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1. INTRODUCTION AND PRELIMINARIES

Appell polynomials were introduced in 1880 (see [4]). In 1969, Jakimovski and Leviatan
introduced an operators Pn by using Appell polynomials [7]. The Appell polynomials are
defined by the identity as follows:

(1.1) S(u)eux =

∞∑
k=0

pk(x)uk,

for an analytic function in the disk |u| < r (r > 1) and pn(x) =
∑n
i=0 ai

xn−i

(n−i)! (n ∈ N) taken
S(u) =

∑∞
n=0 anu

n, S(1) 6= 0. An exponential type the class of functions considerable on
the semi-axis and satisfy the property |f(x)| ≤ κeγx, for some finite constants κ, γ > 0 and
denote the set of such functions by E[0,∞). The sequence of infinite sum of the operators Pn is
convergent and well-defined which are considered by the authors as follows [7]:

(1.2) Pn(f ;x) =
e−nx

S(1)

∞∑
k=0

pk(nx)f

(
k

n

)
,

for all n ∈ N, where n > α
log r . In case of an

S(1) ≥ 0 for all n ∈ N, Wood [20] proved that the
operator Pn is positive on [0; 1). For more results see also [13], [11] and [6]. They established
that limn→∞ Pn(f ;x)→ f(x), uniformly in each compact subset of [0, 1).

If S(1) = 1 in (1.2) we get pn(x) = xn

n! , and we recover the well-known classical Favard-
Szász operators defined in 1950 by

(1.3) Sn(f ;x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
.
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In the last quarter of twentieth century, the quantum calculus (also known as q- calculus)
was studied in [8, 12] (see [3, 14, 15, 18]).

2. CONSTRUCTION OF OPERATORS AND AUXILIARY RESULTS

In this paper, we define a Beta integral type modification of Jakimovski-Leviatan opera-
tors. We also introduce modified Jakimovski-Leviatan-Stancu type operators and obtain better
approximation results. For x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we define

(2.4) J∗n(f ;x) =
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr

(1 + t)r+n+1
f(t)dt,

Lemma 2.1. If we take ei = ti−1 for i = 1, 2, 3. Let J∗n( · ; · ) be the operators given by (2.4). Then for
all x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we have the following identities:

(1) J∗n(e1;x) = 1,

(2) J∗n(e2;x) =
(

n
n−1

)
x+ 1

n−1

(
S′(1)
S(1) + 1

)
,

(3) J∗n(e3;x) = n2

(n−2)(n−1)x
2+ 2n

(n−2)(n−1)

(
S′(1)
S(1) + 2

)
x+ 1

(n−2)(n−1)

(
S′′(1)
S(1) + S′(1)

S(1) + 2
)
.

Proof. We can easily see that

(2.5)
∞∑
r=0

Pr(nx) = S(1)enx,

(2.6)
∞∑
r=0

rPr(nx) = (S′(1) + nS(1)x) enx,

(2.7)
∞∑
r=0

r2Pr(nx) =
(
S′′(1) + 2nS′(1)x+ S′(1) + n2S(1)x2

)
enx.

(1) By taking f = e1

J∗n(e1;x) =
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr

(1 + t)r+n+1
dt,

=
e−nx

S(1)

∞∑
r=0

Pr(nx)
B(r + 1, n)

B(r + 1, n)

= 1.

(2) By taking f = e2
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J∗n(e2;x) =
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr+1

(1 + t)r+n+1
dt,

=
e−nx

S(1)

∞∑
r=0

Pr(nx)
B(r + 2, n− 1)

B(r + 1, n)

=
r + 1

n− 1

e−nx

S(1)

∞∑
r=0

Pr(nx)
B(r + 1, n)

B(r + 1, n)

=
1

n− 1
+

1

n− 1

e−nx

S(1)

∞∑
r=0

rPr(nx)

=
1

n− 1
+

n

n− 1

(
x+

1

n

S′(1)

S(1)

)
.

