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ABSTRACT

The purpose of this paper is to investigate φ-Ricci recurrent and φ-Ricci symmetric almost
Kenmotsu manifolds with its characteristic vector field ξ belonging to some nullity distributions.
Also we obtain several corollaries. Finally, we give an example of a 5-dimensional almost
Kenmotsu manifold such that ξ belongs to the (k, µ)′-nullity distribution and h′ 6= 0.
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1. Introduction

The notion of k-nullity distribution (k ∈ R) was introduced by Gray [12] and Tanno [16] in the study of
Riemannian manifolds (M, g), which is defined for any p ∈M and k ∈ R as follows:

Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]}, (1.1)

for any X,Y ∈ TpM , where TpM denotes the tangent vector space of M at any point p ∈M and R denotes the
Riemannian curvature tensor of type (1, 3).

Recently, Blair, Koufogiorgos and Papantoniou [3] introduced the (k, µ)-nullity distribution which is a
generalized notion of the k-nullity distribution on a contact metric manifold (M2n+1, φ, ξ, η, g) and defined
for any p ∈M2n+1 and k, µ ∈ R as follows:

Np(k, µ) = {Z ∈ TpM2n+1 : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]

+µ[g(Y,Z)hX − g(X,Z)hY ]}, (1.2)

where h = 1
2£ξφ and £ denotes the Lie differentiation.

Next, Dileo and Pastore [10] introduced another generalized notion of the k-nullity distribution which is
named the (k, µ)′-nullity distribution on an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g) and is defined for
any p ∈M2n+1 and k, µ ∈ R as follows:

Np(k, µ)′ = {Z ∈ TpM2n+1 : R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]

+µ[g(Y, Z)h′X − g(X,Z)h′Y ]}, (1.3)

where h′ = h ◦ φ.
In [9], Dileo and Pastore studied locally symmetric almost Kenmotsu manifolds. We refer the reader to
([9],[10],[11]) for more related results on (k, µ)′-nullity distribution and (k, µ)-nullity distribution on almost
Kenmotsu manifolds. In recent papers ([17],[18],[19],[20],[21]) Wang and Liu study almost Kenmotsu manifolds
with nullity distributions. In [19], Wang and Liu studied φ-recurrent almost Kenmotsu manifolds with the
characteristic vector field ξ belonging to some nullity distributions.
On the other hand, Kenmotsu [13] introduced a special class of almost contact metric manifolds named
Kenmotsu manifolds nowadays. The notion of locally φ-symmetry was introduced by Takahashi [15] in the
study of Sasakian manifolds as a weaker version of local symmetric of such manifolds. De et al [6] introduced
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a generalized version of local φ-symmetry, called φ-recurrence on Sasakian manifolds. In [5], De and Sarkar
studied φ-Ricci symmetric Sasakian manifolds. For more related results we refer the reader to De [4] and De et
al ([7],[8]). Motivated by the above studies in this paper we investigate φ-Ricci recurrent and φ-Ricci symmetric
almost Kenmotsu manifolds.
The paper is organized as follows:
In section 2, we give some basic knowledge on almost Kenmotsu manifolds. A few well-known results on
almost Kenmotsu manifolds with ξ belonging to some nullity distributions are provided in section 3. In the next
section, we study φ-Ricci recurrent almost Kenmotsu manifolds with ξ belonging to some nullity distributions.
Also we obtain several corollaries. In the final section, we give an example of a 5-dimensional almost Kenmotsu
manifold such that ξ belongs to the (k, µ)′-nullity distribution and h′ 6= 0.

2. Almost Kenmotsu manifolds

Let M be a (2n+ 1)-dimensional differentiable manifold admits a (φ, ξ, η)-structure or an almost contact
structure, where φ is an (1, 1) tensor field, ξ a characteristic vector field and η an 1-form such that ([1, 2])

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

where I denote the identity endomorphism. It is customary to include also φξ = 0 and η ◦ φ = 0; both can be
derived from (2.1).

