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Anahtar kelimeler 

Dev dipol rezonans,  

E1 geçişi,  

yapay sinir ağları 

Özet 

Dev dipol rezonans (GDR) parametrelerini elde etmek için birçok deneysel ve teorik metot 

uygulanmaktadır.Bu çalışmada, Sn ve U izotopları için GDR enerjileri, yapay sinir ağları (YSA) metodu ile 

tahmin edilmiştir. Sonuçlara göre, YSA’nın eğitiminde deneysel verilerden ortalama sapma, %1 

seviyesindedir. Sn ve U izotopları için tahmin edilen enerjilerdeki ortalama kare hata, 0,034 

MeV’dir.Teorik bir model için ise hata, 0,061 MeV’dir.Bu sonuç, GDR enerjileri üzerinde ANN 

tahmininin, teorik hesaplamalardaki sonuçlardan daha iyi olduğunu göstermektedir. 
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Abstract 

Several experimental and thoretical methods are applied for obtaining giant dipole resonance (GDR) 

parameters. In this study, GDR energies for Sn and U isotopes have been predicted by using artificial 

neural network (ANN) method. According to the results, in the training of the ANN, the mean deviations 

from the experimental values are in the order of 1%. The mean square error for the estimated energies 

of Sn and U isotopes is 0.034 MeV. Similar error value belonging to a theoretical model calculation is 

0.061 MeV. This result indicates that ANN predictions on GDR energy give better results according to 

the theoretical results. 
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1. Introduction 

Although it has been about 70 years since the 

discovery of giant dipole resonance (GDR), this 

interesting phenomenon has been still extensively 

treating by many researchers. GDR name is given 

to the broad peaks appearing in gamma-ray 

spectra. These peaks are lied in about 15-25 MeV 

energy range with about 3-10 MeV peak width. The 

resonance is originated from collective motion of 

the nucleon inside the nucleus (Spicer, 1969). The 

GDR were first observed by Bothe and Gentner in 

1937 (Bothe ve Gentner 1937) and the existence of 

this resonance were shown first by Baldwin and 

Klaiber (1948) in photonuclear reactions. In order 

to get information about GDR, many experiments 

have been performed by using gamma-rays. When 

gamma-rays are passing near the atomic nucleus, 

the nucleus is excited and a GDR occurs. The 

protons inside the nucleus are pulled to one side of 

the nucleus because of gamma-rays and the 

neutrons stay in their places. From this effect, 

protons oscillate and by the nuclear force neutrons 
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are forced to the protons to bring their original 

place. After oscillating is stopped, the excess 

energy is emitted via gamma-rays or neutrons 

(Kawatsu ve Shevin, 2003).GDR corresponds to the 

main frequency for the absorption of electric 

dipole radiation by the nucleus. 

Dipole electric (E1) gamma-transitions are 

dominant among the other multipolarities. GDR are 

strongly displayed in E1 gamma-transitions of 

photoabsorption and gamma-decay of the nucleus. 

Thus, GDR parameters can be obtained from 

investigations of the E1 gamma transitions. An 

experimental database including accurate GDR 

parameters is very important in nuclear reaction 

codes for good modelling of E1 gamma-ray 

cascades in highly excited nuclei (Plujko et al. 

2011). The GDR can be observed in lightest (3He) 

and heaviest (232Th) nuclei (Chomaz, 1997). Almost 

all the information about GDR comes from 

photoabsorption experiments. The energy of the 

GDR (EGDR) depends on the mass number of the 

nucleus as given below (Berman ve Fultz, 1975) 

 

EGDR = 31.2A−1/3 + 20.6A−1/6 (MeV)    (1) 

 

Several experimental and theoretical methods are 

applied for obtaining GDR parameters indluding 

EGDR (Schiller ve Thoennessen, 2007). In this work, 

we used compiled experimental GDR energy 

parameters (Int. Kyn.1) for predictions of EGDR. 

The used parameters have been obtained by 

Lorentzian curves fit to the total photoneutron 

cross section data from EXFOR library (Int. Kyn. 2) 

for about 110 nuclei (Dietrich ve Berman, 1998, 

Jianfeng ve Zongdi, 1995). By applying artificial 

neural network (ANN) method on the data, we 

predicted EGDR for some Sn and U isotopes. After 

obtaining the energies, we have compared ANN 

results with theoretical results (Int. Kyn. 3). 

