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ABSTRACT

The purpose of this paper is to investigate ¢-Ricci recurrent and ¢-Ricci symmetric almost
Kenmotsu manifolds with its characteristic vector field { belonging to some nullity distributions.
Also we obtain several corollaries. Finally, we give an example of a 5-dimensional almost
Kenmotsu manifold such that £ belongs to the (k, ;1) -nullity distribution and 2’ # 0.
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1. Introduction

The notion of k-nullity distribution (k¥ € R) was introduced by Gray [12] and Tanno [16] in the study of
Riemannian manifolds (), g), which is defined for any p € M and k € R as follows:

N, (k) ={Z € T,M : R(X,Y)Z = klg(Y, Z)X — g(X, Z)Y]}, (1.1)

for any X,Y € T,M, where T, M denotes the tangent vector space of M at any point p € M and R denotes the
Riemannian curvature tensor of type (1, 3).

Recently, Blair, Koufogiorgos and Papantoniou [3] introduced the (k,p)-nullity distribution which is a
generalized notion of the k-nullity distribution on a contact metric manifold (M?"*1,¢,&,n,9) and defined
for any p € M?"! and k, ;1 € R as follows:

Ny(k,p) ={Z e T,M*" ™ . R(X,Y)Z = kg(Y,Z)X — g(X,Z)Y]
+ulg(Y, Z)hX — g(X, Z)hY]}, (1.2)

where h = £ £¢:¢ and £ denotes the Lie differentiation.

Next, Dileo and Pastore [10] introduced another generalized notion of the k-nullity distribution which is
named the (k, p)"-nullity distribution on an almost Kenmotsu manifold (M?"*!,¢,¢,n, g) and is defined for
any p € M*" ™! and k, u € R as follows:

Ny(kop) = {Z € M R(X,Y)Z = Klg(Y,2)X — g(X, Z)Y]
+ulg(Y, Z)h/X - g(X, Z)h’Y}}, (1.3)

where b/ = h o ¢.

In [9], Dileo and Pastore studied locally symmetric almost Kenmotsu manifolds. We refer the reader to
([91,[10],[11]) for more related results on (k, )'-nullity distribution and (k, )-nullity distribution on almost
Kenmotsu manifolds. In recent papers ([17],[18],[19],[20],[21]) Wang and Liu study almost Kenmotsu manifolds
with nullity distributions. In [19], Wang and Liu studied ¢-recurrent almost Kenmotsu manifolds with the
characteristic vector field ¢ belonging to some nullity distributions.

On the other hand, Kenmotsu [13] introduced a special class of almost contact metric manifolds named
Kenmotsu manifolds nowadays. The notion of locally ¢-symmetry was introduced by Takahashi [15] in the
study of Sasakian manifolds as a weaker version of local symmetric of such manifolds. De et al [6] introduced
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a generalized version of local ¢-symmetry, called ¢-recurrence on Sasakian manifolds. In [5], De and Sarkar
studied ¢-Ricci symmetric Sasakian manifolds. For more related results we refer the reader to De [4] and De et
al ([71,[8]). Motivated by the above studies in this paper we investigate ¢-Ricci recurrent and ¢-Ricci symmetric
almost Kenmotsu manifolds.

The paper is organized as follows:

In section 2, we give some basic knowledge on almost Kenmotsu manifolds. A few well-known results on
almost Kenmotsu manifolds with £ belonging to some nullity distributions are provided in section 3. In the next
section, we study ¢-Ricci recurrent almost Kenmotsu manifolds with ¢ belonging to some nullity distributions.
Also we obtain several corollaries. In the final section, we give an example of a 5-dimensional almost Kenmotsu
manifold such that £ belongs to the (k, )'-nullity distribution and »’ # 0.

