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Abstract. In this study, we consider two generalized Dirac systems on a time scale and a boundary-value 

problem with boundary conditions depending on the spectral parameter. We give some sufficient conditions 

for disconjugacy of the systems and obtain a formula about the number of eigenvalues of the problem. 

Keywords: Time scale, Dynamic Equations, Dirac-System, parameter-dependent boundary conditions, 

disconjugacy. 

Zaman Skalaları Üzerinde Parametreye Bağlı Dirac Sistemleri 

Özet. Bu çalışmada bir zaman skalası üzerinde iki farklı genelleştirilmiş Dirac sistemi ve parametreye bağlı 

sınır koşulları ile üretilen bir sınır değer problemi ele alınmıştır.  Sistemlerin eşleniksiz (disconjugate) olması 

için yeterli koşullar ve problemin özdeğerlerinin sayısı ile ilgili bir formül elde edilmiştir. 

Anahtar Kelimeler: Zaman Skalası, Dinamik denklemler, Dirac sistemi, parametreye bağlı sınır koşulları, 

eşleniksizlik. 

 

1. INTRODUCTION 

The time scale theory was introduced by Hilger in 1988. He gave a new derivation in order to unify 

continuous and discrete analysis [1]. From then on this approach has received a lot of attention and has 

applied quickly to various areas in mathematics. Especially, this theory allows us to study differential 

and difference equations in the same subject. Because, a result obtained for a dynamic equation given in 

an arbitrary time scale is also valid for differential and difference equations. 

The studies  about spectral theory on time scales have focused on Sturm–Liouville equation. 

Sturm-Liouville theory on time scales was studied first by Erbe and Hilger [2] in 1993. Some important 

results on the properties of eigenvalues and eigenfunctions of the classical Sturm-Liouville problem on 

time scales were given in various publications (see e.g. [3-18] and the references therein). 

The basic terminology of time scales theory such as Δ-derivation, Δ-integration; the operators 𝜎, 

𝜌 and 𝜇; the set of rd-continuous functions 𝐶𝑟𝑑 and the set of rd-continuously delta-differentiable 

functions 𝐶𝑟𝑑
1 (𝕋) can be found in [19]. 

Additionally, we need to recall some other notations. 

Let 𝑝(𝑡) be a rd-continuous function satisfying the condition 1 + 𝜇(𝑡)𝑝(𝑡) ≠ 0 for each 𝑡 in the 

time scale 𝕋. The exponential function 𝑒𝑝(𝑡, 𝑡0) and the trigonometric functions sin𝑝(𝑡, 𝑡0) and 

cos𝑝(𝑡, 𝑡0) are defined on 𝕋 as follows: 
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 𝑒𝑝(𝑡, 𝑡0) = exp (∫
𝑡

𝑡0
𝜉𝜇(𝜏)(𝑝(𝜏))Δ𝜏), 

 

 sin𝑝(𝑡, 𝑡0) =
𝑒𝑖𝑝(𝑡,𝑡0)−𝑒−𝑖𝑝(𝑡,𝑡0)

2𝑖
, 

 

 cos𝑝(𝑡, 𝑡0) =
𝑒𝑖𝑝(𝑡,𝑡0)+𝑒−𝑖𝑝(𝑡,𝑡0)

2
 

 

where 𝜉𝜇(𝜏)(𝑝(𝜏)) = {

1

𝜇(𝜏)
𝐿𝑜𝑔(1 + 𝜇(𝜏)𝑝(𝜏)),         𝜇(𝜏) ≠ 0

𝑝(𝜏),                                             𝜇(𝜏) = 0
 . 

It is proved in [19] that these functions satisfy the following relations (for further informations about 

these functions see also [19]) 

 𝑖) 𝑒𝑝
Δ(𝑡, 𝑡0) = 𝑝(𝑡)𝑒𝑝(𝑡, 𝑡0), 𝑒𝑝(𝑡0, 𝑡0) = 1; 

 𝑖𝑖) sin𝑝
Δ(𝑡, 𝑡0) = 𝑝(𝑡)cos𝑝(𝑡, 𝑡0), sin𝑝(𝑡0, 𝑡0) = 0; 

 𝑖𝑖𝑖) cos𝑝
Δ(𝑡, 𝑡0) = −𝑝(𝑡)sin𝑝(𝑡, 𝑡0), cos𝑝(𝑡0, 𝑡0) = 1. 