Theoretical predictions of the GDR energies are for 

about 6000 nuclei with 14<=Z<=110 lying between 

the proton and the neutron driplines. These GDR 

parameters have been provided by Goriely et al. 

(Goriely, 1998) and resulted from a fit of 

microscopic calculations of the Lorentzian 

functions. It has been seen that the ANN results 

give better results than the theoretical calculation 

for EGDR. This method is recently used in many 

fields on nuclear physics such as determination of 

nuclear binding energies (Bayram et al., 2014), 

identification of nuclear radius (Akkoyun et al. 

2013), estimation of beta decay half-lives (Costris 

et al., 2007), estimation of glabal radiation 

(Günoğlu et al., 2011), obtaining gamma dose rates 

(Yeşilkanat ve ark., 2014), prediction of alpha decay 

half-lives of superheavy nuclei (Bayram et al., 

2014), predictions of potential energy curves of Ti 

isotopes (Akkoyun et al., 2013), estimation of 

electric quadrupole transitions probability in nuclei 

(Akkoyun et al., 2015) and predictions of fission 

barrier of some superheavy nuclei (Akkoyun and 

Bayram, 2014). 

 

2. Material ve Methods 

As a nonlinear mathematical method, ANN mimics 

the human brain functionality and consists of 

several processing units called neurons (Haykin, 

1999). ANN is composed of layers. From this 

property, it is named as layered ANN. Also, because 

the data flows forward direction from input layer 

to output layer, this is named layered feed-forward 

ANN. In the layers, thereare neurons. The neurons 

in different layers are connected each other via 

adaptive synaptic weights. Input layer neurons 

receive the data from environment and the output 

layer neurons give the result as close as to the 

desired ones. The number of the neurons in input 

layer depends on the problem variables. Also, the 

number of the output neurons depends on what 

the desired result. Furtermore, there is no rule for 

the numbers of hidden layer and neuron. One 

hidden layer is generally enough for all type of the 

problem. The neuron number in this layer differs to 

the problem nature.  

ANN includes two main stages. These stages are 

training and test. First, the data belonging to the 

problem is divided into two parts. One of them is 

for the training of ANN and the rest is for the test 

of ANN. In this study, the GDR energy data except 

for Sn and U isotopes was used for the training. The 

test data includes GDR energies for Sn and U 

isotopes. In the training stage by given data, the 

adaptive weights between neurons are adjusted to 
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construct ANN. Because of this, the weights play an 

important role for solving the problem. If weight is 

adjusted well, it works for all similar type data 

which have never seen in the training stage. 

Therefore, this training stage continues until the 

acceptable error level. The error is calculated by 

the difference between desired and the ANN 

outputs. This is done by using mean square error 

(MSE) formula given below.  

 

                                      (2) 

where Di and Oiare desired and estimated results, 

respectively, N is the total number of data points. 

This formula can be applied for training and test 

stages separately. After the successful construction 

with acceptable error, ANN has been tested on the 

test data in the test stage by using the adjusted 

weights. The data used in this stage is new for the 

ANN. If the constructed ANN by the weights gives 

the result well for the test data, one can 

confidently say that ANN has generalized the data. 

For further information about ANN, we refer to 

reader to Haykin (1999). 

In this study, one input layer with three neurons, 

one output layer with one neuron ANN topology 

has been used. The input neurons correspond to 

the proton number (Z), neutron number (N) and 

mass number (A) of the nuclei. The aim of the work 

is to obtain GDR energies of 116,117,118,119,120,124Sn and 
233,234,235,236,238U isotopes. The type of hidden 

neuron activation function was hyperbolic tangent. 

The learning rule was Levenberg-Marquardt 

(Levenberg, 1944, Marquardt, 1963)  algorithm. In 

the present study, neural network software 

NeuroSolutions v6.02 (Int. Kyn. 3) has been used 

for the calculations. 