2. Almost Kenmotsu manifolds

Let M be a (2n + 1)-dimensional differentiable manifold admits a (¢, £, n)-structure or an almost contact
structure, where ¢ is an (1, 1) tensor field, £ a characteristic vector field and 7 an 1-form such that ([1, 2])

where I denote the identity endomorphism. It is customary to include also ¢ = 0 and 71 o ¢ = 0; both can be
derived from (2.1).
If a manifold M with a (¢, £, n)-structure admits a Riemannian metric g such that

9(¢X,9Y) = g(X,Y) —n(X)n(Y),

for any vector fields X and Y of T,M?"*!, then M is said to have an almost contact metric structure (¢, &, 7, g).
The fundamental 2-form ® on an almost contact metric manifold is defined by ®(X,Y) = ¢g(X, ¢Y) for any
vector fields X,Y of T,M?"*1. An almost Kenmotsu manifold is defined as an almost contact metric manifold
such that dn =0 and d® = 2n A ®. The condition for an almost contact metric manifold being normal is
equivalent to vanishing of the (1,2)-type torsion tensor Ny, defined by N, = [¢, ¢] + 2dn @ &, where [¢, ¢] is
the Nijenhuis torsion of ¢ [1]. A normal almost Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu
manifolds can be characterized by (Vx¢)Y = ¢g(¢X,Y )¢ — n(Y)¢X, for any vector fields X, Y. It is well known
[13] that a Kenmotsu manifold 12"+ is locally a warped product I x ; N?" where N" is a Kdhler manifold, [ is
an open interval with coordinate ¢ and the warping function f, defined by f = ce’ for some positive constant c.
Let D be the distribution orthogonal to £ and defined by D = Ker(n) = Im(¢). In an almost Kenmotsu manifold
D is an integrable distribution as 7 is closed. Let the two tensor fields h = § £¢¢ and | = R(-,£)¢ on an almost
Kenmotsu manifold M?"*!. The tensor fields [ and h are symmetric and satisfy the following relations [14]

heé =0, 16 =0, tr(h) =0, tr(h¢) =0, hé + ph = 0, (2.2)
Vxé=—¢’X — ¢hX (= Vel =0), (2.3)

Bl — 1 = 2(h* — ¢?), (24)

R(X,Y)§ =n(X)(Y = ohY) —n(Y)(X — ¢hX) + (Vyoh)X — (Vxoh)Y, (2.5)

for any vector fields X, Y. On the other hand, according to Takahashi [15] and De and Sarkar [5] we have the
following definitions.

Definition 2.1. An almost Kenmotsu manifold is said to be ¢-symmetric, if it satisfies
¢*(VwR)(X,Y)Z) =0,

for any vector fields W, X, Y, Z € T,M. In addition, if the vector fields W, X, Y, Z are orthogonal to £, then the
manifold is called locally ¢-symmetric manifold.

Definition 2.2. An almost Kenmotsu manifold is said to be ¢-Ricci recurrent if it satisfies

P*(VwQ)Y) = A(W)QY, (2.6)

for any vector fields W,Y € T,M, where A is the 1-form on M?"*! and Q is the Ricci operator defined by
S(X,Y) = ¢(QX,Y). In addition, if the vector fields W, Y are orthogonal to &, then the manifold is called locally
¢-Ricci recurrent manifold.
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Definition 2.3. An almost Kenmotsu manifold is said to be ¢-Ricci symmetric if it satisfies

»*(VwQ)Y) =0, 2.7)

for any vector fields W, Y € T,,M, where () is the Ricci operator defined by S(X,Y) = g(QX,Y). In addition, if
the vector fields W,Y are orthogonal to £, then the manifold is called locally ¢-Ricci symmetric manifold.

3. Properties of the nullity conditions

In this section we provide some related results on almost Kenmotsu manifolds with £ belonging to some
nullity distributions. The (1, 1)-type symmetric tensor field h’ = h o ¢ is anticommuting with ¢ and »'§ = 0.
Also it is clear that

h=0sh =0, b= (k+1)¢*(< h? = (k+1)¢?). (3.1)

Let X € D be the eigen vector of i’ corresponding to the eigen value . It follows from (3.1) that A\* = —(k + 1),
a constant. Therefore k < —1 and A = +v/—k — 1. We denote by [)\]" and [—)]’ the corresponding eigenspaces
associated with /' corresponding to the non-zero eigen value A and — A\ respectively. We have following lemmas.