(3) By taking f = e3

J∗n(e2;x) =
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr+2

(1 + t)r+n+1
dt,

=
1

(n− 2)(n− 1)

e−nx

S(1)

∞∑
r=0

Pr(nx)(r2 + 3r + 2)

=
2

(n− 2)(n− 1)
+

3

(n− 2)(n− 1)

(
S′(1)

S(1)
+ nx

)
+

1

(n− 2)(n− 1)

(
S′′(1)

S(1)
+ 2nx

S′(1)

S(1)
+
S′(1)

S(1)
+ nx+ n2x2

)
.

�

Lemma 2.2. Take ηj = (ei−x)j for i = 2, j = 1, 2. Let J∗n( · ; · ) be the operators given by (2.4). Then
for all x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we have the following identities:

1◦ J∗n(η1;x) = x
n + 1

n−1

(
S′(1)
S(1) + 1

)
;

2◦ J∗n(η2;x)

= (n+2)
(n−2)(n−1)x

2 + 2n
(n−2)(n−1)

(
2
n

(
S′(1)
S(1)

)
+ 1
)
x+ 1

(n−2)(n−1)

(
S′′(1)
S(1) + S′(1)

S(1) + 2
)
x.

Let α, β ∈ R such that 0 ≤ α < β. Then for x ∈ [0,∞), pr(x) ≥ 0, and S(1) 6= 0, we
define

(2.8) Jα,βn (f ;x) =
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr

(1 + t)r+n+1
f

(
nt+ α

n+ β

)
dt,

Lemma 2.3. Take ei = ti−1 for i = 1, 2, 3. Let Jα,βn ( · ; · ) be the operators given by (2.8). Then for all
x ∈ [0,∞), pr(x) ≥ 0 and S(1) 6= 0, we have the following identities:

(1) Jα,βn (e1;x) = 1

(2) Jα,βn (e2;x) = n4

(n+β)(n−1)x+ n
(n+β)(n−1)

(
S′(1)
S(1) + 1

)
+ α

n+β

(3) Jα,βn (e3;x) = n2

(n+β)2(n−2)(n−1)x
2 + 2n2

(n+β)2(n−1)

{
n
n−2

(
S′(1)
S(1) + 2

)
+ α

}
x

+ n2

(n+β)2(n−2)(n−1)

(
S′′(1)
S(1) + S′(1)

S(1) + 2
)

+ 2nα
(n+β)2(n−1)

(
S′(1)
S(1) + 1

)
+ α2

(n+β)2 .
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3. MAIN RESULTS

We obtain the Korovkin type and weighted Korovkin type approximation theorems for
the operators defined by (2.8).

Let CB [0,∞) be the set of all bounded and continuous functions on [0,∞), which is a
linear normed space with

‖f‖CB = sup
x≥0
|f(x)|.

Let
Cζ [0,∞) :=

{
f ∈ C[0,∞) : |f(t)| ≤M(1 + t)ζ for some M > 0

}
,

and

H :=
{
f ∈ C[0,∞) :

f(x)

1 + x2
is convergent as x→∞

}
.

Theorem 3.1. Let x ∈ [0,∞), f ∈ Cζ [0,∞) ∩H with ζ ≥ 2. Then for pr(x) ≥ 0, S(1) 6= 0, the
operators Jα,βn ( · ; · ) defined by (2.8) satisfy

lim
n→∞

Jα,βn (f ;x)→ f(x)

uniformly on each compact subset of [0,∞).

Proof. The proof is based on Lemma 2.3 and well known Korovkin’s theorem regarding the
convergence of a sequence of linear positive operators. So it is enough to prove the conditions

lim
n→∞

Jα,βn ((ei;x) = xi−1, i = 1, 2, 3 as n→∞

uniformly on [0,∞].
Clearly 1

n → 0, (n→∞) we have

lim
n→∞

Jα,βn (e2;x) = x, lim
n→∞

Jα,βn (e3;x) = x2.