 

For a fixed 𝜆 ∈ ℝ, a scalar function 𝑦(𝑡, 𝜆) is said to have a zero at 𝑡0 ∈ 𝕋 if 𝑦(𝑡0, 𝜆) = 0, and it 

has a node on (𝑡0, 𝜎(𝑡0)) if 𝑦(𝑡0, 𝜆)𝑦
𝜎(𝑡0, 𝜆) < 0. A generalized zero of 𝑦 is then defined as a zero or a 

node [20]. 

A first order linear system on a time scale 𝕋 can be given as follows 

 𝑌Δ(𝑡) = 𝐴(𝑡)𝑌(𝑡) + 𝑓(𝑡) (1) 

where 𝐴(𝑡) is an 𝑛 × 𝑛 −matrix-valued rd-continuous function on 𝕋 and 𝑓: 𝕋 → ℝ𝑛  is rd-continuous. If 

𝐼 + 𝜇(𝑡)𝐴(𝑡) is invertible for all 𝑡 ∈ 𝕋𝑘, then we say that the system (1) is regressive, where 𝐼 is nxn 

identity matrix. A function 𝑌: 𝕋 → ℝ𝑛 is called a solution of (1) if 𝑌 is Δ-differentiable on 𝕋 and 

satisfies (1). The system (1) is called as disconjugate provided there is no nontrivial real solution with 

one (or more) generalized zeros in 𝕋к [20]. 

Theorem 1([19]) Let 𝑡0 ∈ 𝕋
к and 𝑌0 ∈ ℝ

𝑛. If (1) is a regressive system, then initial value 

problem 

 𝑌𝛥(𝑡) = 𝐴(𝑡)𝑌(𝑡) + 𝑓(𝑡) 

 𝑌(𝑡0) = 𝑌0 

has a unique solution.  

Two types Dirac systems can be given on a time scale 𝕋 as follows 
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 𝐵𝑌Δ(𝑡) + Ω(𝑡)𝑌(𝑡) = 𝜆𝑌(𝑡) (2) 

 𝐵𝑌Δ(𝑡) + Ω(𝑡)𝑌𝜎(𝑡) = 𝜆𝑌𝜎(𝑡) (3) 

where 𝐵 = (
0 1
−1 0

), 𝑌(𝑡) = (
𝑦1(𝑡)
𝑦2(𝑡)

) is unknown vector-valued function, 𝑌𝜎(𝑡) = 𝑌(𝜎(𝑡)) and Ω(𝑡) 

is a matrix with dimension 2x2 defined on 𝕋. 

If 𝕋 = ℝ, then the classical Dirac system 

 𝐵𝑌′(𝑡) + Ω(𝑡)𝑌(𝑡) = 𝜆𝑌(𝑡) (4) 

is obtained from each of (2) and (3). 

Although, the literature about the spectral problems for Sturm-Liouville equation on time scales 

is vast; there are only a few studies about Dirac-type dynamic equation systems. It can be referred [21] 

and [22] for example to boundary-value problems generated by the Dirac system on a time scale. 

In the present paper, we consider two generalized Dirac systems: 

 𝐵𝑌Δ(𝑡) + Ω(𝑡, 𝜆)𝑌(𝑡) = 𝜆𝑚𝑌(𝑡),    𝑡 ∈ 𝕋к (5) 

 

 𝐵𝑌Δ(𝑡) + Ω(𝑡, 𝜆)𝑌𝜎(𝑡) = 𝜆𝑚𝑌𝜎(𝑡),    𝑡 ∈ 𝕋к                (6) 

where 𝐵 = (
0 1
−1 0

), 𝑌(𝑡) = (
𝑦1(𝑡)
𝑦2(𝑡)

), Ω(𝑡, 𝜆) = ∑𝑚−1𝑗=0 𝜆𝑗𝑄𝑗(𝑡) such that 𝑄𝑗(𝑡) = (
𝑝𝑗(𝑡) 0

0 𝑞𝑗(𝑡)
)  are 

continuous on 𝕋 for 𝑗 = 0,𝑚 − 1. 

Equations (5) and (6) can be written as follows: 

 𝑦1
Δ(𝑡) = [𝑞(𝑡, 𝜆) − 𝜆𝑚]𝑦2(𝑡),    𝑦2

Δ(𝑡) = [𝜆𝑚 − 𝑝(𝑡, 𝜆)]𝑦1(𝑡) 

 𝑦1
Δ(𝑡) = [𝑞(𝑡, 𝜆) − 𝜆𝑚]𝑦2

𝜎(𝑡),    𝑦2
Δ(𝑡) = [𝜆𝑚 − 𝑝(𝑡, 𝜆)]𝑦1

𝜎(𝑡) 

where 𝑞(𝑡, 𝜆) = ∑𝑚−1𝑗=0 𝜆𝑗𝑞𝑗(𝑡) and 𝑝(𝑡, 𝜆) = ∑𝑚−1𝑗=0 𝜆𝑗𝑝𝑗(𝑡). 