Lemma 3.1. (Proposition 3.1 and Proposition 5.1 of [14]) Let (M*"*' ¢,&,n,q) be an almost Kenmotsu manifold
satisfying either the generalized (k, w)-nullity condition or the generalized (k, n)’-nullity condition ( the term generalized
means k, . both are smooth functions ), with h # 0. Then, one has

h? = (k+1)¢*(& b = (k+1)¢?), (3.2)
S(X,§) = 2nkn(X), (3.3)
for any vector field X on M?"* 1. Furthermore, in the case of generalized (k, u)-nullity condition, one has
R, X)Y = k[g(X,Y)§ —n(Y)X] + ulg(hX,Y)E = n(Y)hX] (3.4)
and in the case of generalized (k, j)'-nullity condition, one has
R(§,X)Y = k[g(X,Y)E = n(Y)X] + ulg(h'X,Y)E — n(Y)W' X], (3.5)
forany XY € T,M. In addition if n > 1 then one has
(Vxh )Y = —g(WX +h?X,Y)E —n(Y) (WX +h?X) — (u+ 2)n(X)R'Y, (3.6)
forany XY € T, M.

Lemma 3.2. (Proposition 4.1 and Proposition 4.3 of [10]) Let (M?"*1, $,&,n, g) be an almost Kenmotsu manifold such
that € belongs to the (k, p)'-nullity distribution and ' # 0. Then k < —1, u = —2 and Spec (h') = {0, A, =}, with 0
as simple eigen value and X\ = /—k — 1. The distributions [¢] & [N\]' and [£] & [ A]’ are integrable with totally geodesic
leaves. The distributions [\|" and [—\]" are integrable with totally umbilical leaves. Furthermore, the sectional curvature
are given as following:

(a) K(X,&§) =k—2Xif X € [\ and
K(X,&) =k+2)if X € [-A],
(b) K(X,)Y)=k—-2XifX,Y € [\;
KX,)Y)=k+2Xif XY € [\ and
KX,)Y)=—(k+2)if X €[\, Y e[},
(c) M 2041 has constant negative scalar curvature r = 2n(k — 2n).

Lemma 3.3. (Lemma 3 of [19]) Let (M?"* ¢,&,m,g) be an almost Kenmotsu manifold with & belonging to the
generalized (k, p)"-nullity distribution and i/ # 0. If n > 1, then the Ricci operator @ of M*"+1 is given by

Q= —2nid+2n(k+1)n® &+ [u—2(n—1)|n". (3.7)
Moreover, if both k and 11 are constant, then we have
Q = —2nid +2n(k +1)n® £ — 2nh/’. (3.8)

In both cases, the scalar curvature of M*"*1 is 2n(k — 2n).
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Lemma 3.4. (Proposition 4.2 of [10]) Let (M*"*1,$,&,m, g) be an almost Kenmotsu manifold such that h' # 0 and &
belongs to the (k, —2)"-nullity distribution. Then for any X,Yx, Zx € [N and X_»,Y_x,Z_» € [=A], the Riemannian
curvature tensor satisfies:

R(Xx\,YA)Z-x = 0,
R(X_\,Y_\)Zx = 0,
R(X\,Y_0)Zy = (k+2)g(Xx, Z))Y,
R(X\,Y_2)Z-x = —(k+2)9(Y_x\,Z-2) Xy,
R(Xx\,Y))Zy = (kE=2XN[g(Yx, Z))Xx — g(Xh, Z))Y2],
RX_\Y_2)Z-xn = (k+2N)[g(Yox, Zox)Xx — (X o\, Z25)Y-A]

Lemma 3.5. (Lemma 4.1 of [10]) Let (M*"*1,¢,&,n, g) be an almost Kenmotsu manifold with h' # 0 and £ belonging
to the (k, —2)'-nullity distribution. Then for any X,Y € T,M,

(Vxh)Y = —g(WX + X, V)¢ —n(Y)(WX + h?X). (3.9)

Lemma 3.6. (Theorem 4.1 of [10]) Let M be an almost Kenmotsu manifold of dimension 2n + 1. Suppose that the
characteristic vector field ¢ belonging to the (k, w)-nullity distribution. Then k = —1, h = 0 and M is locally a warped
product of an open interval and an almost Kihler manifold.

