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A SYMMETRIC KEY FULLY HOMOMORPHIC ENCRYPTION

SCHEME USING GENERAL CHINESE REMAINDER THEOREM

EMİN AYGÜN AND ERKAM LÜY

Abstract. The Fully Homomorphic Encryption (FHE) was an open problem

up to 2009. In 2009, Gentry solved the problem. After Gentry’s solution, a lot
of work have made on FHE. In 2012, Xiao et al suggested a new FHE scheme

with symmetric keys. They proved that security of their scheme depends on

large integer factorization. In their scheme, they used 2m prime numbers
in keygen algorithm and they used Chinese Remainder Theorem (CRT) in

encryption algorithm. In 2014, Vaudenay et al broken this scheme. In this

paper we present a new FHE scheme with symmetric keys which is a little
different from Xiao et al scheme. We extend the approach with using General

Chinese Remainder Theorem (GCRT). With using GCRT, we obtained a new
FHE scheme and also we achieved to avoid choosing 2m prime/mutually prime

numbers. Our scheme works with random numbers.

1. Introduction

The privacy homomorphism idea was introduced in 1978 by Rivest, Adleman
and Dertouzos in [1]. In 1982, S. Goldwasser and S. Micali made Goldwasser-
Micali cryptosistem [3], and a generalization of this system which is called Pailler
cryptosystem [4] presented in 1999. Some cryptosystems homomorphic according
to a single operation. RSA and El-Gamal (known cryptosystems) are homomorphic
according to multiplication [2]. Pailler cryptosystem is homomorphic according to
addition.

None of the mentioned cryptosystems above does not provide the feature of
being homomorphic for both two operations. They are homomorphic for just one
operation. Only addition or only multiplication.

It is very well known that making any arbitrary operation on encrypted data is
very important for privacy. Up to 2009, when Gentry suggested first FHE Scheme
[5], this was an open problem. After Gentry’s solution, many cryptographers made
a lot of study on it for doing it more practice and more secure.
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In 2011 Vaikuntanathan, in his article [6], asked some questions like can be build
any FHE scheme whose security based on problems in number theory? What can
be said about factorization and DLP?

Dealing with this subject a study conducted in 2012, authors built a FHE scheme
[7]. They proved that security of their scheme is based on factorization problem.
Also they used CRT and matrices type 4x4. After that this study was developed
by C. P. Gupta and Iti Sharma [8] and [9]. In 2014, Vaudenay and Vizar broken
schemes [7], [8] and [9] in their study [12].

In this paper we present a new scheme with using GCRT. Our scheme is fully
homomorphic, symmetric and main idea of our scheme is same with [7].

Main difference of our scheme is that we achieve FHE with random numbers
which used in keygen algorithm. Our idea was avoiding from choosing 2m prime /
mutually prime numbers. In this paper we showed how we achieved this.

Note that security of our scheme is depend on large integer factorization problem
too. But attack in [12] can break our scheme too. But there is a big difference in
our scheme. We use GCRT first time in cryptography and we achieved FHE with
random numbers.

Rest of paper designed as follows: in section 2 we gave CRT, GCRT and scheme
in [7]. In section 3 we introduce our scheme. Section 4 contains proof and ho-
momorphism of our scheme. We showed differences between [7] and our scheme
in section 5. In section 6 there is a simple example of our scheme and section 7
contains security and conclusions.

2. CRT, GCRT and Scheme suggested in [7]

Chinese Remainder Theorem Suppose the positive integers m1,m2,m3, ...,mk

are coprime in pairs, that is (mi,mj) = 1 for all i, j where i 6= j , then the set of
congruences x ≡ ci(mod mi) for i = 1, 2, ..., k has a unique common solution modulo
m where m = m1.m2.m3...mk [10].

General Chinese Remainder Theorem A necessary and sufficient condition
that the system of congruences x ≡ ci(mod mi) for i = 1, 2, ..., k be solvable is
that for every pair of indices i, j between 1 and k inclusive, (mi,mj)|(ci− cj). The
solution, if exists, is unique modulo the least common multiple of m1,m2,m3, ...,mk

[11].
Scheme suggested in [7]
Keygen

(1) Choose 2m prime numbers pi and qi , for 1 ≤ i ≤ m. This extended to 2m
odd numbers which are mutually prime in [8] and [9].

(2) Let fi = pi.qi and N =
m∏
i=1

fi.

(3) Pick an invertible matrix k ∈M4(ZN ).
(4) Public key is {N} and secret key is {k, fi}.