 

2. DISCONJUGACY 

Denote ℎ1(𝑡, 𝜆): = 𝑞(𝑡, 𝜆) − 𝜆
𝑚 and ℎ2(𝑡, 𝜆): = 𝑝(𝑡, 𝜆) − 𝜆

𝑚. 

It can be proved that the systems (5) and (6) are regressive for each fixed 𝜆  in 𝐻:=

{𝜆 ∈ ℂ: 1 + 𝜇2(𝑡)ℎ1(𝑡, 𝜆)ℎ2(𝑡, 𝜆) ≠ 0 for all 𝑡 ∈ 𝕋
к}. 

Lemma 1 Let 𝑌(𝑡, 𝜆0) = (
𝑦1(𝑡, 𝜆0)
𝑦2(𝑡, 𝜆0)

) be a non-trivial solution of (5) for a fixed 𝜆0 ∈ ℝ.  

 i) If 𝑦1(𝑡, 𝜆0) has a node on (𝑡0, 𝜎(𝑡0)), then ℎ1(𝑡0, 𝜆0) and (𝑦1𝑦2)(𝑡0, 𝜆0) are of opposite 

signs.  
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 ii) If 𝑦2(𝑡, 𝜆0) has a node on (𝑡0, 𝜎(𝑡0)), then ℎ2(𝑡0, 𝜆0) and (𝑦1𝑦2)(𝑡0, 𝜆0) have the same 

sign.  

Proof. It is clear that the following relations hold for all 𝑡 and 𝜆.  

 (𝑦1𝑦1
𝜎)(𝑡, 𝜆) = [𝑦1(𝑡, 𝜆)]

2 + 𝜇(𝑡)ℎ1(𝑡, 𝜆)(𝑦1𝑦2)(𝑡, 𝜆) 

 (𝑦2𝑦2
𝜎)(𝑡, 𝜆) = [𝑦2(𝑡, 𝜆)]

2 − 𝜇(𝑡)ℎ2(𝑡, 𝜆)(𝑦1𝑦2)(𝑡, 𝜆) 

Since 𝜆0 ∈ ℝ, both assertions are true.  

Lemma 2 Let 𝑌(𝑡, 𝜆0) = (
𝑦1(𝑡, 𝜆0)
𝑦2(𝑡, 𝜆0)

) be a non-trivial solution of (6) for a fixed 𝜆0 ∈ ℝ. 

 i) If 𝑦1(𝑡, 𝜆0) has a node on (𝑡0, 𝜎(𝑡0)), then ℎ1(𝑡0, 𝜆0) and (𝑦1𝑦2
𝜎)(𝑡0, 𝜆0) are of opposite 

signs. 

 ii) If 𝑦2(𝑡, 𝜆0) has a node on (𝑡0, 𝜎(𝑡0)), then ℎ2(𝑡0, 𝜆0) and (𝑦1
𝜎𝑦2)(𝑡0, 𝜆0) have the same 

sign.  

Proof. Similar to previous lemma.  

Theorem 2 Let 𝑌(𝑡, 𝜆0) = (
𝑦1(𝑡, 𝜆0)
𝑦2(𝑡, 𝜆0)

) be a non-trivial solution of (5) or (6) for a fixed 𝜆0 ∈ ℝ. 

If 𝑑𝑒𝑡(𝛺(𝑡0, 𝜆0) − 𝜆
𝑚𝐼) > 0 for a 𝑡0 ∈ 𝕋

к, then 𝑦1(𝑡, 𝜆0) and 𝑦2(𝑡, 𝜆0) can not have a node on 

(𝑡0, 𝜎(𝑡0)) at the same time.  

Proof. If we assume conversely that 𝑦1(𝑡, 𝜆0) and 𝑦2(𝑡, 𝜆0) have a node on (𝑡0, 𝜎(𝑡0)), then we 

have a contradiction from Lemma 1 and Lemma 2. The proof is clear.  

Corollary 1 Systems (5) and (6) are disconjugate for each fixed 𝜆 ∈ ℝ which satisfies 

𝑑𝑒𝑡(𝛺(𝑡, 𝜆) − 𝜆𝑚𝐼) > 0 on 𝕋к.  

3. A BOUNDARY-VALUE PROBLEM 

Now, let us consider the following boundary conditions. 