4. ¢-Ricci recurrent almost Kenmotsu manifolds
This section is devoted to study ¢-Ricci recurrent almost Kenmotsu manifolds with some nullity
distributions. At first we prove the following theorem.

Theorem 4.1. Let (M2t ¢, &,n,9)(n > 1) be a ¢-Ricci recurrent almost Kenmotsu manifold with the characteristic
vector field ¢ belonging to the (k, p)'-nullity distribution and h' # 0. Then the manifold M?"*1 is ¢-Ricci symmetric and
hence locally isometric to the Riemannian product of an (n 4 1)-dimensional manifold of constant sectional curvature —4
and a flat n-dimensional manifold.

Proof. We suppose that the manifold M?" ™! is a ¢-Ricci recurrent almost Kenmotsu manifold. Taking the
covariant differentiation along arbitrary vector field Y € T,,M of (3.8) we have

(Vy@Q)X = 2n(k + D[(Vyn)XE +n(X)VyE] = 2n(Vy )X, (4.1)
for any vector fields X,Y € T),M. Using (2.3) we obtain from the above equation

(Vy@)X = 2n(k+ 1)[g(X, V)€ = 2n(X)n(Y)E + Yn(X)
+g(X, WY+ Y n(X)] - 2n(Vyh')X, 4.2)

for any vector fields X,Y € T,M. Applying ¢* on both sides of (4.2) we obtain

P*(Vy@Q)X) = 2n(k+1)[-n(X)Y +n(X)n(Y)E - n(X)n'Y]
—2n¢*((Vy 1) X), (4.3)
for any vector fields X,Y € T,,M. Making use of (3.9) we get from (4.3)
P*(Vy@Q)X) = 2n(k+1)[-n(X)Y +n(X)n(Y)¢ - n(X)n'Y]
+2nn(X)[-h'Y + (b + )Y = n(Y)E)], (44)
from which we have
P*((VyQ)X) = —2n(k + 2)n(X)h'Y, (4.5)

for any vector fields X,Y € T,,M. By virtue of equations (4.5) and (2.6) we obtain
—2n(k+2)n(X)R'Y = A(Y)QX, (4.6)
for any vector fields X, Y € T,,M. Substituting X = ¢ in (4.6) yields
— (k+2)RY = kA(Y)E, 4.7)
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for any vector field Y € T, M. Taking inner product of (4.7) with { we have
EA(Y) =0, (4.8)

for any vector field Y € 7),M. Dileo and Pastore [10] proved that in an almost Kenmotsu manifold with the
characteristic vector field ¢ belonging to the (k, u)'-nullity distribution with A’ # 0 then k& < —1. Hence (4.8)
implies A = 0, that is, the manifold M?"*! is ¢-Ricci symmetric. Using the relation A = 0, it follows from (4.7)
that k = —2. Noticing the fact A = —(k + 1) and k£ = —2 we have A\ = +1. Without losing generality we may
choose A = 1. Then we can write from Lemma 3.4

R(Xx,YA)Zx = —Alg(Ya, Zx) X\ — 9(Xi, Z3)Ya),
R(X_)\,Y_\)Z_x = 0O,
for any X,,Y),Z) € [\ and X_,,Y_,,Z_, € [-)\]". Also it follows from Lemma 3.2 that K(X,{) = —4 for
any X € [A\]' and K(X,¢) =0 for any X € [-)\]". Again from Lemma 3.2 we see that K(X,Y) = —4 for any
X, YeN; K(X,)Y)=0forany X,Y € [-)A] and K(X,Y) =0 for any X € [A\],;Y € [-A]'. As is shown in [10]
that the distribution [¢] & [A\] is integrable with totally geodesic leaves and the distribution [— ]’ is integrable
with totally umbilical leaves by H = —(1 — X\)¢, where H is the mean curvature vector field for the leaves
of [-)) immersed in M?"*1. Here A\ =1, then two orthogonal distributions [¢] & [\ and [-)]’ are both

integrable with totally geodesic leaves immersed in M?"*!. Then we can say that M?"*! is locally isometric to
H"+1(—4) x R™. This completes the proof. O

