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ABSTRACT 

In this paper we discuss the structural stability of an initial value problem defined for the equation 

t txx x x xx xxxu u uu u u uuα β− + = +
                                                                                                             (i.1) 

 where ,  α β  are constants, ,  x t +∈ ∈ℝ ℝ . For the choices of α  and β  , (i.1) describe the nonlinear 

shallow water waves. Upper and lower bounds are derived for energy decay rate in every finite interval [ ]0,T  

which reveals that only the lower bound of the energy decays exponentially. 
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1. INTRODUCTION 

The Degasperis-Procesi (D-P) equation  
4 3t txx x x xx xxxu u uu u u uu− + = +

 x∈ℝ , 0t >  (1.1) 
was proposed in [1] as one out of three integral 
equations within a certain family of third-order 
nonlinear dispersive partial differential equations; the 
other two being the well-known Korteweg-de Vries 
(KdV)  

6 0t x xxxu uu u− + =
  x∈ℝ , 0t >                          (1.2) 

and  Camassa-Holm (C-H) equation [2]  
3 2t txx x x xx xxxu u uu u u uu− + = +

   x∈ℝ , 0t >    (1.3) 
which models the shallow  water waves. 
All weak traveling wave solutions of the D-P equations 
are classified by Lenells [3]. Similar classification for 
C-H has also been done in [4]. Degasperis, Holm and 
Hone [5] investigated D-P equation using the method of 
asymptotic integrability. This equation has a form 
similar to C-H shallow water wave equation. The exact 
integrability of the equation (1.1) investigated in [5]. 
The solitary wave solutions for modified forms of the 
equations D-P and C-H are developed by Wazwaz [6]. 
In this work we are interested in the structural stability 
of the equations D-P and C-H besides the  upper and 
lower bounds of the energy for these equations. For the 
structural stability, it is fundamental that one wishes to 
know if a small change in a coefficient of the equation 
or boundary data, or small change of the equations 

themselves will lead to a drastic change in the solution 
or not. In this article we have proved that  

t txx x x xx xxxu u uu u u uuα β− + = +
 x∈ℝ , 0t >  (1.4) 

is structurally stable with respect to the coefficients α  
and β  . D-P and C-H equations are attained for the 

choices 4α = , 3β =   and  3α = , 2β =  respectively. 

We obtain that upper and lower bounds of the energy 
for the solutions of equations D-P and C-H are derived 

in every finite interval 
[ ]0,T

 which shows that only the 
lower bound of the energy decays exponentially. 

2. STRUCTURAL STABILITY 

Now we consider the problem 

t txx x x xx xxxu u uu u u uuα β− + = +   4,1
0 ( )u C +∈ ×ℝ ℝ ,  

0 t T< <   for fixed  T                                      (2.1) 

0( ,0) ( )u x u x=      x∈ℝ                                     (2.2) 

where ,  1α β >  are constants, 4,1
0 ( )C +×ℝ ℝ  is the 

space of functions having compact support which have 

fourth order and first order derivative with respect to x  

and t  respectively. To do this, we let 1 1( , , )u α β
 be the 

solution of the following problem 
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1 1t txx x x xx xxxu u uu u u uuα β− + = +
  

4,1
0 ( )u C +∈ ×ℝ ℝ

,  0 t T< <   for fixed  T                                                          (2.3) 

0( ,0) ( )u x u x=
     x∈ℝ                                                                                                                                                     (2.4) 

and 2 2( , , )v α β
 be the solution of 

2 2t txx x x xx xxxv v vv v v vvα β− + = +
  

4,1
0 ( )v C +∈ ×ℝ ℝ

,  0 t T< <   for fixed  T                                                           (2.5) 

0( ,0) ( )v x u x=
     x∈ℝ                                                                                                                                                     (2.6) 

where 1 1 2 2,  , ,  1α β α β >
  are constants. Now, we define the difference of these solutions 

by w u v= − , 1 2α α α= −
, 1 2β β β= −

 where we assume that 1 2α α>
 and 1 2β β>

. Then from (2.3)-(2.6), we find that 
( , , )w α β  satisfies the following initial value problem  

2 2( ) ( ) ( ) 0t txx x x x x xx x xx x xx xxx xxxw w uu wu vw u u w u v w wu vwα α β β− + + + − − + − + =
                                            (2.7) 

( ,0) 0w x =                                                                                                                                                                           (2.8) 

We may  state our result on structural stability for the problem defined by  (2.1)-(2.2) as : 

Theorem 1: Let w be the solution of the problem (2.7) and (2.8). Then w satisfies the estimate 

2 2 22
1 2

1
2 2 ( )( )

T

x xx xxx
e

w w w w K K
γ

α β
γ
−

+ + + ≤ +
                                                                                           (2.9) 

for  fixed T   where 1K
, 2K

 and γ  are positive constants and 
.
  denotes the 2L  norm of functions. 