 𝑈(𝑦):= 𝑎(𝜆)𝑦1(𝛼) − 𝑏(𝜆)𝑦2(𝛼) = 0 (7) 

 𝑉(𝑦): = 𝑐(𝜆)𝑦1(𝛽) − 𝑑(𝜆)𝑦2(𝛽) = 0 (8) 

 

where 𝛼 = inf𝕋, 𝛽 = sup𝕋, 𝛼 ≠ 𝛽; 𝑎(𝜆), 𝑏(𝜆), 𝑐(𝜆) and 𝑑(𝜆) are real polynomials whose leading 

coefficients are   𝑎𝑛, 𝑏𝑛, 𝑐𝑛𝑐  and 𝑑𝑛𝑑 , respectively. We assume 𝑛 = deg𝑎(𝜆) = deg𝑏(𝜆), (it may be 

𝑛𝑐 = deg𝑐(𝜆) ≠ deg𝑑(𝜆) = 𝑛𝑑).  

 We denote boundary value problem (5), (7), (8) by 𝐿. 

Let 𝜑(𝑡, 𝜆) = (
𝜑1(𝑡, 𝜆)
𝜑2(𝑡, 𝜆)

) be the solution of (5) under the initial conditions 𝜑1(𝛼, 𝜆) = 𝑏(𝜆), 

𝜑2(𝛼, 𝜆) = 𝑎(𝜆) for a fixed 𝜆 ∈ 𝐻. Existence and uniqueness of 𝜑(𝑡, 𝜆) follow from Theorem 1. 
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The following integral equations are valid for each fixed 𝜆 in 𝐻 such that 1 + 𝜇2(𝑡)𝜆2𝑚 ≠ 0 for 

all 𝑡 ∈ 𝕋к.  

         𝜑1(𝑡, 𝜆) = −𝑎(𝜆)sin𝜆𝑚(𝑡, 𝛼) + 𝑏(𝜆)cos𝜆𝑚(𝑡, 𝛼)

+ ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
sin𝜆𝑚(𝜎(𝜏), 𝛼)cos𝜆𝑚(𝑡, 𝛼)𝑝(𝜏)𝜑1(𝜏, 𝜆)Δ𝜏

− ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
cos𝜆𝑚(𝜎(𝜏), 𝛼)sin𝜆𝑚(𝑡, 𝛼)𝑝(𝜏)𝜑1(𝜏, 𝜆)Δ𝜏

− ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
sin𝜆𝑚(𝜎(𝜏), 𝛼)sin𝜆𝑚(𝑡, 𝛼)𝑞(𝜏)𝜑2(𝜏, 𝜆)Δ𝜏

− ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
cos𝜆𝑚(𝜎(𝜏), 𝛼)cos𝜆𝑚(𝑡, 𝛼)𝑞(𝜏)𝜑2(𝜏, 𝜆)Δ𝜏 

 

         𝜑2(𝑡, 𝜆) = 𝑎(𝜆)cos𝜆𝑚(𝑡, 𝛼) + 𝑏(𝜆)sin𝜆𝑚(𝑡, 𝛼)

+ ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
sin𝜆𝑚(𝜎(𝜏), 𝛼)sin𝜆𝑚(𝑡, 𝛼)𝑝(𝜏)𝜑1(𝜏, 𝜆)Δ𝜏

+ ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
cos𝜆𝑚(𝜎(𝜏), 𝛼)cos𝜆𝑚(𝑡, 𝛼)𝑝(𝜏)𝜑1(𝜏, 𝜆)Δ𝜏

− ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
cos𝜆𝑚(𝜎(𝜏), 𝛼)sin𝜆𝑚(𝑡, 𝛼)𝑞(𝜏)𝜑2(𝜏, 𝜆)Δ𝜏

+ ∫

𝑡

𝛼

1

𝑒𝜇𝜆2𝑚(𝜎(𝜏), 𝛼)
sin𝜆𝑚(𝜎(𝜏), 𝛼)cos𝜆𝑚(𝑡, 𝛼)𝑞(𝜏)𝜑2(𝜏, 𝜆)Δ𝜏. 

It is obvious that the zeros of the function  

 Δ(𝜆): = 𝑐(𝜆)𝜑1(𝛽, 𝜆) − 𝑑(𝜆)𝜑2(𝛽, 𝜆) (9) 

coincide with the eigenvalues of the problem 𝐿. 

The next theorem gives the number of eigenvalues of the problem 𝐿 on a finite time scale. 

