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Abstract. The most well known property of chaotic systems is their sensitivity to initial conditions. In this work 
the criterion presented in literature for synchronizing two chaotic systems is applied to a system consisting of 
two Van der Pol-Duffing oscillators. First, the route to chaos is investigated for the Duffing oscillator. 
Furthermore, the Lyapunov function approach is used to design a high dimensional chaotic system. Then certain 
subsystems of a nonlinear chaotic system are synchronized by linking them with a common signal. 
Synchronization has been observed when there exists an asymptotic stability and an appropriate Lyapunov 
function, also by computing all the Lyapunov exponents and Kolmogorov entropy. 
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Van Der Pol-  
Kaotik sistemlerin bilinen en  

 iki kaotik sistemin senkronizasyon kriteri, iki Van Der Pol-

bir kaotik sistemin belirli alt sistemleri ortak 

 

1. INTRODUCTION  

Two identical autonomous chaotic systems started at virtually identical initial conditions would be 
observed to quickly diverge from one another [1]. That is, their trajectories become uncorrelated, even if 
each maps out the same attractor in phase space. It is thus impossible to build up two identical, chaotic, 
synchronized and separated systems. Pecora and Carroll showed that two chaotic systems can be 
synchronized by dividing each of them into two subsystems, namely, a drive subsystem and a response 
subsystem and by keeping the variable values of the drive subsystems the same [2]. When the Lyapunov 
exponents are all negative for the response subsystem, synchronization is achieved [12]. 

A possible application of synchronization of chaotic signal is to implement a secure communication 
system. Since chaotic signals are usually broadband, noise like, and difficult to predict, they can be used 
for masking information bearing waveforms. A chaotic masking signal is added at the transmitter to a 
message, and at the receiver the masking is reproduced and removed from the received signal [3]. Also, 
the Van der Pol-Duffing oscillator can be used as model in 
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physics, engineering electronics, biology, 
neurology and many other disciplines [13].  

Pecora and Carroll have extended the 
synchronization of chaotic circuits to periodically 
forced circuits [4].  When one of the subsystem is 
periodically forced, all the Lyapunov exponents for 
the subsystem are not negative, the periodical 
forcing introduces a zero exponent. To make the 
zero Lyapunov exponent in the response system 
negative, they use a phase correction circuit to 
match the phase in a response circuit to the phase 
in a drive circuit. They also show that the chaotic 
behavior is a good candidate to keep period-
multiplied systems in phase (synchronized) [5]. 
There is a need for this when many devices are 
coupled into arrays to increase the sensitivity or 
power output beyond what one device would 
provide.   

A method of controlling nonlinear and chaotic 
systems which can synchronize the phase space 
trajectory to a desired unstable orbit is discussed in 
[6]. This method utilizes the principles of adaptive 
control and time dependent changes in the system 
parameters. The system parameter values are 
changed according to the deviations of the system 
variables from desired orbit and the deviations of 
the controlled parameters from their values for the 
desired orbit. 

A method of transmitting signals in a secure way 
through chaos synchronization in a physical model 
has been discussed in [7]. A criterion for 
synchronization of chaos based on the asymptotic 
stability has been created and the model developed 
has been proved to be useful in analog signal 
transmission. 

2. THEORETICAL FRAMEWORK 

2.1. Asymptotic Stability 

Asymptotic stability commonly appears in linear 
damped forced systems.  When the transient part of 
the system response is completed and only the 
forced part remains, the system response no longer 
depends on the initial conditions, namely, it has 
converged to stable point or a desired orbit. This 
state of forgetting the initial conditions, steady state 

response in forced systems, is known as asymptotic 
stability. 

There is a very close relationship between 
synchronization and asymptotic stability. The term 
synchronization denotes an eventual coincidence 
of two different systems starting with different 
initial conditions. Asymtotic, however, indicates a 
case where both systems converge, after sufficient 
time, to the same eventual state without respect to 
the initial conditions. 