Since ¢-recurrent implies ¢-Ricci recurrent, we have the following:

Corollary 4.1. Let (M?"+1 ¢,£,n,g)(n > 1) be a ¢-recurrent almost Kenmotsu manifold with the characteristic vector
field & belonging to the (k, )’ -nullity distribution and h' # 0. Then the manifold is locally isometric to the Riemannian
product of an (n + 1)-dimensional manifold of constant sectional curvature —4 and a flat n-dimensional manifold.

The above corollary have been proved by Wang and Liu [19].

Theorem 4.2. Let (M?*"1 ¢,&,n,g)(n > 1) be a ¢-Ricci recurrent almost Kenmotsu manifold with the characteristic
vector field & belonging to the generalized (k, p)'-nullity distribution and h' # 0. Then the following statements are
equivalent:

(i) M?"*1 is ¢-Ricci symmetric;

(ii) k is a constant;

(iii) £ belongs to the (k, p)’-nullity distribution.

Proof. Let us suppose M?"! be a ¢-Ricci recurrent almost Kenmotsu manifold with ¢ belonging to the

generalized (k, u)’-nullity distribution and &’ # 0. Taking the covariant differentiation along arbitrary vector
field W € T, M of (3.7) we get

(Vw@Q)Y = 2nVV( n(Y)E+2n(k+ DI(Vwn)YE+n(Y)Vwe]
W(h'Y + [ = 2(n = DI(Vwh)Y, (4.9)

for any vector fields W, Y € T, M. Applying ¢* on both sides of (4.9), we have

P(VwQ)Y) = —W(h'Y +[u—2(n—1)]6*(Vwh')Y)
+2n(k + Ln(V){=W +n(W)¢ — KW}, (4.10)

for any vector fields W,Y € T,M. In view of (4.10) and (2.6) we have

W'Y + [u = 2(n = 1)]¢*(Vwh)Y)
+2n(k + D)n(Y){-W +n(W)¢ — KW} = A(W)QY, (4.11)
for any vector fields W,Y € T,,M. Making use of (3.6) and (4.11) we obtain
W'Y + [ = 2(n = D][-n(Y){='W + (k+ 1)(W — n(W)E)}
e + 2n(W)HR'Y] = 2n(k + 1) [n(Y)W — n(Y)n(W)E + n(Y)h'W]
= A(W)QY, (4.12)
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for any vector fields W, Y € T),M. Taking inner product with ¢ of (4.12) yields
EA(W) =0, (4.13)

for any vector field W € T, M. From (3.2) we see that the smooth function k satisfies £ < —1. Hence it follows
from (4.13) that A = 0. Thus M?"*! is ¢-Ricci symmetric. Therefore (i) = (ii) is proved.
Taking into account A = 0 we have from (4.12)

“W(h'Y + [p = 2(n = DI[=n(Y){='W + (k + )(W = n(W)§)}

+(p 4+ 2)n(W)KY] = 2n(k + DIn(YV)W = n(Y)n(W)E + n(Y)h'W]

=0, (4.14)
for any vector fields W,Y € T,, M. Substituting ¥ = ¢ in (4.14) we obtain

[ =2(n = DW= (k + D)W = n(W)§)] — 2n(k + W — n(W)§ + K'W] =0, (4.15)

for any vector field W € T),M. Now taking inner product of (4.15) with the vector field X we have

(1= 2(n = D][g(W'W, X) = (k + 1)(g(W, X) — n(W)n(X))]
—2n(k +1)[g(W, X) — n(W)n(X) + g(h'W, X)] = 0, (4.16)
for any vector fields W, X € T,,M. Consider a local orthonormal basis {e; : i = 1,2, ...,2n + 1} of tangent space

at each point of the manifold M 2n+l Setting X = W = e, in (4.16) and taking summationovers:1 < ¢ <2n+1,
we get