 

3. Results and Discussion 

 

GDR energies (EGDR) of Sn and U isotopes have been 

estimated by using ANN method. Different neuron 

numbers (h) in the hidden layer have been tried for 

obtaining good results. The better ones have been 

for h=4,6 and 8. Because it is 3 and 1 variables in 

input and output layers, respectively, the used 

structures of the ANN have been (3-4-1), (3-6-1) or 

(3-8-1). The number of the weights are 16, 24 or 32 

according to the formula given below.  

 
Number of weights=p×h+h× r   (3) 
 
where p, h and r are neuron numbers in input, 

hidden and output layers, respectively. In figure 1, 

the (3-8-1) ANN topology has been shown as an 

illustration. 

 

 
Figure 1.The (3-8-1) ANN topology with 32 weighted 

connections. 

 

After adjusting the weights in training stage, the 

estimations have been first performed onthe 

training data. The MSE values are 0.272, 0.221 and 

0.172 MeV for h=4,6 and 8, respectively. This 

indicates that among these hidden neuron 

numbers, h=8 gives best results due to its small 

MSE value. But we can not say that the bigger the 

neuron number is the best the results are. Because 

the results for the big h numbers in trying for 

finding optimum value have not give the better 

estimations. In figure 2, the difference between 

experimental values and the ANN predictions on 

EGDR on training data has been shown for h=8. The 

largest deviations have been seen in small mass 

numbers. The maximum absolute error is 2.09 MeV 

for 16O. As can be seen in the figure that the errors 

are generally lied between 0.05 and 0.2 MeV. 
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Figure 2.Difference between experimental values and 

ANN predictions on GDR energies for h=8. 

 

 

By using the adjusted weights, the ANN has been 

tested on the test data which has been never seen 

before by the ANN. The data was for 
116,117,118,119,120,124Sn and 233,234,235,236,238U isotopes. In 

Table 1, ANN estimations for EGDR have been 

listed. The smallest deviation from experimental 

data has been obtained as 0.05 MeV for 116Sn 

isotope. Besides larger one has been 0.28 MeV for 

235U. The MSE value is 0.034 MeV for h=8. The 

mean value of EGDRis 13.6 MeV. Therefore, this MSE 

value corresponds to about 0.25% error levelan 

done can confidently say the method is successful 

in prediction of EGDR. 

Similar tests have been done for h=4 and 6. The 

corresponding MSE values are 0.065 and 0.054 for 

h=4 and h=6, respectively. This relatively big values 

still acceptable for the prediction due to their small 

error percentages of 0.48% and 0.40%. Additionally 

we have compared the results from theoretical 

calculation and experimental values. The MSE 

value is 0.061 MeV. This value is close to the results 

for h=4. The minimum and maximum deviations 

are 0.04 and 0.35 MeV for 238U and 234U, 

respectively. 

4. Conclusions 

The ANN method has been used for prection of 

giant dipole resonance energies of the selected Sn 

and U nuclei. The results indicate that the method 

is capable for this task. Different nuclei has been 

used for the estimations instead of Sn and U. 

Similar results have been obtained with small MSE 

values. Therefore, the method does not work for 

only these istopes, but works for all the desired 

nuclei. Therefore, if someone wants to estimate 

this energy value with no experimental value, the 

method is confidently used. The MSE values for the 

predictions are in the order of about 0.25-0.50%.
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Table 1.Experimental data, ANN predictions and theoretical data of EGDR forSn and U isotopes. 

Z N A Experimental 

Energy [MeV] 

ANN 

Prediction 

Energy [MeV] 

Difference[MeV] Theoretical 

Energy 

[MeV] 

Difference[MeV] 

50 116 66 15.56 15.51 +0.05 15.85 -0.29 

50 117 67 15.64 15.41 +0.23 15.81 -0.17 

50 118 68 15.44 15.33 +0.12 15.78 -0.34 

50 119 69 15.53 15.26 +0.27 15.74 -0.21 

50 120 70 15.37 15.21 +0.16 15.70 -0.33 

50 124 74 15.28 15.20 +0.08 15.55 -0.27 

92 233 141 11.08 11.20 -0.12 10.80 +0.28 

92 234 142 11.13 11.19 -0.06 10.78 +0.35 

92 235 143 10.90 11.18 -0.28 10.84 +0.06 

92 236 144 10.92 11.17 -0.25 10.83 +0.09 

92 238 146 10.94 11.15 -0.21 10.90 +0.04 
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