If a manifold M with a (φ, ξ, η)-structure admits a Riemannian metric g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X and Y of TpM2n+1, then M is said to have an almost contact metric structure (φ, ξ, η, g).
The fundamental 2-form Φ on an almost contact metric manifold is defined by Φ(X,Y ) = g(X,φY ) for any
vector fields X,Y of TpM2n+1. An almost Kenmotsu manifold is defined as an almost contact metric manifold
such that dη = 0 and dΦ = 2η ∧ Φ. The condition for an almost contact metric manifold being normal is
equivalent to vanishing of the (1, 2)-type torsion tensor Nφ, defined by Nφ = [φ, φ] + 2dη ⊗ ξ, where [φ, φ] is
the Nijenhuis torsion of φ [1]. A normal almost Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu
manifolds can be characterized by (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX , for any vector fields X,Y. It is well known
[13] that a Kenmotsu manifoldM2n+1 is locally a warped product I ×f N2n whereN2n is a Kähler manifold, I is
an open interval with coordinate t and the warping function f , defined by f = cet for some positive constant c.
LetD be the distribution orthogonal to ξ and defined byD = Ker(η) = Im(φ). In an almost Kenmotsu manifold
D is an integrable distribution as η is closed. Let the two tensor fields h = 1

2£ξφ and l = R(·, ξ)ξ on an almost
Kenmotsu manifold M2n+1. The tensor fields l and h are symmetric and satisfy the following relations [14]

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0, (2.2)

∇Xξ = −φ2X − φhX(⇒ ∇ξξ = 0), (2.3)

φlφ− l = 2(h2 − φ2), (2.4)

R(X,Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y, (2.5)

for any vector fields X,Y . On the other hand, according to Takahashi [15] and De and Sarkar [5] we have the
following definitions.

Definition 2.1. An almost Kenmotsu manifold is said to be φ-symmetric, if it satisfies

φ2((∇WR)(X,Y )Z) = 0,

for any vector fields W,X, Y, Z ∈ TpM . In addition, if the vector fields W,X, Y, Z are orthogonal to ξ, then the
manifold is called locally φ-symmetric manifold.

Definition 2.2. An almost Kenmotsu manifold is said to be φ-Ricci recurrent if it satisfies

φ2((∇WQ)Y ) = A(W )QY, (2.6)

for any vector fields W,Y ∈ TpM , where A is the 1-form on M2n+1 and Q is the Ricci operator defined by
S(X,Y ) = g(QX,Y ). In addition, if the vector fieldsW,Y are orthogonal to ξ, then the manifold is called locally
φ-Ricci recurrent manifold.
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Definition 2.3. An almost Kenmotsu manifold is said to be φ-Ricci symmetric if it satisfies

φ2((∇WQ)Y ) = 0, (2.7)

for any vector fields W,Y ∈ TpM , where Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ). In addition, if
the vector fields W,Y are orthogonal to ξ, then the manifold is called locally φ-Ricci symmetric manifold.

3. Properties of the nullity conditions

In this section we provide some related results on almost Kenmotsu manifolds with ξ belonging to some
nullity distributions. The (1, 1)-type symmetric tensor field h′ = h ◦ φ is anticommuting with φ and h′ξ = 0.
Also it is clear that

h = 0⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2). (3.1)

Let X ∈ D be the eigen vector of h′ corresponding to the eigen value λ. It follows from (3.1) that λ2 = −(k + 1),
a constant. Therefore k ≤ −1 and λ = ±

√
−k − 1. We denote by [λ]′ and [−λ]′ the corresponding eigenspaces

associated with h′ corresponding to the non-zero eigen value λ and−λ respectively. We have following lemmas.