This completes the proof. �

In the space [0,∞), following Gadžiev [9,10,17], we recall the weighted spaces of the func-
tions for which the analogous of the Korovkin theorem holds (see also [1, 5, 19]) .

Let x → φ(x) be a continuous and strictly increasing function and %(x) = 1 + φ2(x),
limx→∞ %(x) =∞. Let B%[0,∞) be a set of functions defined on [0,∞) and satisfying

|f(x)| ≤Mf%(x),

whereMf is a constant depending only on f . Its subset of continuous functions will be denoted
by C%[0,∞), i.e., C%[0,∞) = B%[0,∞) ∩ C[0,∞). It is well known that a sequence of linear
positive operators {Jα,βn }n≥1 maps C%[0,∞) into B%[0,∞) if and only if

|Ln(%;x)| ≤ K%(x),

where x ∈ [0,∞) and K is a positive constant. Note that B%[0,∞) is a normed space with the
norm

‖f‖% = sup
x≥0

|f(x)|
%(x)

.

Finally, let C0
% [0,∞) be a subset of C%[0,∞) such that the limit

lim
n→∞

f(x)

%(x)
= Kf
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exists and is finite.

Let B[0, 1] be the space of all bounded functions on [0, 1] and C[0, 1] be the space of all
functions f continuous on [0, 1] equipped with norm

‖f‖∞ = sup
x∈[0,1]

|f(x)|, f ∈ C[0, 1].

The famous Korovkin’s theorems state as follows:

Theorem 3.2 (cf. [16]). Let {Ln}n≥1 be the sequence of linear positive operators acting from C[0, 1]
into B[0, 1]. Then

lim
n→∞

‖Ln(tk;x)− xk‖∞ = 0 (k = 0, 1, 2),

if and only if for all f ∈ C[0, 1]

lim
n→∞

‖Ln(f(t);x)− f‖∞ = 0.

Theorem 3.3. Let {Jα,βn }n≥1 be the sequence of linear positive operators acting from C%[0,∞) into
B%[0,∞) satisfies the conditions

lim
n→∞

‖Jα,βn (ϕi−1(t);x)− ϕi−1(x)‖% = 0 (i = 1, 2, 3)

then for any function f ∈ C0
% [0,∞),

lim
n→∞

‖Jα,βn (f(t);x)− f‖% = 0.

Proof. For the completeness, we give some sketch of the proof for the version which will be
used in our next result. Consider ϕ(x) = x, %(x) = 1 + x2, and

‖Jα,βn (ei;x)− xi−1‖% = sup
x≥0

| Jα,βn (ei;x)− xi−1 |
1 + x2

.

Then for i = 1, 2, 3 it is easily proved that

lim
n→∞

‖Jα,βn (ei;x)− xi−1‖% = 0.

Hence by using the above Theorem 3.2, for any function f ∈ C0
%(R+), we get

lim
n→∞

‖Jα,βn (f(t);x)− f‖% = 0.

�

Theorem 3.4. Let x ∈ [0,∞), f ∈ C0
% [0,∞) with %(x) = 1 + x2. Then for pr(x) ≥ 0, S(1) 6= 0,

we have

lim
n→∞

‖Jα,βn (f ;x)− f‖% → 0.

Proof. Using Theorem 3.3 for ϕ(x) = x and %(x) = 1 + x2, we consider

‖Jα,βn (ei;x)− xi−1‖% = sup
x≥0

| Jα,βn (ei;x)− xi−1 |
1 + x2

,

for i = 1, 2, 3.
According to Lemma 2.3 for i = 1, it is obvious that | Jα,βn (e1;x)− 1 |→ 0, and therefore

lim
n→∞

‖Jα,βn (e1;x)− 1‖% = 0.



Approximation of Modified Jakimovski-Leviatan-Beta Type Operators 93

For i = 2

sup
x≥0

| Jα,βn (e2;x)− t |
1 + x2

≤
∣∣ n2

(n+ β)(n− 1)
− 1
∣∣ sup
x≥0

x

1 + x2

+
∣∣ n

(n+ β)(n− 1)

(
S′(1)

S(1)
+ 1

)
+

α

n+ β

∣∣ sup
x≥0

1

1 + x2
.