Theorem 3 Let 𝕋 be a finite time scale, the number of elements of 𝕋 be denoted by 𝑠 and 𝑟: =

𝑚𝑎𝑥{𝑑𝑒𝑔𝑐(𝜆), 𝑑𝑒𝑔𝑑(𝜆)}. Then the problem 𝐿 has at most 𝜒 = 𝑛 + 𝑟 + (𝑠 − 1)𝑚 many eigenvalues in 

𝐻.  

Proof. Since all points of 𝕋 are isolated we can write it as 

 𝕋 = {𝛼, 𝜎(𝛼), 𝜎2(𝛼), … , 𝜎𝑠−2(𝛼), 𝜎𝑠−1(𝛼) = 𝛽} 

where 𝜎𝑗 = 𝜎𝑗−1 ∘ 𝜎, for 𝑗 ≥ 2. It can be calculated from (5) that 

 {
𝜑1
𝜎(𝑡) = 𝜑1(𝑡) + 𝜇(𝑡)[𝑞(𝑡, 𝜆) − 𝜆

𝑚]𝜑2(𝑡)

𝜑2
𝜎(𝑡) = 𝜑2(𝑡) + 𝜇(𝑡)[𝜆

𝑚 − 𝑝(𝑡, 𝜆)]𝜑1(𝑡)
, 𝑡 ∈ 𝕋𝑘 
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Therefore, one can obtain the following equalities. 

 

{
 
 
 

 
 
 
𝜑1(𝛼) = 𝑏𝑛𝜆

𝑛 + [𝜆𝑛−1],

𝜑2(𝛼) = 𝑎𝑛𝜆
𝑛 + [𝜆𝑛−1],

𝜑1
𝜎(𝛼) = −𝑎𝑛𝜇(𝛼)𝜆

𝑛+𝑚 + [𝜆𝑛+𝑚−1],

𝜑2
𝜎(𝛼) = 𝑏𝑛𝜇(𝛼)𝜆

𝑛+𝑚 + [𝜆𝑛+𝑚−1],

𝜑1
𝜎𝐾(𝛼) = 𝐴𝐾𝜆

𝑛+𝐾𝑚 + [𝜆𝑛+𝐾𝑚−1], for  𝐾 ≥ 2

𝜑2
𝜎𝐾(𝛼) = 𝐵𝐾𝜆

𝑛+𝐾𝑚 + [𝜆𝑛+𝐾𝑚−1], for  𝐾 ≥ 2

 (10) 

where  

 𝐴𝐾 = {
(−1)

𝐾

2𝑏𝑛∏
𝐾−1
𝑗=0 𝜇

𝜎𝑗(𝛼),          if 𝐾 is even

(−1)
𝐾+1

2 𝑎𝑛∏
𝐾−1
𝑗=0 𝜇

𝜎𝑗(𝛼),          if 𝐾 is odd
, 

 𝐵𝐾 = {
(−1)

𝐾

2𝑎𝑛∏
𝐾−1
𝑗=0 𝜇

𝜎𝑗(𝛼),          if 𝐾 is even

(−1)
𝐾−1

2 𝑏𝑛∏
𝐾−1
𝑗=0 𝜇

𝜎𝑗(𝛼),          if 𝐾 is odd
 

and [𝜆𝑗] denotes a polynomial with degree 𝑗. It is obvious from (9) that  

 Δ(𝜆) = 𝑐(𝜆)𝜑1(𝜎
𝑠(𝛼), 𝜆) − 𝑑(𝜆)𝜑2(𝜎

𝑠(𝛼), 𝜆). (11) 

Thus, Δ(𝜆) has 𝑛 + 𝑟 + (𝑠 − 1) many roots on the complex plane. However some of them may not be 

belong in 𝐻. Hence the proof is clear. 

Example 1 Let us consider the following boundary value problem 

on 𝕋 = {1,2, . . . , 𝑠}:  

 𝐵𝑌𝛥(𝑡) + [∑𝑚−1𝑗=0 𝜆𝑗𝑄𝑗(𝑡)]𝑌(𝑡) = 𝜆
𝑚𝑌(𝑡),    1 ≤ 𝑡 ≤ 𝑠 − 1 

 (𝜆 + 𝑎0)𝑦1(1) − (𝜆 + 𝑏0)𝑦2(1) = 0 

 (𝜆 + 𝑐0)𝑦1(𝑠) − (𝜆
2 + 𝑑1𝜆 + 𝑑0)𝑦2(𝑠) = 0 

According to Theorem 3, this boundary value problem has at most (𝑠 − 1)𝑚 + 3 many eigenvalues.  
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