Lemma 3.1. (Proposition 3.1 and Proposition 5.1 of [14]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold
satisfying either the generalized (k, µ)-nullity condition or the generalized (k, µ)′-nullity condition ( the term generalized
means k, µ both are smooth functions ), with h 6= 0. Then, one has

h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2), (3.2)

S(X, ξ) = 2nkη(X), (3.3)

for any vector field X on M2n+1. Furthermore, in the case of generalized (k, µ)-nullity condition, one has

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX] (3.4)

and in the case of generalized (k, µ)′-nullity condition, one has

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(h′X,Y )ξ − η(Y )h′X], (3.5)

for any X,Y ∈ TpM . In addition if n > 1 then one has

(∇Xh′)Y = −g(h′X + h′2X,Y )ξ − η(Y )(h′X + h′2X)− (µ+ 2)η(X)h′Y, (3.6)

for any X,Y ∈ TpM .

Lemma 3.2. (Proposition 4.1 and Proposition 4.3 of [10]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold such
that ξ belongs to the (k, µ)′-nullity distribution and h′ 6= 0. Then k < −1, µ = −2 and Spec (h′) = {0, λ,−λ}, with 0
as simple eigen value and λ =

√
−k − 1. The distributions [ξ]⊕ [λ]′ and [ξ]⊕ [−λ]′ are integrable with totally geodesic

leaves. The distributions [λ]′ and [−λ]′ are integrable with totally umbilical leaves. Furthermore, the sectional curvature
are given as following:

(a) K(X, ξ) = k − 2λ if X ∈ [λ]′ and
K(X, ξ) = k + 2λ if X ∈ [−λ]′,

(b) K(X,Y ) = k − 2λ if X,Y ∈ [λ]′;
K(X,Y ) = k + 2λ if X,Y ∈ [−λ]′ and
K(X,Y ) = −(k + 2) if X ∈ [λ]′, Y ∈ [−λ]′,

(c) M2n+1 has constant negative scalar curvature r = 2n(k − 2n).

Lemma 3.3. (Lemma 3 of [19]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold with ξ belonging to the
generalized (k, µ)′-nullity distribution and h′ 6= 0. If n > 1, then the Ricci operator Q of M2n+1 is given by

Q = −2nid+ 2n(k + 1)η ⊗ ξ + [µ− 2(n− 1)]h′. (3.7)

Moreover, if both k and µ are constant, then we have

Q = −2nid+ 2n(k + 1)η ⊗ ξ − 2nh′. (3.8)

In both cases, the scalar curvature of M2n+1 is 2n(k − 2n).
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Lemma 3.4. (Proposition 4.2 of [10]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold such that h′ 6= 0 and ξ
belongs to the (k,−2)′-nullity distribution. Then for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′, the Riemannian
curvature tensor satisfies:

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,

R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = (k + 2λ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].

Lemma 3.5. (Lemma 4.1 of [10]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold with h′ 6= 0 and ξ belonging
to the (k,−2)′-nullity distribution. Then for any X,Y ∈ TpM ,

(∇Xh′)Y = −g(h′X + h′2X,Y )ξ − η(Y )(h′X + h′2X). (3.9)

Lemma 3.6. (Theorem 4.1 of [10]) Let M be an almost Kenmotsu manifold of dimension 2n+ 1. Suppose that the
characteristic vector field ξ belonging to the (k, µ)-nullity distribution. Then k = −1, h = 0 and M is locally a warped
product of an open interval and an almost Kähler manifold.

4. φ-Ricci recurrent almost Kenmotsu manifolds

This section is devoted to study φ-Ricci recurrent almost Kenmotsu manifolds with some nullity
distributions. At first we prove the following theorem.

Theorem 4.1. Let (M2n+1, φ, ξ, η, g)(n > 1) be a φ-Ricci recurrent almost Kenmotsu manifold with the characteristic
vector field ξ belonging to the (k, µ)′-nullity distribution and h′ 6= 0. Then the manifold M2n+1 is φ-Ricci symmetric and
hence locally isometric to the Riemannian product of an (n+ 1)-dimensional manifold of constant sectional curvature −4
and a flat n-dimensional manifold.