Therefore

lim
n→∞

‖Jα,βn (e2;x)− x‖% = 0.

For i = 3

sup
x≥0

Jα,βn (e3;x)− x2 |
1 + x2

≤
∣∣ n4

(n+ β)2(n− 2)(n− 1)
− 1
∣∣ sup
x≥0

x2

1 + x2

+
∣∣ 2n2

(n+ β)2(n− 2)(n− 1)

{
n

n− 2

(
S′(1)

S(1)
+ 2

)
+ α

} ∣∣ sup
x≥0

x

1 + x2

+
∣∣ n2

(n+ β)2(n− 2)(n− 1)

(
S′′(1)

S(1)
+
S′(1)

S(1)
+ 2

)
+

2nα

(n+ β)2(n− 1)

(
S′(1)

S(1)

)
+

α2

(n+ β)2
∣∣ sup
x≥0

1

1 + x2
.

Hence we have

lim
n→∞

‖Jα,βn (e3;x)− x2‖% = 0.

Which completes the proof of Korovkin’s type theorem. �

4. RATE OF CONVERGENCE

Here we calculate the rate of convergence of operators (2.8) by means of modulus of con-
tinuity and Lipschitz type functions.

Let f ∈ CB [0,∞] be the space of all bounded and uniformly continuous functions on
[0,∞) and x ≥ 0. Then for δ > 0, the modulus of continuity of f denoted by ω(f, δ) gives the
maximum oscillation of f in any interval of length not exceeding δ > 0 and it is given by

(4.9) ω(f, δ) = sup
|t−x|≤δ

|f(t)− f(x) |, t ∈ [0,∞).

It is known that limδ→0+ ω(f, δ) = 0 for f ∈ CB [0,∞) and for any δ > 0 one has

(4.10) |f(t)− f(x)| ≤
(
|t− x|
δ

+ 1

)
ω(f, δ).

Take µj = (ei − x)j for i = 2, j = 1, 2 and in the sequel we use the following notations:

(4.11) δα,βn =

√
Jα,βn (µ2;x),
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Here

Jα,βn (µj ;x) =



(
n2

(n+ β)(n− 1)
− 1

)
x+

n

(n+ β)(n− 1)

(
S′(1)

S(1)
+ 1

)
+

α

n+ β

for j = 1, 0 < α < β, α, β ∈ R(
n4

(n+ β)2(n− 2)(n− 1)
− 2n2

(n+ β)(n− 1)
+ 1

)
x2

+

[
2n2

(n+ β)2(n− 1)

{
n

n− 2

(
S′(1)

S(1)
+ 2

)
+ α

}
− 2n

(n+ β)(n− 1)

(
S′(1)

S(1)
+ 1

)
+

2α

n+ β

]
x

+
n2

(n+ β)2(n− 2)(n− 1)

(
S′′(1)

S(1)
+
S′(1)

S(1)
+ 2

)
+

2nα

(n+ β)2(n− 1)

(
S′(1)

S(1)
+ 1

)
+

α2

(n+ β)2

for j = 2, 0 < α < β, α, β ∈ R

when α = β = 0, then δα,βn is reduced to δ∗n =
√
J∗n (η2;x).

Theorem 4.5. For x ∈ [0,∞), f ∈ CB [0,∞) the operators Jα,βn ( · ; · ) defined by (2.8) satisfying:

(4.12) |Jα,βn (f ;x)− f(x)| ≤ 2ω
(
f ; δα,βn

)
,

where n ∈ N, pr(x) ≥ 0, S(1) 6= 0 and δα,βn is defined in (4.11).