(k+1)(n+2)=0. (4.17)

Again from (3.2) we see that the smooth function k satisfies k£ < —1. Therefore it follows from (4.17) that

p = —2. Pastore and Saltarelli [14] proved that in an almost Kenmotsu manifold with generalized (%, ;)" -nullity
distribution and »’ # 0, then

E(k) = =2(k+1)(u+2) (4.18)

holds. In view of ;1 = —2 we have from (4.18), k=constant. Thus (ii) = (4i7) is proved. Conversely, (iii) = (i) is
proved in Theorem 4.1. This completes the proof.

Since ¢-recurrent implies ¢-Ricci recurrent, we have the following:

Corollary 4.2. Let (M?"*1,$,&,m,9)(n > 1) be a ¢-recurrent almost Kenmotsu manifold with the characteristic vector
field & belonging to the generalized (k, u)'-nullity distribution and b’ # 0. Then the following statements are equivalent:

(i) M>"+1 s ¢-symmetric;
(ii) k is a constant;
(iii) & belongs to the (k, u)"-nullity distribution.

The above corollary have been proved by Wang and Liu [19].
Now we prove some special theorems on almost Kenmotsu manifolds with £ belonging to the (k, x)-nullity
and generalized (k, p)-nullity distributions.

Theorem 4.3. Let (M*"F1 ¢,&,m,g) be a ¢-Ricci recurrent almost Kenmotsu manifold with the characteristic vector
field ¢ belonging to the (k, p)-nullity distribution. Then the manifold M*"*+1 is an Einstein one.

Proof. Let us suppose that the manifold M?"*! is an ¢-Ricci recurrent almost Kenmotsu manifold with ¢
belonging to the (&, ;)-nullity distribution. In view of Lemma 3.6 and the equation (2.5) we get

R(X,Y)E = n(X)Y —n(Y)X, (4.19)
for any X,Y € T,,M. Contracting Y in (4.19) we have
S(X;€) = —2nn(X), (4.20)

forany X,Y € T,M. Thus, we have
Q¢ = —2né. (4.21)
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Taking the covariant differentiation along arbitrary vector field Z € T}, M of (4.21) we get
(VzQ)§ = —2n(V z4). (4.22)
Using Lemma 3.6 the Equation (2.3) becomes
Vz§=Z—n(Z)¢, (4.23)
for any Z € T,M. From (4.22) and (4.23) we have
(VzQ)¢ = =2n[Z —n(Z)¢], (4.24)
where Z be any vector field on M. Applying ¢? on both sides of (4.24) we see that
¢*((V2Q)€) = —2n[-Z +n(2)g], (4.25)
for any Z € T,,M. In view of (4.25) and (2.6) we obtain
= 2n[=Z +n(2)¢] = A(Z)QK, (4.26)

where Z € T,M. Taking the inner product of (4.26) with ¢ yields A(Z) =0, for any Z € T,M, thus we have
A = 0 and consequently M?" ! is ¢-Ricci symmetric. Taking into account A = 0, we can write from (4.25) and
(4.26) that ¢*((VzQ)¢) = 0, for any Z € T, M, from which it follows that

= (VzQ)§+n((VzQ)§E = 0. (4.27)

Taking the inner product of (4.27) with the vector field U and making use of g((VzQ)&,U) = (VzS)(E,U) we
have

(Vz8)(&U) =n((V2Q)§)n(U) =0, (4.28)
for any U, Z € T, M. Again using (4.24) we see from (4.28) that

(Vz8)(&,U) =0, (4.29)

which implies
VZS(gv U) —S(VZg,U)—S(f,VzU) =0, (430)
for any U, Z € T,M. Making use of (4.20) and (4.23) into (4.30) we can write S(U, Z) = —2ng(U, Z), for any
U,Z € T,M. Therefore the manifold M?"*! is an Einstein manifold. This completes the proof. O