Proof. We suppose that the manifold M2n+1 is a φ-Ricci recurrent almost Kenmotsu manifold. Taking the
covariant differentiation along arbitrary vector field Y ∈ TpM of (3.8) we have

(∇YQ)X = 2n(k + 1)[(∇Y η)Xξ + η(X)∇Y ξ]− 2n(∇Y h′)X, (4.1)

for any vector fields X,Y ∈ TpM . Using (2.3) we obtain from the above equation

(∇YQ)X = 2n(k + 1)[g(X,Y )ξ − 2η(X)η(Y )ξ + Y η(X)

+g(X,h′Y )ξ + h′Y η(X)]− 2n(∇Y h′)X, (4.2)

for any vector fields X,Y ∈ TpM . Applying φ2 on both sides of (4.2) we obtain

φ2((∇YQ)X) = 2n(k + 1)[−η(X)Y + η(X)η(Y )ξ − η(X)h′Y ]

−2nφ2((∇Y h′)X), (4.3)

for any vector fields X,Y ∈ TpM . Making use of (3.9) we get from (4.3)

φ2((∇YQ)X) = 2n(k + 1)[−η(X)Y + η(X)η(Y )ξ − η(X)h′Y ]

+2nη(X)[−h′Y + (k + 1)(Y − η(Y )ξ)], (4.4)

from which we have
φ2((∇YQ)X) = −2n(k + 2)η(X)h′Y, (4.5)

for any vector fields X,Y ∈ TpM . By virtue of equations (4.5) and (2.6) we obtain

− 2n(k + 2)η(X)h′Y = A(Y )QX, (4.6)

for any vector fields X,Y ∈ TpM . Substituting X = ξ in (4.6) yields

− (k + 2)h′Y = kA(Y )ξ, (4.7)
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for any vector field Y ∈ TpM . Taking inner product of (4.7) with ξ we have

kA(Y ) = 0, (4.8)

for any vector field Y ∈ TpM . Dileo and Pastore [10] proved that in an almost Kenmotsu manifold with the
characteristic vector field ξ belonging to the (k, µ)′-nullity distribution with h′ 6= 0 then k < −1. Hence (4.8)
implies A = 0, that is, the manifold M2n+1 is φ-Ricci symmetric. Using the relation A = 0, it follows from (4.7)
that k = −2. Noticing the fact λ2 = −(k + 1) and k = −2 we have λ = ±1. Without losing generality we may
choose λ = 1. Then we can write from Lemma 3.4

R(Xλ, Yλ)Zλ = −4[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = 0,

for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. Also it follows from Lemma 3.2 that K(X, ξ) = −4 for
any X ∈ [λ]′ and K(X, ξ) = 0 for any X ∈ [−λ]′. Again from Lemma 3.2 we see that K(X,Y ) = −4 for any
X,Y ∈ [λ]′; K(X,Y ) = 0 for any X,Y ∈ [−λ]′ and K(X,Y ) = 0 for any X ∈ [λ]′, Y ∈ [−λ]′. As is shown in [10]
that the distribution [ξ]⊕ [λ]′ is integrable with totally geodesic leaves and the distribution [−λ]′ is integrable
with totally umbilical leaves by H = −(1− λ)ξ, where H is the mean curvature vector field for the leaves
of [−λ]′ immersed in M2n+1. Here λ = 1, then two orthogonal distributions [ξ]⊕ [λ]′ and [−λ]′ are both
integrable with totally geodesic leaves immersed in M2n+1. Then we can say that M2n+1 is locally isometric to
Hn+1(−4)×Rn. This completes the proof.

Since φ-recurrent implies φ-Ricci recurrent, we have the following:

Corollary 4.1. Let (M2n+1, φ, ξ, η, g)(n > 1) be a φ-recurrent almost Kenmotsu manifold with the characteristic vector
field ξ belonging to the (k, µ)′-nullity distribution and h′ 6= 0. Then the manifold is locally isometric to the Riemannian
product of an (n+ 1)-dimensional manifold of constant sectional curvature −4 and a flat n-dimensional manifold.

The above corollary have been proved by Wang and Liu [19].