Proof. For our sequence of positive linear operators {Jα,βn (.; .)}we have

Jα,βn (f ;x)− f(x) = Jα,βn (f ;x)− f(x)Jα,βn (1;x)

= Jα,βn (f(t)− f(x);x)

≤ Jα,βn (| f(t)− f(x) |;x) ,

since Jα,βn (1;x) = 1. From (4.9) and (4.10) easily we get

|Jα,βn (f ;x)− f(x)| ≤ Jα,βn

(
1 +
| t− x |

δ
;x

)
ω(f ; δ)

=

(
1 +

1

δ
Jα,βn (| t− x |;x)

)
ω(f ; δ).

Cauchy-Schwarz inequality give us

Jα,βn (| t− x |;x) ≤ Jα,βn (1;x)
1
2 Jα,βn

(
(t− x)2;x

) 1
2

so that

(4.13) | Jα,βn (f ;x)− f(x) |≤
(

1 +
1

δ
Jα,βn

(
(t− x)2;x

) 1
2

)
ω(f ; δ).

Finally, putting δ = δα,βn =

√
Jα,βn (µ2;x) we get the assertion. �
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Remark 4.1. Choosing δ = 1
n+β in (4.13) we obtain the following estimate

(4.14) |Jα,βn (f ;x)− f(x)| ≤
(
1 + (n+ β)δα,βn

)
ω

(
f ;

1

n+ β

)
,

where δ∗n defined in (4.11).

Remark 4.2. For α = β = 0 the corresponding estimate for the sequence of positive linear operators
{Jα,βn } is reduced to {J∗n} defined by (2.4) which can take the form as

(4.15) |J∗n(f ;x)− f(x)| ≤ 2ω (f ; δ∗n) ,

where δ∗n =
√
J∗n (η2;x)).

Now we give the rate of convergence of the operators Jα,βn (f ;x) defined in (2.8) in terms
of the elements of the usual Lipschitz class LipM (ν). Let f ∈ CB [0,∞), M > 0 and 0 < ν ≤ 1.
The class LipM (ν) is defined as

(4.16) LipM (ν) =
{
f : |f(ζ1)− f(ζ2)| ≤M |ζ1 − ζ2|ν (ζ1, ζ2 ∈ [0,∞))

}
.

Theorem 4.6. Suppose x ∈ [0,∞), f ∈ LipM (ν) with (M > 0, 0 < ν ≤ 1). Then operators
Jα,βn ( · ; · ) defined by (2.8) satisfying:

|Jα,βn (f ;x)− f(x)| ≤M
(
δα,βn

)ν/2
,

where δα,βn is defined in (4.11).

Proof. Use (4.16) and apply Hölder’s inequality

|Jα,βn (f ;x)− f(x)| ≤ |Jα,βn (f(t)− f(x);x) |
≤ Jα,βn (|f(t)− f(x)|;x)

≤ MJα,βn (|t− x|ν ;x) .

Therefore
|Jα,βn (f ;x)− f(x)|

≤ M
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr

(1 + t)r+n+1
|t− x|νdt

= M
e−nx

S(1)

( ∞∑
r=0

Pr(nx)
1

B(r + 1, n)

) 2−ν
2

×
(
Pr(nx)

1

B(r + 1, n)

) ν
2
∫ ∞
0

tr

(1 + t)r+n+1
|t− x|νdt

≤ M

(
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr

(1 + t)r+n+1
dt

) 2−ν
2

×

(
e−nx

S(1)

∞∑
r=0

Pr(nx)
1

B(r + 1, n)

∫ ∞
0

tr

(1 + t)r+n+1
|t− x|2dt

) ν
2

= MJα,βn (µ2;x)
ν
2 .

This completes the proof. �



96 M. Mursaleen and Md. Nasiruzzaman

Let

(4.17) C2
B [0,∞) =

{
g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)

}
,

with the norm

(4.18) ‖g‖C2
B [0,∞) = ‖g‖CB [0,∞) + ‖g′‖CB [0,∞) + ‖g′′‖CB [0,∞),

where

(4.19) ‖g‖CB [0,∞) = sup
x∈[0,∞)

| g(x)|.

