}{2}\right| \max |u|,\left|\frac{1-5 \alpha-2 \beta}{4}\right| \max \left|u_{x x}\right|+\left(\frac{\beta}{2}+\frac{1}{4}\right) \max \left|u_{x x x}\right|,\left|\frac{1-5 \alpha-2 \beta}{4}\right| \max \left|u_{x x}\right|\right.$,
$\left.\left|1-\frac{\beta+\alpha}{2}\right| \max |u|+\left(\beta+\frac{1}{2}\right) \max \left|u_{x x x}\right|\right\}$
and
$Y(t)=\|u\|^{2}+2\left\|u_{x}\right\|^{2}+2\left\|u_{x x}\right\|^{2}+\left\|u_{x x x}\right\|^{2}$,
we have
$\frac{d}{d t} Y(t)-\mu \mathrm{Y}(t) \leq 0$
Then integrating the inequality (3.6) from 0 to T we arrive at $\|u(x, T)\|^{2}+2\left\|u_{x}(x, T)\right\|^{2}+2\left\|u_{x x}(x, T)\right\|^{2}+\left\|u_{x x x}(x, T)\right\|^{2} \leq e^{\mu T}\left\{\|u(x, 0)\|^{2}+2\left\|u_{x}(x, 0)\right\|^{2}+2\left\|u_{x x}(x, 0)\right\|^{2}+\left\|u_{x x x}(x, 0)\right\|^{2}\right\}$
where $\mu \geq 0$. (3.7) gives an upper bound for the energy in every finite interval $[0, T]$.
We may combine the above results as in the following theorem.

Theorem 3. The energy corresponding to the solutions of the initial value problem (2.1)-(2.2) in $C_{0}^{4,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$ satisfy

$$
\begin{aligned}
& e^{\eta T}\left\{\|u(x, 0)\|^{2}+2\left\|u_{x}(x, 0)\right\|^{2}+2\left\|u_{x x}(x, 0)\right\|^{2}+\left\|u_{x x x}(x, 0)\right\|^{2}\right\} \leq\|u(x, T)\|^{2}+2\left\|u_{x}(x, T)\right\|^{2}+2\left\|u_{x x}(x, T)\right\|^{2}+\left\|u_{x x x}(x, T)\right\|^{2} \\
& \leq e^{\mu T}\left\{\|u(x, 0)\|^{2}+2\left\|u_{x}(x, 0)\right\|^{2}+2\left\|u_{x x}(x, 0)\right\|^{2}+\left\|u_{x x x}(x, 0)\right\|^{2}\right\}
\end{aligned}
$$

For fixed T where $\alpha, \beta>1$ are constants.

ACKNOWLEDGMENT

The author thanks Professor Dr. A. Okay ÇELEBİ for valuable hints and discussions.

REFERENCES

[1] Degasperis, A., Procesi, M., "Asymptotic integrability ", Symmetry and Perturbation Theory, World Sci. Publ., River Edge, NJ, 23-37 (1999).
[2] Camassa, R., Holm, D., "An integrable shallow water equation with peaked solution", Phys. Rev. Lett., 71: 1661-1664 (1993).
[3] Lenells, J. S, "Traveling wave solutions of the Degasperis-Procesi equation", J. Math. Anal. Appl., 306: 72-82 (2005).
[4] Lenell, J.S, "Traveling wave solutions of the Camassa-Holm equation", J. Differential Equations, 217: 393-430 (2005).
[5] Degasperis, A., Holm, D., Hone, A.N.W., "A new integrable equation with peakon solutions", Theoretical and Mathematical Physics, 133 (2): 1463-1474 (2002).

[^0]: ^Corresponding author, e-mail: ulku@gazi.edu.tr