Theorem 4.2. Let (M2n+1, φ, ξ, η, g)(n > 1) be a φ-Ricci recurrent almost Kenmotsu manifold with the characteristic
vector field ξ belonging to the generalized (k, µ)′-nullity distribution and h′ 6= 0. Then the following statements are
equivalent:
(i) M2n+1 is φ-Ricci symmetric;
(ii) k is a constant;
(iii) ξ belongs to the (k, µ)′-nullity distribution.

Proof. Let us suppose M2n+1 be a φ-Ricci recurrent almost Kenmotsu manifold with ξ belonging to the
generalized (k, µ)′-nullity distribution and h′ 6= 0. Taking the covariant differentiation along arbitrary vector
field W ∈ TpM of (3.7) we get

(∇WQ)Y = 2nW (k)η(Y )ξ + 2n(k + 1)[(∇W η)Y ξ + η(Y )∇W ξ]
+W (µ)h′Y + [µ− 2(n− 1)](∇Wh′)Y, (4.9)

for any vector fields W,Y ∈ TpM . Applying φ2 on both sides of (4.9), we have

φ2((∇WQ)Y ) = −W (µ)h′Y + [µ− 2(n− 1)]φ2((∇Wh′)Y )

+2n(k + 1)η(Y ){−W + η(W )ξ − h′W}, (4.10)

for any vector fields W,Y ∈ TpM . In view of (4.10) and (2.6) we have

−W (µ)h′Y + [µ− 2(n− 1)]φ2((∇Wh′)Y )

+2n(k + 1)η(Y ){−W + η(W )ξ − h′W} = A(W )QY, (4.11)

for any vector fields W,Y ∈ TpM . Making use of (3.6) and (4.11) we obtain

−W (µ)h′Y + [µ− 2(n− 1)][−η(Y ){−h′W + (k + 1)(W − η(W )ξ)}
+(µ+ 2)η(W )h′Y ]− 2n(k + 1)[η(Y )W − η(Y )η(W )ξ + η(Y )h′W ]

= A(W )QY, (4.12)
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for any vector fields W,Y ∈ TpM . Taking inner product with ξ of (4.12) yields

kA(W ) = 0, (4.13)

for any vector field W ∈ TpM . From (3.2) we see that the smooth function k satisfies k < −1. Hence it follows
from (4.13) that A = 0. Thus M2n+1 is φ-Ricci symmetric. Therefore (i)⇒ (ii) is proved.
Taking into account A = 0 we have from (4.12)

−W (µ)h′Y + [µ− 2(n− 1)][−η(Y ){−h′W + (k + 1)(W − η(W )ξ)}
+(µ+ 2)η(W )h′Y ]− 2n(k + 1)[η(Y )W − η(Y )η(W )ξ + η(Y )h′W ]

= 0, (4.14)

for any vector fields W,Y ∈ TpM . Substituting Y = ξ in (4.14) we obtain

[µ− 2(n− 1)][h′W − (k + 1)(W − η(W )ξ)]− 2n(k + 1)[W − η(W )ξ + h′W ] = 0, (4.15)

for any vector field W ∈ TpM . Now taking inner product of (4.15) with the vector field X we have

[µ− 2(n− 1)][g(h′W,X)− (k + 1)(g(W,X)− η(W )η(X))]

−2n(k + 1)[g(W,X)− η(W )η(X) + g(h′W,X)] = 0, (4.16)

for any vector fields W,X ∈ TpM . Consider a local orthonormal basis {ei : i = 1, 2, ..., 2n+ 1} of tangent space
at each point of the manifoldM2n+1. SettingX = W = ei in (4.16) and taking summation over i : 1 ≤ i ≤ 2n+ 1,
we get

(k + 1)(µ+ 2) = 0. (4.17)

Again from (3.2) we see that the smooth function k satisfies k < −1. Therefore it follows from (4.17) that
µ = −2. Pastore and Saltarelli [14] proved that in an almost Kenmotsu manifold with generalized (k, µ)′-nullity
distribution and h′ 6= 0, then

ξ(k) = −2(k + 1)(µ+ 2) (4.18)

holds. In view of µ = −2 we have from (4.18), k=constant. Thus (ii)⇒ (iii) is proved. Conversely, (iii)⇒ (i) is
proved in Theorem 4.1. This completes the proof.