Since chaotic systems very much remember the 
initial conditions, asymptotic stability for the total 
chaotic system would be almost impossible. But, it 
is reasonable that a subsystem of a total chaotic 
system can exhibit a characteristic of asymptotic 
stability. Such a system can be considered to be 
constructed from two parts, namely, master and 
slave. Now this master-slave system can operate 
synchronously.  

An outline of the Differential Transformation 
Method (DTM) can be given as follows. Let  
be an analytical function in the domain  and 

 be a point in . The function  can be 
represented by using a -centered power series. 
The k-th derivative of  is defined as: 

2.2.  Synchronization of Systems 

The phenomena of synchronization is that the slave 
system knows which state (attractor) to go to when 
driven (stimulated) by a parameter signal.  A 
dynamical system may be described by the 
following ordinary differential equation 

                              .                              (1) 

Where x and f are n-dimensional vectors of the 
form ) and    f(x
{   is a set 
of parameters such that the system lies in the 
chaotic regime. The desired orbit may be chaotic or 
periodic. The system is then divided into two 
subsystem  a drive subsystem  
and a response subsystem ) 
such that ).   

A master system ) may be governed by 
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, (2)

                            .                     (3) 

Furthermore, let the slave system    
be governed by 

                             ,                (4)                                            

        = (                   (5) 

 

If the derive subsystem of the master is allowed to 
drive that of the slave (see Fig. 1), then  

                                          (6) 

In order to lock the given system onto a given 
unstable orbit, start the evolution of the system 
with an initial condition  which 
slightly deviates from the desired orbit such that 

 but . The drive variable 
now evolves according to Eq. (2) and the 

response variable  evolves according to the 
following equation. 

                        (7) 

 

Figure 1. Block diagram of a master-slave system. 

Thus the drive variables of the slave are 
continuously set to those of the desired orbit while 
the response variables are allowed to evolve freely. 
The total system will settle down onto the desired 
orbit, when the drive variables are such that the 
Lyapunov exponents of the response system are all 
negative. In this case the difference  
goes to zero as . 
 
 
 

2.3. A Model System-Duffing Oscillator
The Duffing oscillator with a double-well potential 
can be described by a nonlinear Langevin equation 
of the form  

m ,                    (8)  

where  -well 
potential, and f is a random force or white noise 
[8,9]. 

The physical realization of the Duffing oscillator 
circuit is shown in Fig. 2. The circuit element 
denoted by N represents a nonlinear negative 
resistor and can be constructed by using a set of 
diodes and an operational amplifier. The unfolding 
parameter is represented by the parameter  which 
is controlled by the offset votage of the amplifier. 
Such a nonlinear element can be described as 

                ,                (9) 

where   and b . The circuit equations are 
eas s to the various 
branches of the circuit as follows 

             (10a) 

                                                (10b) 

                                                                       (10c) 

where differentiation is with respect to time. Here 
x, y and z correspond to the rescaled form of the 
voltage across capacitor , the voltage across 
capacitor , and the current through L, 
respectively. The rescaled circuit parameters m, , 

ven as 

m =   (1+ ,        

                   (11) 
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Figure 2. Equivalent circuit of the Duffing oscillator.  

wells have equal probability and the system 
becomes 

     = m(                    (12a) 

      = x y z,            (12b) 

   =          (12c) 

There are several types of synchronization. One of 
them holds for systems which are not chaotic, but 
follow periodic limit cycles. Here a chaotic 
synchronization approach is introduced together 
with the necessary and sufficient condition for 
synchronization of linear or nonlinear systems. 
This approach exploits an appropriate Lyapunov 
function to globally establish the asymptotic 
stability of subsystem. The Lyapunov function can 
be further used to create a high dimensional 
chaotic system, with a nonlinear subsystem. Here 
we obtained Lyapunov exponents (  = 2.13,  = 
0.44,  = 0.00, = 0.00,  = -75.52). Also we 
obtained Kolmogorov entropy and Lyapunov 
dimension ( =2.48 and  = 4.04) [13]. 