In [19], Wang and Liu proved that a ¢-recurrent almost Kenmotsu manifold M?"*! with the characteristic
vector field ¢ belonging to the (k, u)-nullity distribution is of constant sectional curvature —1, which implies
that the manifold is an Einstein one of the form S(U, Z) = —2ng(U, Z), for any U, Z € T,,M. Also, ¢-recurrent
implies ¢-Ricci recurrent. Thus, we have the following;:

Corollary 4.3. Let (M?" 1 ¢,&,n, g) be a ¢-recurrent almost Kenmotsu manifold with the characteristic vector field &
belonging to the (k, p)-nullity distribution. Then the manifold M?" ' is an Einstein one.

Theorem 4.4. Let (M?" V1, ¢,&,n,g) be a ¢-Ricci recurrent almost Kenmotsu manifold with the characteristic vector
field & belonging to the generalized (k, u)-nullity distribution and h # 0. Then the manifold M*" " is an Einstein one.

Proof. Suppose that an almost Kenmotsu manifold M?"*! is ¢-Ricci recurrent and ¢ belongs to the generalized
(k, p)-nullity distribution with h # 0. Making use of (3.3) we get

QE = 2nks. (4.31)
Taking the covariant differentiation along arbitrary vector field Z € T, M of (4.31) we get
(V2Q)¢ = 2nk(V 2€) + 2nZ(k)E. (4.32)
Using (2.3) in (4.32) yields
(V2Q)& = 2nk(Z — n(Z)& — ¢hZ) + 2nZ(k)E, (4.33)
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for any vector field Z € T, M. Applying ¢* on both sides of (4.33) we have
$*((V2Q)€) = 2nk(—Z +1(Z)§ + ¢hZ), (4.34)

for any vector field Z € T,M. On the other hand, the assumption that M?"*! is ¢-Ricci recurrent implies
#*((VzQ)Y) = A(Z)QY, for any Y, Z € T, M. Substituting Y = ¢ into this relation we obtain

P*((V2Q)€) = A(Z)Q¢. (4.35)
In view of (4.34) and (4.35) we get
nk(—Z +n(2)§+ ohZ) = A(Z)QE, (4.36)

for any vector field Z € T),M. Taking inner product of (4.36) with ¢ implies kA(Z) = 0 for any vector field
Z € T,M. Also, from (3.2) we see that the smooth function £ satisfies the condition k¥ < —1. Therefore, A =0
and consequently M?"*! is ¢-Ricci symmetric. Taking into account A =0, we can write from (4.35) that
#*(VzQ)€) =0, for any Z € T,M, from which it follows that

= (VzQ)§+n((VzQ)§)E = 0. (4.37)
Taking the inner product of (4.37) with the vector field U and using g((VzQ)&,U) = (VzS)(€,U) we have
(Vz9)(&U) =n((VzQ)§)n(U) =0, (4.38)

for any vector fields U, Z € T,,M. This implies
VzS(&U) = 5(VzEU) = 5, V2U) =n((VzQ)§)n(U) = 0. (4.39)
Applying (3.3), (2.3) and (4.33) into (4.39) we obtain
Z(k)nU) + 2nkNV zn(U) — S(Z,U) + 2nkn(Z)n(U)
+S(ohZ,U) — 2nkn(V zU) — 2nZ(k)n(U) = 0, (4.40)
from which it follows that
S(U, Z) — S(¢hZ,U) — 2nkg(U, Z) + 2nkg(¢hZ,U) = 0, (4.41)

for any vector fields U, Z € T,M. Now replacing Z by ¢hZ in (4.41) and noticing the fact h? = (k + 1)¢* we
have
(k+1)S(U, Z) + S(¢hZ,U) — 2nk(k + 1)g(U, Z) — 2nkg(¢hZ,U) = 0, (4.42)

for any vector fields U, Z € T,M. Adding (4.41) and (4.42) yields
(k+2)[S(U, Z) — 2nkg(U, Z)] = 0, (4.43)