Since φ-recurrent implies φ-Ricci recurrent, we have the following:

Corollary 4.2. Let (M2n+1, φ, ξ, η, g)(n > 1) be a φ-recurrent almost Kenmotsu manifold with the characteristic vector
field ξ belonging to the generalized (k, µ)′-nullity distribution and h′ 6= 0. Then the following statements are equivalent:
(i) M2n+1 is φ-symmetric;
(ii) k is a constant;
(iii) ξ belongs to the (k, µ)′-nullity distribution.

The above corollary have been proved by Wang and Liu [19].
Now we prove some special theorems on almost Kenmotsu manifolds with ξ belonging to the (k, µ)-nullity
and generalized (k, µ)-nullity distributions.

Theorem 4.3. Let (M2n+1, φ, ξ, η, g) be a φ-Ricci recurrent almost Kenmotsu manifold with the characteristic vector
field ξ belonging to the (k, µ)-nullity distribution. Then the manifold M2n+1 is an Einstein one.

Proof. Let us suppose that the manifold M2n+1 is an φ-Ricci recurrent almost Kenmotsu manifold with ξ
belonging to the (k, µ)-nullity distribution. In view of Lemma 3.6 and the equation (2.5) we get

R(X,Y )ξ = η(X)Y − η(Y )X, (4.19)

for any X,Y ∈ TpM . Contracting Y in (4.19) we have

S(X, ξ) = −2nη(X), (4.20)

for any X,Y ∈ TpM . Thus, we have
Qξ = −2nξ. (4.21)
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Taking the covariant differentiation along arbitrary vector field Z ∈ TpM of (4.21) we get

(∇ZQ)ξ = −2n(∇Zξ). (4.22)

Using Lemma 3.6 the Equation (2.3) becomes

∇Zξ = Z − η(Z)ξ, (4.23)

for any Z ∈ TpM . From (4.22) and (4.23) we have

(∇ZQ)ξ = −2n[Z − η(Z)ξ], (4.24)

where Z be any vector field on M . Applying φ2 on both sides of (4.24) we see that

φ2((∇ZQ)ξ) = −2n[−Z + η(Z)ξ], (4.25)

for any Z ∈ TpM . In view of (4.25) and (2.6) we obtain

− 2n[−Z + η(Z)ξ] = A(Z)Qξ, (4.26)

where Z ∈ TpM . Taking the inner product of (4.26) with ξ yields A(Z) = 0, for any Z ∈ TpM , thus we have
A = 0 and consequently M2n+1 is φ-Ricci symmetric. Taking into account A = 0, we can write from (4.25) and
(4.26) that φ2((∇ZQ)ξ) = 0, for any Z ∈ TpM , from which it follows that

− (∇ZQ)ξ + η((∇ZQ)ξ)ξ = 0. (4.27)

Taking the inner product of (4.27) with the vector field U and making use of g((∇ZQ)ξ, U) = (∇ZS)(ξ, U) we
have

(∇ZS)(ξ, U)− η((∇ZQ)ξ)η(U) = 0, (4.28)

for any U,Z ∈ TpM . Again using (4.24) we see from (4.28) that

(∇ZS)(ξ, U) = 0, (4.29)

which implies
∇ZS(ξ, U)− S(∇Zξ, U)− S(ξ,∇ZU) = 0, (4.30)

for any U,Z ∈ TpM . Making use of (4.20) and (4.23) into (4.30) we can write S(U,Z) = −2ng(U,Z), for any
U,Z ∈ TpM . Therefore the manifold M2n+1 is an Einstein manifold. This completes the proof.