For a slave system governed by the subsystem 
(12a), the following set of equations can be written 

=x,                                 (13a) 

                   =x ,                     (13b) 

                             .                           (13c) 

Considering the differences between the unprimed 
and primed quantities and starring them, 

                             = ,                       (14a) 

                                             (14b)  

If the Lyapunov function is chosen as in [7], i.e., as 

E = [ ], (15)      

then 

                     = - + )  0.                   (16) 

The equality sign applies only at the origin, 
therefore the subsystem [(12b) and (12c)] is 
globally asymptotically stable. Thus the master and 
slave systems eventually synchronize. 

3. CALCULATIONS 

The choice of system form should be based on the 
fact that master and slave systems would be 
synchronous. Thus a 5-dimensional  Duffing 
system (17a-e) which is derived from the system 
(12a-c) has been taken. 

          = m +m + ,                  (17a) 

          = - - ,                                       (17b) 

          ,                                               (17c) 

          = +                                           (17d) 

          = ,                                   (17e) 

where  = (t), i=1,2,3,4,5. The slave has an 
identical set of equations with the master expect the 
signal  which is common. Notice that the 
subsystems are nonlinear, although this is not 
always necessary. For dissipative system it must be 
ensured that the divergence of the system is 
negative. This condition is readily satisfied by the 
system (17a-e). If all the Lyapunov exponents for 
the slave system are less than zero, then after initial 
transients decay, , , , and  will be equal to 

, , , and,  ; that is, the subsystems 
synchronize. Thus, the first step is to calculate the 
rest points of the system (17), and the 
corresponding Jacobian eigenvalues. The Jacobian 
matrix can be formed as 
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3m m 0 0 1

1 1 1 0 0 

0  0 0 0 

0 0 0 3  1 

1 0 0 1 1 

where  , , , ,  denote the rest points. When m = 100,  
found chaotic because it has at least one positive Lyapunov exponent. At the same time, this situation has 
been observed from the phase portrait of the dynamical variables  and 
= 300, the solution of the system is found to be periodic, Fig.3b. For the system (17) the rest points and 
the corresponding Jacobian eigenvalues are shown in Table 1. 

Table 1. Rest points and Jacobian eigenvalues of Eq. (17). 

The slave system driven by  is given as 

        =  m   + m  + ,          (18a) 

         =     ,                                (18b) 

          =   + ,                                    (18c) 

          =       .                           (18d) 

Because Eqs.(17a-e) and (18a-d) establish a unique 
dynamical system it is possible to observe chaos in 
the slave system even though all the Lyapunov 
exponents are negative. If the differences between 
the corresponding dynamic variables of the master 
and slave are established and starred, then 

                )  + m  + ,          (19a) 

                =   ,                                    (19b) 

                 =    + ,                           (19c) 

                 =       .                      (19d) 

where  = (  +   +  )  0 and  = (  + 
 +  )  0. 

Consider the Lyapunov function given by 

                  =  (  +  +  +  ).       (20) 

The derivative of Eq. (20) with respect to time is 
given by 

 - )  + 101    

       -  -   -  ) .                                (21) 

It is clear that   0 if   and   are of opposite 
 and the equality sign holds only at 

the origin (  =  =  =  = 0 ). Therefore the 
slave system is glabally asymptotically stable [10, 
11, a]. The master (Eqs. (17a-e)) and slave 
(Eqs.(18a-d)) systems will eventually synchronize 
as shown in Fig. (3a-d). Furthermore, Lyapunov 
exponents of the slave are also not positive (  = 

1.05,  = 504.6,  = 2.39,  = 0.00).

Rest Points  

Jacobian Eigenvalues      
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Figure 3(a-d).  .

4. CONCLUSION 

In this work a criterion for synchronization of 
chaos, based on the asymptotic stability has been 
investigated for the Duffing oscillator. This 
criterion holds for only if the appropriate Lyapunov 
function is available. This criterion makes it 
possible to create a high dimensional chaotic 
system with a nonlinear subsystem. Such a chaotic 
system has exhibited synchronization in the case of 
both periodic limits cycles and chaos, Fig. 3a-b. 
The ability to be able to design a synchronous 
system consisting of nonlinear and especially 
chaotic systems has created new opportunities for 
modelling complex systems and applications of 
chaos to communications. 
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