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ABSTRACT

In this paper we discuss the structural stability of an initial value problem defined for the equation

Up —Upgy + QUU Y = LUyl + Ul

@D

where «, 3 are constants, x€R, t € R* . For the choices of & and £, (i.1) describe the nonlinear

shallow water waves. Upper and lower bounds are derived for energy decay rate in every finite interval [O, T]

which reveals that only the lower bound of the energy decays exponentially.

Key Words: Degasperis-Procesi equation, Camassa-Holm equation, traveling wave

1. INTRODUCTION

The Degasperis-Procesi (D-P) equation

Up —Upyy + AUty =3Uyllyy + Uy xeR 1> 0 (1.1)
was proposed in [1] as one out of three integral
equations within a certain family of third-order
nonlinear dispersive partial differential equations; the
other two being the well-known Korteweg-de Vries
(KdVv)

”t_6”ux+”xxx:0 XER’I>O (1.2)
and Camassa-Holm (C-H) equation [2]

Up —Upyy + 33Uty = QUsllyy Uy xeR > 0 (1.3)
which models the shallow water waves.

All weak traveling wave solutions of the D-P equations
are classified by Lenells [3]. Similar classification for
C-H has also been done in [4]. Degasperis, Holm and
Hone [5] investigated D-P equation using the method of
asymptotic integrability. This equation has a form
similar to C-H shallow water wave equation. The exact
integrability of the equation (1.1) investigated in [5].
The solitary wave solutions for modified forms of the
equations D-P and C-H are developed by Wazwaz [6].
In this work we are interested in the structural stability
of the equations D-P and C-H besides the upper and
lower bounds of the energy for these equations. For the
structural stability, it is fundamental that one wishes to
know if a small change in a coefficient of the equation
or boundary data, or small change of the equations
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themselves will lead to a drastic change in the solution
or not. In this article we have proved that

Up —Upgy + QUL = LUyl + Ul xeR’t>0 (1.4)
is structurally stable with respect to the coefficients «
and B . D-P and C-H equations are attained for the
choicesa =4, f=3 and a=3, =2 respectively.

We obtain that upper and lower bounds of the energy
for the solutions of equations D-P and C-H are derived

. o 0,7 .
in every finite interval [ ] which shows that only the
lower bound of the energy decays exponentially.

2. STRUCTURAL STABILITY
Now we consider the problem
Up = Upey + QUL = Pl iy Uty UE Cg’l(Rx RTY,
0<t<T forfixed T 2.1
u(x,0)=ug(x) xeR (2.2)

where a, f>1 are constants, Cg’l(RxR+) is the

space of functions having compact support which have
fourth order and first order derivative with respect to *

and ! respectively. To do this, we let CLVZY be the

solution of the following problem
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Up e + QU = Pty + Uty U E C(‘)U(R <R") , 0<t<T forfixed T 2.3)
u(x,0)=up(x)  xeR (24
and V.2, ) be the solution of

Ve~ Vi + @2y = Bavavey + e v G BXRT) L 0<t<T forfixed T (2.5)
v(x,0)=up(x) xeR (2.6)

where #1° Aoz, fr>1 are constants. Now, we define the difference of these solutions

o) > op

by W=u-—v =" B=B-PF where we assume that and Ai> B . Then from (2.3)-(2.6), we find that
(w.a. ) satisfies the following initial value problem

Wy = Wixe + @ity + 0 (Wit +vWy.) = St = B Wyt + VWi ) = Wik + VW) =0 2.7
w(x,0)=0 2.8)

We may state our result on structural stability for the problem defined by (2.1)-(2.2) as :

Theorem 1: Let w be the solution of the problem (2.7) and (2.8). Then w satisfies the estimate

T
ol + 2l + 2l +eel” < ki + K2

)
2.9)

for fixed T where Kl, L9’ and 7 are positive constants and denotes the ) norm of functions.

Proof. Taking the inner product of (2.7) by w yields
(W, W) = (Wpyes W) + (ain ., W) + (0 (Wity + yWy ), W) = (Butshe s W) = (B (Woliyoy + VW ), W) = (Wikyre + VWi, W) =0
(2.10)

which gives
%%{Hw“z + waHz} = —aJ.uuxwdx - azj(wux +vwy ) wdx + ﬂjuxuxxwdx + ﬂzj(wxuxx + Ve Wy )Wdx + j(wuxxx + Wy )Wdx
(2.11)

u,ve Cg’l(RxR+)

Since then there exists a generic constant such that the functions U and V together with their

derivatives are all bounded by a generic constant D _For the first integral on the right hand side of (2.11) we obtain,

—aj.uuxwdx < aC{HwH2 + Hutz}

(2.12)
utilizing Cauchy and Hélder inequalities. For the second integral in the right hand side of (2.11) we get
_azj(wux +vwy )wdx < aZC{Hsz + waHz}
. (2.13)
In a similar way , we can compute the estimates for the other terms as
,BJ.uxuxxwdx < ﬂC{Hsz + Huxtz}
> (2.14)
2 2 2
ﬂ2'[(wx”xx + Vy Wy )wdx < ﬂ2C<HWH + HWXH + HWXXH }
, (2.15)

'[(Wuxxx + VWi ) welx < C{HWHZ + HWXXXHZ}
) (2.16)
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Substituting the estimates (2.12)-(2.16) in (2.11) we find
d
Sll? 4wl ) = il + Bl + Cla+ B4z + oy + Y +C{(@r + Bo)pwelf + Balwal +lpwrel |

(2.17)

w.