In [19], Wang and Liu proved that a φ-recurrent almost Kenmotsu manifold M2n+1 with the characteristic
vector field ξ belonging to the (k, µ)-nullity distribution is of constant sectional curvature −1, which implies
that the manifold is an Einstein one of the form S(U,Z) = −2ng(U,Z), for any U,Z ∈ TpM . Also, φ-recurrent
implies φ-Ricci recurrent. Thus, we have the following:

Corollary 4.3. Let (M2n+1, φ, ξ, η, g) be a φ-recurrent almost Kenmotsu manifold with the characteristic vector field ξ
belonging to the (k, µ)-nullity distribution. Then the manifold M2n+1 is an Einstein one.

Theorem 4.4. Let (M2n+1, φ, ξ, η, g) be a φ-Ricci recurrent almost Kenmotsu manifold with the characteristic vector
field ξ belonging to the generalized (k, µ)-nullity distribution and h 6= 0. Then the manifold M2n+1 is an Einstein one.

Proof. Suppose that an almost Kenmotsu manifold M2n+1 is φ-Ricci recurrent and ξ belongs to the generalized
(k, µ)-nullity distribution with h 6= 0. Making use of (3.3) we get

Qξ = 2nkξ. (4.31)

Taking the covariant differentiation along arbitrary vector field Z ∈ TpM of (4.31) we get

(∇ZQ)ξ = 2nk(∇Zξ) + 2nZ(k)ξ. (4.32)

Using (2.3) in (4.32) yields
(∇ZQ)ξ = 2nk(Z − η(Z)ξ − φhZ) + 2nZ(k)ξ, (4.33)
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for any vector field Z ∈ TpM . Applying φ2 on both sides of (4.33) we have

φ2((∇ZQ)ξ) = 2nk(−Z + η(Z)ξ + φhZ), (4.34)

for any vector field Z ∈ TpM . On the other hand, the assumption that M2n+1 is φ-Ricci recurrent implies
φ2((∇ZQ)Y ) = A(Z)QY , for any Y, Z ∈ TpM . Substituting Y = ξ into this relation we obtain

φ2((∇ZQ)ξ) = A(Z)Qξ. (4.35)

In view of (4.34) and (4.35) we get

2nk(−Z + η(Z)ξ + φhZ) = A(Z)Qξ, (4.36)

for any vector field Z ∈ TpM . Taking inner product of (4.36) with ξ implies kA(Z) = 0 for any vector field
Z ∈ TpM . Also, from (3.2) we see that the smooth function k satisfies the condition k < −1. Therefore, A = 0
and consequently M2n+1 is φ-Ricci symmetric. Taking into account A = 0, we can write from (4.35) that
φ2((∇ZQ)ξ) = 0, for any Z ∈ TpM , from which it follows that

− (∇ZQ)ξ + η((∇ZQ)ξ)ξ = 0. (4.37)

Taking the inner product of (4.37) with the vector field U and using g((∇ZQ)ξ, U) = (∇ZS)(ξ, U) we have

(∇ZS)(ξ, U)− η((∇ZQ)ξ)η(U) = 0, (4.38)

for any vector fields U,Z ∈ TpM . This implies

∇ZS(ξ, U)− S(∇Zξ, U)− S(ξ,∇ZU)− η((∇ZQ)ξ)η(U) = 0. (4.39)

Applying (3.3), (2.3) and (4.33) into (4.39) we obtain

2nZ(k)η(U) + 2nk∇Zη(U)− S(Z,U) + 2nkη(Z)η(U)

+S(φhZ,U)− 2nkη(∇ZU)− 2nZ(k)η(U) = 0, (4.40)

from which it follows that

S(U,Z)− S(φhZ,U)− 2nkg(U,Z) + 2nkg(φhZ,U) = 0, (4.41)

for any vector fields U,Z ∈ TpM . Now replacing Z by φhZ in (4.41) and noticing the fact h2 = (k + 1)φ2 we
have