for any vector fields U, Z € T,,M. Clearly, it follows from (4.43) that either k = —2 or, S(U, Z) = 2nkg(U, Z), for
any vector fields U, Z € T, M. Now we prove that the former case can not occur. Indeed, if we assume that the
former case is true, that is, k = —2, a constant, then £(k) = 0. Here we recall a result due to Pastore and Saltarelli
[14]. They proved that in an almost Kenmotsu manifold with generalized (k, )-nullity distribution and h # 0,
the relation £(k) = —4(k + 1) holds. Therefore substituting k£ = —2 in this relation we have {(k) = 4. Thus, we
have £(k) = 0 and (k) = 4, which is absurd. Hence, we get the desired result. O

5. Example of a 5-dimensional almost Kenmotsu manifold

In this section, we construct an example of an almost Kenmotsu manifold such that £ belongs to the (&, 1t)’-
nullity distribution. We consider 5-dimensional manifold M = {(z,y, z, u,v) € R%}, where (,y, z,u,v) are the
standard coordinates in R®. Let £, e, e3, ey, e5 are five vector fields in R® which satisfies [10]

[5762] = _2627 [gae?)] = _2637 [Eae4] - Oa [5765] = 07
lei,e;] =0, where i, j = 2,3,4,5.
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Let g be the Riemannian metric defined by

9(§,€) = glea, e2) = gles, e3) = glea, eq) = gles,e5) =1
and g(§,e;) = g(es,ej5) =0fori # j;i,j =2,3,4,5.

Let 1 be the 1-form defined by

77(2) = g(Z’ 5)7

forany Z € x(M). Let ¢ be the (1, 1)-tensor field defined by

#(&§) =0, ¢(e2) = es, dlez) = es5, d(es) = —ez, d(es) = —es.

Using the linearity of ¢ and g we have

and

nE) =1, ¢°Z = -Z+n(2)¢

9(¢Z,9U) = g(Z,U) —n(Z)nU),

forany U, Z € x(M). Moreover,

h/§ = O7 h/62 = €2, hleg = €3, h/€4 = —€y4, h,€5 = —€s5.

The Levi-Civita connection V of the metric tensor g is given by Koszul’s formula which is given by

29(VxY,Z) = Xg(Y,Z)+Yy(Z,X) - Zg(X,Y)
—9(X,[Y, Z]) = g(Y,[X, Z]) + 9(Z,[X,Y]).

Using Koszul’s formula we get the following:

V{f = 0, V§€2 = O7 V§€3 = O, V§€4 = 0, V§€5 = f,

Ve, & =2e3, Ve,e9 = =26, Ve,e3 =0, Ve,eqa =0, Ve,e5 =0,
Ve, & = 2e3, Vegea =0, Veges = =2€, Vesea =0, Veges =0,
Vel =0, Ve,ea =0, Ve,es =0, Ve,eq =0, Ve,e5 =0,
Ve £ =0, Veea =0, Vees =0, Ve,eq =0, Vees =0.

In view of the above relations we have

Vxé=—-¢’X +1X,

for any X € x(M). Therefore, the structure (¢, ¢, 7, g) is an almost contact metric structure such that dn = 0 and
d® = 2n A ¥, so that M is an almost Kenmotsu manifold.
By the above results, we can easily obtain the components of the curvature tensor R as follows:

R(&,e2)€ =4deq, R(E,e2)ea = —4E, R(&, e3) = des, R(£,e3)es = —4&,
R(§ es)€ = R(§ ea)es = R(§, e5)€ = R(§, e5)es = 0,
R(ea, e3)es = des, R(eq,e3)es = —dea, R(ea,eq)ea = R(ea,eq)eq =0,
(
(

R(ez,e5)ez = R(ea,es5)es = R(es,eq)es = R(es,eq)es =0,

=

e3,e5)es = R(es,e5)es = R(eq,e5)eqs = R(eq,e5)es = 0.

With the help of the expressions of the curvature tensor we conclude that the characteristic vector field &
belongs to the (k, )’ -nullity distribution, with k = —2 and p = —2.
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