Similarly taking the inner product of 2.7 by xx we find

d 2 2 2 2 2 2
P+l < D{ahinl + Bl + € (a2 + DIE + @2l sy + py 51) DY + e
(2.18)

Now let us differentiate equation of (2.7) with respect to * :

2 2
Wiy = Wy + @yttt ) + 0 (Wil + Wity +Vywy + VWi ) = Blutiyyy + 13y ) = Bo (Wil + Wyllyy + Vi Wy + Vi Wiy
~(Wyllyy + Wilyyyy + VyWyxx +VWiyx) =0 ) (2.19)

WX

Taking the inner product of (2.19) by | we find

d
llweel? + el | = €l + Bleasl |+ {(a + DIl +(a2+ B2+ Dl + (@4 0245+ 52 ol

+C(a+ay+f+fo +1)waxxH2 .

(2.20)
Adding up the inequalities (2.17), (2.18), (2.20) we have
d
Al + 2wl + 2wl + ol < ki + 85 + |l + 2lp P + 2wl + e}
.21
2 2 2 2
where X1 =(C+D)|uy|]” + Clluy K =(C+ D) |ure||” + Clet x| and
y:Cmax{ (a+,6’+3a2 +3+ﬁ2),(3a2 +1+2ﬁ2),(a+ﬁ+a2 +2ﬂ2),(a+ﬁ+a2 + P +2) }
Thus, from (2.20) we have
i\}'(t) -y Y() < ak) + BK,
&t (2.22)

(O =l + 2w+ 2w+ |

where . Solving the differential inequality (2.22), we arrive at

77_1
Iof? + 2P + 2 s«quq{e : ]

for fixed 7 . And so we have completed the proof of the theorem.
Remark 2. W and its X derivatives of order up to 3 , tends to zero as ¢ =0, f—>0 for finite T

4,1 +
Com BXR) " Chich means that (2.11-2.2) is

So, the solutions of (2.22) depend continuously on ¢ and B in
structurally stable with respect to the coefficients ¢ and B .

3. UPPER AND LOWER BOUNDS ON THE ENERGY

Let u be a solution to the initial-value problem (2.1), (2.2) with & >1 and £ >1. By similar computations

given in Section 2, we find

d
E{Hqu 2 [P+ 2o+ Huxxtz} —(2-f-a) J W dy— (28 + 1)juxu§xxdx L(1-2p —Sa)J‘uxu)%xdx 3.1)
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If we use Cauchy and Holder inequalities in (3.1) we obtain

QU 2+ 2 ) 202 - D s 262 < o 2 -2 22 i
1
{1 22 {p+d J u2]u2 (32)
Taking
nzmax{(l—ﬁ_]maxuz ( 5:5 ﬁ) (%_g_sja]maxugx [1—’3—3—(ﬂ+]maxu§xxJ}
and
V(@) = + 2o [ + 2ot [+ e
we have
d
XD -n Y ()20 (3.3)

Solving the inequality (3.3) we arrive at

EUT

Jee e, ) + 2]t G, O|* + 2t (2,0 + Hum(x,O)Hz} < JuCe, O + 2 e B)|* + 2 8 + e O (3.4)

where 7 <0. This inequality gives a lower bound for the energy.

Now we will derive an upper bound for the energy. From (3.1) we have

d 1-5a-2 1
P 2P 2P ) <12l 24 =22 -+ o o
1-5a-2 1

+2‘+’8 max‘uxxH‘uxtz +{ 1 _L;—a max‘u‘ +(ﬂ+2]maxuxxx}uxxx2 (3.5)
Taking

H= max{ 1 —M max‘u‘, ‘M max‘uxx‘ +(£+l)max‘uxxx‘, M max‘uxx‘,

4 2 4 4
+ 1

‘l—ﬂTa max‘u‘ +(ﬂ+2Jmaxuxxx}
and

YO =l + 2o+ 2|+ e
we have

iY(t)—,u Y()<0 (3.6)
dt
Then integrating the inequality (3.6) from 0 to T we arrive at
Juee, Y + 2]t e, TP + 2t e, D + [t e D < 47 {HM(X,O) 2 2 e, O + 2]ty 6, O + [t (6,0 \2}

(3.7)

where 1>0. (3.7) gives an upper bound for the energy in every finite interval [0,7].

We may combine the above results as in the following theorem.
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Theorem 3. The energy corresponding to the solutions of the initial value problem (2.1)-(2.2) in Cg’l(R xR™)

satisfy

7 {Hu(x,O)H2 + 2y e O + 2 (O + Hum(x,())uz} <[ T + 2] e T + 2]t e D + et e T

<M s O + 2P + 2 (1 O+ (x0) |

For fixed T where «, #>1 are constants.
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