(k + 1)S(U,Z) + S(φhZ,U)− 2nk(k + 1)g(U,Z)− 2nkg(φhZ,U) = 0, (4.42)

for any vector fields U,Z ∈ TpM . Adding (4.41) and (4.42) yields

(k + 2)[S(U,Z)− 2nkg(U,Z)] = 0, (4.43)

for any vector fields U,Z ∈ TpM . Clearly, it follows from (4.43) that either k = −2 or, S(U,Z) = 2nkg(U,Z), for
any vector fields U,Z ∈ TpM . Now we prove that the former case can not occur. Indeed, if we assume that the
former case is true, that is, k = −2, a constant, then ξ(k) = 0.Here we recall a result due to Pastore and Saltarelli
[14]. They proved that in an almost Kenmotsu manifold with generalized (k, µ)-nullity distribution and h 6= 0,
the relation ξ(k) = −4(k + 1) holds. Therefore substituting k = −2 in this relation we have ξ(k) = 4. Thus, we
have ξ(k) = 0 and ξ(k) = 4, which is absurd. Hence, we get the desired result.

5. Example of a 5-dimensional almost Kenmotsu manifold

In this section, we construct an example of an almost Kenmotsu manifold such that ξ belongs to the (k, µ)′-
nullity distribution. We consider 5-dimensional manifold M = {(x, y, z, u, v) ∈ R5}, where (x, y, z, u, v) are the
standard coordinates in R5. Let ξ, e2, e3, e4, e5 are five vector fields in R5 which satisfies [10]

[ξ, e2] = −2e2, [ξ, e3] = −2e3, [ξ, e4] = 0, [ξ, e5] = 0,

[ei, ej ] = 0, where i, j = 2, 3, 4, 5.
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Let g be the Riemannian metric defined by

g(ξ, ξ) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1

and g(ξ, ei) = g(ei, ej) = 0 for i 6= j; i, j = 2, 3, 4, 5.

Let η be the 1-form defined by
η(Z) = g(Z, ξ),

for any Z ∈ χ(M). Let φ be the (1, 1)-tensor field defined by

φ(ξ) = 0, φ(e2) = e4, φ(e3) = e5, φ(e4) = −e2, φ(e5) = −e3.

Using the linearity of φ and g we have

η(ξ) = 1, φ2Z = −Z + η(Z)ξ

and
g(φZ, φU) = g(Z,U)− η(Z)η(U),

for any U,Z ∈ χ(M). Moreover,

h′ξ = 0, h′e2 = e2, h
′e3 = e3, h

′e4 = −e4, h′e5 = −e5.

The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s formula which is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using Koszul’s formula we get the following:

∇ξξ = 0, ∇ξe2 = 0, ∇ξe3 = 0, ∇ξe4 = 0, ∇ξe5 = ξ,

∇e2ξ = 2e2, ∇e2e2 = −2ξ, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = 0,

∇e3ξ = 2e3, ∇e3e2 = 0, ∇e3e3 = −2ξ, ∇e3e4 = 0, ∇e3e5 = 0,

∇e4ξ = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = 0, ∇e4e5 = 0,

∇e5ξ = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

In view of the above relations we have
∇Xξ = −φ2X + h′X,

for any X ∈ χ(M). Therefore, the structure (φ, ξ, η, g) is an almost contact metric structure such that dη = 0 and
dΦ = 2η ∧ Φ, so that M is an almost Kenmotsu manifold.

By the above results, we can easily obtain the components of the curvature tensor R as follows:

R(ξ, e2)ξ = 4e2, R(ξ, e2)e2 = −4ξ, R(ξ, e3)ξ = 4e3, R(ξ, e3)e3 = −4ξ,

R(ξ, e4)ξ = R(ξ, e4)e4 = R(ξ, e5)ξ = R(ξ, e5)e5 = 0,

R(e2, e3)e2 = 4e3, R(e2, e3)e3 = −4e2, R(e2, e4)e2 = R(e2, e4)e4 = 0,

R(e2, e5)e2 = R(e2, e5)e5 = R(e3, e4)e3 = R(e3, e4)e4 = 0,

R(e3, e5)e3 = R(e3, e5)e5 = R(e4, e5)e4 = R(e4, e5)e5 = 0.

With the help of the expressions of the curvature tensor we conclude that the characteristic vector field ξ
belongs to the (k, µ)′-nullity distribution, with k = −2 and µ = −2.
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