Proof.  Taking the inner product of (2.7) by w yields 

2 2( , ) ( , ) ( , ) ( ( ), ) ( , ) ( ( ), ) ( , ) 0t txx x x x x xx x xx x xx xxx xxxw w w w uu w wu vw w u u w w u v w w wu vw wα α β β− + + + − − + − + =
 

                                                                                                                                                                                          (2.10) 

which gives  

{ }22
2 2

1
( ) ( ) ( )

2
x x x x x xx x xx x xx xxx xxx

d
w w uu wdx wu vw wdx u u wdx w u v w wdx wu vw wdx

dt
α α β β+ = − − + + + + + +∫ ∫ ∫ ∫ ∫

                                                                                                                                                                                          (2.11) 

Since 
4,1
0, ( )u v C +∈ ×ℝ ℝ

 then there exists a generic constant such that the functions u  and v  together with their 

derivatives are all bounded by a generic constant D . For the first integral on the right hand side of (2.11) we obtain, 

{ }22
x xuu wdx C w uα α− ≤ +∫

                                                                                                                                    (2.12) 

utilizing Cauchy and Hölder  inequalities. For the second integral in the right hand side of (2.11) we get 

{ }22
2 2( )x x xwu vw wdx C w wα α− + ≤ +∫

.                                                                                                                (2.13) 

In a similar way , we can compute the estimates for the other terms as 

{ }22
x xx xxu u wdx C w uβ β≤ +∫

,                                                                                                                                (2.14) 

{ }2 22
2 2( )x xx x xx x xxw u v w wdx C w w wβ β+ ≤ + +∫

,                                                                                             (2.15) 

{ }22
( )xxx xxx xxxwu vw wdx C w w+ ≤ +∫

.                                                                                                                  (2.16) 
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Substituting the estimates (2.12)-(2.16) in (2.11) we find 

{ } { } { }2 2 22 2
2 2 1x x xx

d
w w C u u C w

dt
α β α β α β+ ≤ + + + + + + ( ){ }2 2 2

2 2 2x xx xxxC w w wα β β+ + + +
 

                                                                                                                                                                                          (2.17) 

Similarly taking the inner product of (2.7) by xxw
,  we find  

{ } { } ( ){ }2 2 2 2 22
2 21x xx x xx x

d
w w D u u C w w

dt
α β α α+ ≤ + + + + ( ){ } 2 2

2 2 1 xx xxxC D w C wα β β+ + + + +
 

                                                                                                                                                                                          (2.18) 

Now let us differentiate equation of (2.7) with respect to x : 

 
2 2

2 2( ) ( ) ( ) ( )tx txxx x xx x x xx x x xx x xxx xx xx xx x xxx xx xx x xxxw w u uu w u wu v w vw u u u w u w u v w v wα α β β− + + + + + + − + − + + +

( ) 0x xxx xxxx x xxx xxxxw u wu v w vw− + + + =
.                                                                                                                   (2.19) 

Taking the inner product of (2.19) by xxxw
, we find 

{ } { } ( ) ( ) ( ){ }2 2 2 2 2 22
2 2 2 2 21 1xx xxx xx xxx x xx

d
w w C u u C w w w

dt
α β α α β α α β β+ ≤ + + + + + + + + + +

 

( ) 2
2 2 1 xxxC wα α β β+ + + + +

.                                                                                                                                   (2.20) 

Adding up the inequalities (2.17), (2.18), (2.20) we have 

{ } }{2 2 2 2 2 22 2
1 22 2 2 2x xx xxx x xx xxx

d
w w w w K K w w w w

dt
α β γ+ + + ≤ + + + + +

                                 (2.21) 

where 
2 2

1 ( ) x xxK C D u C u= + +
,  

2 2
2 ( ) xx xxxK C D u C u= + +

 and 

{ ( ) ( ) ( ) ( ) }2 2 2 2 2 2 2 2max 3 3 , 3 1 2 , 2 , 2Cγ α β α β α β α β α β α β α β= + + + + + + + + + + + + +
     

Thus, from (2.20)  we have  

1 2( )  ( )
d

t t K K
dt

γ α βΨ − Ψ ≤ +
                                                                                                                                        (2.22) 

where 
2 2 22( ) 2 2x xx xxxt w w w wΨ = + + +

. Solving the differential inequality (2.22), we arrive at 

2 2 22
1 2

1
2 2 ( )

T

x xx xxx
e

w w w w K K
γ

α β
γ

 −
 + + + ≤ +
 
    

for fixed T . And so we have completed the proof of the theorem. 

Remark 2. w  and its x  derivatives of order up to 3  , tends to zero as  0,   0α β→ →   for finite T  

So, the solutions of (2.22) depend continuously on α  and β  in 
4,1
0 ( )C +×ℝ ℝ

 which means that (2.1)-(2.2) is 

structurally stable with respect to the coefficients α  and β . 