Theorem 4.7. Let x ∈ [0,∞) and Jα,βn ( · ; · ) be the operator defined by (2.8). Then for any g ∈
C2
B [0,∞), we have

|Jα,βn (f ;x)− f(x)| ≤ 1

2
δα,βn (2 + δα,βn )‖g‖C2

B [0,∞),

where n ∈ N, pr(x) ≥ 0, S(1) 6= 0 and δα,βn is defined in (4.11).

Proof. Let g ∈ C2
B [0,∞). Then by using the generalized mean value theorem in the Taylor series

expansion we have

g(t) = g(x) + g′(x)(t− x) + g′′(ψ)
(t− x)2

2
,

which follows

|g(t)− g(x)| ≤M1|t− x|+
1

2
M2(t− x)2,

where by using the result of (4.18) and (4.19) we have

M1 = sup
x∈[0,∞)

|g′(x)| = ‖g′‖CB [0,∞) ≤ ‖g‖C2
B [0,∞),

M2 = sup
x∈[0,∞)

|g′′(x)| = ‖g′′‖CB [0,∞) ≤ ‖g‖C2
B [0,∞),

again from 4.18, we have

|g(t)− g(x)| ≤
(
|t− x|+ 1

2
(t− x)2

)
‖g‖C2

B [0,∞).

Since
|Jα,βn (g, x)− g(x)| = |Jα,βn (g(t)− g(x);x)| ≤ Jα,βn (|g(t)− g(x)|;x),

and also

Jα,βn (|t− x|;x) ≤ Jα,βn

(
(t− x)2;x

) 1
2 = δα,βn

we get

|Jα,βn (g;x)− g(x)| ≤
(
Jα,βn (|t− x|;x) +

1

2
Jα,βn ((t− x)2;x)

)
‖g‖C2

B [0,∞)

≤ 1

2
δα,βn (2 + δα,βn )‖g‖C2

B [0,∞).

This completes the proof. �
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The Peetre’s K-functional is defined by

(4.20) K2(f, δ) = inf
C2
B [0,∞)

{(
‖f − g‖CB [0,∞) + δ‖g′′‖C2

B [0,∞)

)
: g ∈ W2

}
,

where

(4.21) W2 = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)} .
There exits a positive constant C > 0 such that K2(f, δ) ≤ Cω2(f, δ1/2), δ > 0, where the
second order modulus of continuity is given by

(4.22) ω2(f, δ1/2) = sup
0<h<δ1/2

sup
x∈R+

|f(x+ 2h)− 2f(x+ h) + f(x)|.

Theorem 4.8. Suppose x ∈ [0,∞), n ∈ N and f ∈ CB [0,∞). Then the operators Jα,βn ( · ; · ) defined
by (2.8) satisfying

|Jα,βn (f ;x)− f(x)| ≤ 2M

{
ω2

(
f ;

√
∆α,β
n

)
+ min(1,∆α,β

n )‖f‖CB [0,∞)

}
,

where M is a positive constant, pr(x) ≥ 0, S(1) 6= 0 and ∆α,β
n =

(2+δα,βn )δα,βn

4 .

Proof. As previous we easily conclude that

|Jα,βn (f ;x)− f(x)| ≤ |Jα,βn (f − g;x) | + | Jα,βn (g;x)− g(x) | +|f(x)− g(x)|,

≤ 2‖f − g‖CB [0,∞) +
δα,βn

2
(2 + δα,βn )‖g‖C2

B [0,∞),

≤ 2

(
‖f − g‖CB [0,∞) +

δα,βn

4
(2 + δα,βn )‖g‖C2

B [0,∞)

)
.

By taking infimum over all g ∈ C2
B [0,∞) and by using (4.20), we get

|Jα,βn (f ;x)− f(x)| ≤ 2K2

(
f ;
δα,βn (2 + δα,βn )

4

)
.

Now for an absolute constant M > 0 in [2] we use the relation

K2(f ; δ) ≤M{ω2(f ;
√
δ) + min(1, δ)‖f‖}.

This completes the proof. �
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