3. UPPER AND LOWER BOUNDS ON THE ENERGY 

Let u  be a solution to the initial-value problem (2.1), (2.2) with 1α >  and 1β > . By similar computations 

given in Section 2, we find  

{ }2 2 22 2 2 22 2 (2 ) (2 1) (1 2 5 )x xx xxx xxx x xxx x xx
d

u u u u u u dx u u dx u u dx
dt

β α β β α+ + + = − − − + + − −∫ ∫ ∫          (3.1) 
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 If we use Cauchy and Hölder inequalities in (3.1) we obtain 

{ }2 2 2 2 22 22 25 1 5
2 2 (1 )max 2( ) 2 max

2 2 4 4 2 4
x xx xxx x xx xx

d
u u u u u u u u u

dt

β α α β α
β  + + + ≥ − − + − − + − − 

 
  

221
1 max

2 2 2
xxx xxxu u

β α
β

  + − − − +  
  

                                                                                                            (3.2) 

Taking  

2 2 25 1 5 1
max 1 max ,  ,  max  , 1 max

2 2 4 4 2 4 2 2 2
xx xxxu u u

β α α β α β α
η β β

         = − − − − − − − − − +         
          

 

and 

2 2 22( ) 2 2x xx xxxY t u u u u= + + + ,  

we have  

( )  Y( ) 0
d

Y t t
dt

η− ≥                                                                                                                                            (3.3) 

Solving the inequality (3.3) we arrive at  

}{ 2 2 2 2 2 22 2( ,0) 2 ( ,0) 2 ( ,0) ( ,0) ( , ) 2 ( , ) 2 ( , ) ( , )T
x xx xxx x xx xxxe u x u x u x u x u x t u x t u x t u x tη + + + ≤ + + +   (3.4) 

where 0η ≤ . This inequality gives a lower bound for the energy. 

Now we will derive an upper bound for the energy. From (3.1) we have  

{ }2 2 2 22 2 1 5 2 1
2 2 1 max 2 max max

2 4 2 4
x xx xxx xx xxx x

d
u u u u u u u u u

dt

β α α β β + − −  + + + ≤ − + + +  
  

      

2 21 5 2 1
2 max 1 max max

4 2 2
xx xx xxx xxxu u u u u

α β β α
β

 − − +  + + − + +  
  

                                                 (3.5) 

Taking  

1 5 2 1 1 5 2
max 1 max ,  max max , max ,

2 4 2 4 4
xx xxx xxu u u u

β α α β β α β
µ

 + − − − − = − + +  
 

1
 1 max max

2 2
xxxu u

β α
β

+  − + +  
  

 

and 

2 2 22( ) 2 2x xx xxxY t u u u u= + + + , 

we have 

( )  Y( ) 0
d

Y t t
dt

µ− ≤                                                                                                                                            (3.6) 

Then integrating the inequality (3.6) from 0  to T we arrive at 

{ }2 2 2 2 2 22 2
( , ) 2 ( , ) 2 ( , ) ( , ) ( ,0) 2 ( ,0) 2 ( ,0) ( ,0)T

x xx xxx x xx xxxu x T u x T u x T u x T e u x u x u x u xµ+ + + ≤ + + +  

                                                                                                                                                                         (3.7)  

where 0µ ≥ . (3.7) gives an upper bound for the energy in every finite interval [ ]0,T . 

We may combine the above results as in the following theorem. 
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Theorem 3. The energy corresponding to the solutions of the initial value problem (2.1)-(2.2) in 4,1
0 ( )C +×ℝ ℝ  

satisfy 

}{ 2 2 2 2 2 22 2( ,0) 2 ( ,0) 2 ( ,0) ( ,0) ( , ) 2 ( , ) 2 ( , ) ( , )T
x xx xxx x xx xxxe u x u x u x u x u x T u x T u x T u x Tη + + + ≤ + + +

}{ 2 2 22( ,0) 2 ( ,0) 2 ( ,0) ( ,0)T
x xx xxxe u x u x u x u xµ≤ + + +  

For fixed T where ,  1α β >  are constants. 

ACKNOWLEDGMENT 

The author thanks Professor Dr. A. Okay ÇELEBĐ for 
valuable hints and discussions. 

REFERENCES 

[1] Degasperis, A., Procesi, M., “Asymptotic 
integrability ”, Symmetry and Perturbation Theory, 
World Sci. Publ., River Edge, NJ, 23-37 (1999).  

 
[2] Camassa, R., Holm, D., “An integrable shallow 

water equation with peaked solution”, Phys. Rev. 
Lett., 71: 1661-1664 (1993). 

 

[3] Lenells, J. S, “Traveling wave solutions of the 
Degasperis-Procesi equation”, J. Math. Anal. 

Appl., 306: 72-82 (2005). 
 
[4] Lenell, J.S, “Traveling wave solutions of the 

Camassa-Holm equation”, J. Differential 

Equations, 217: 393-430 (2005). 
 
[5] Degasperis, A., Holm, D., Hone, A.N.W., “A new 

integrable equation with peakon solutions”, 
Theoretical and Mathematical Physics, 133 (2): 
1463-1474 (2002). 

 