Encryption

(1) Choose a random value r ∈ ZN .
(2) Choose plaintext x ∈ ZN .
(3) Construct a matrix Xm.3 such that each row has only one element equal to

x, and other two equal to r.
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(4) Using Chinese Remainder Theorem, let a, b, c be solution to the set of si-
multaneous congruences a = ai mod fi, b = bi mod fi, c = ci mod fi, for
1 ≤ i ≤ m.

(5) Compute k’s inverse as k−1 ∈M4(ZN )
(6) Ciphertext is C = (k−1.diag(x, a, b, c).k) (mod N).

Decryption

(1) Given ciphertext C and key k, the decryption algorithm computes the plain-
text x = (k.C.k−1)11 (mod N).

3. Our Scheme with GCRT

The algorithm is as follows:
Keygen

(1) Choose randomly 2m numbers pi and qi , for 1 ≤ i ≤ m.
Remark 1: It is very important that pi and qi are not prime and not

mutually prime.

(2) Let fi = pi.qi and N =
m∏
i=1

fi.

(3) Evaluate (f1, f2, ..., fm) = a.
Remark 2: If m value is bigger, then the probability of being a > 1 is

quite small but even if a = 1 then our scheme reduces to original one. Also
if a > 1 then we generalize the original one. So for small values of m, our
scheme is more useful.

(4) Compute N
a = N1.

(5) Pick an invertible matrix k ∈M4(ZN1
).

(6) Public key is {N1} and secret key is {k, fi}.
Encryption

(1) Take the keys.
(2) Determine your plaintext as x ∈ ZN1

.
(3) Compute k’s inverse as k−1 ∈M4(ZN1

).
(4) Evaluate (f1, fi) = bj , for 2 ≤ i ≤ m and 1 ≤ j ≤ m− 1.

Remark 3: It is enough that only evaluate (f1, fi) = bj for 2 ≤ i ≤ m
and 1 ≤ j ≤ m − 1 because the matrix which construct in step 6’s type is
m.3 and in step 7 we use this matrix’s coloumns for GCRT. So if m ≥ 3 we
will have same element as previous rows because of we will take only one x
plaintext each row. In the m. row other two element will be equal to r. So
if this element both x or r it will be same with one of previous elements.
So property of GCRT, differnces of mod values will absolutely divide the
differences of x and r because x− x = 0 and r− r = 0 and every value can
divide 0. So evaluate (f1, fi) = bj is enough for applicate GCRT.

(5) Chose a r like that seperately for every j, bj |x − r, r 6= x and r ∈ ZN1
. If

does not provide this condition, chose again.
Remark 4: For applicate GCRT we must chose like above. If we don’t

chose like above, differences of mod values will not divide the values which
is front the mod.

Remark 5: Also we can easily show that there is at least a certain r
such that which provides the above conditions.

Let



A SYMMETRIC KEY FHE SCHEME USING GCRT 125

(f1, f2) = b1

(f1, f3) = b2

(f1, f4) = b3
...

(f1, fm) = bm−1

so we are looking for a r such that

b1 | x− r

b2 | x− r

b3 | x− r

...

bm−1 | x− r

if b1|x − r than r ≡ x(mod b1) and with same idea if b2|x − r than
r ≡ x(mod b2), . . . and if bm−1|x− r than r ≡ x(mod bm−1).

So because of x−x = 0 and every number can divide 0 than from GCRT
there must be a solution. So we guarantee a value of r.

(6) Construct a matrix Xm.3 such that each row has only one element equal to
x, and other two equal to r.

(7) Using General Chinese Remainder Theorem, let a, b, c be solution to the set
of simultaneous congruences a = ai mod fi, b = bi mod fi, c = ci mod fi,
for 1 ≤ i ≤ m.

(8) Ciphertext is C = (k−1.diag(x, a, b, c).k) (mod N1).

Decryption

(1) Given ciphertext C and key k, the decryption algorithm compute the plain-
text x = (k.C.k−1)11 (mod N1).

4. Proof and Homomorphism of Our Scheme

Theorem 4.1. The encryption scheme is correct.

Proof. ((k−1)−1(k−1diag(x, a, b, c)k)k−1)11 = diag(x, a, b, c)11 = x
�

Theorem 4.2. The multiplication and addition algorithms are correct.

Proof. Let E(x, k) and E(y, k) represent chiphertext of respectively plaintext x and
y under the key k.

First we show that addition is correct.

E(x, k) + E(y, k) = [k−1.diag(x, a, b, c).k] + [k−1.diag(y, d, e, f).k]

= k−1.(diag(x, a, b, c) + diag(y, d, e, f)).k

= k−1.(diag(x + y, a + d, b + e, c + f)).k

= E(x + y, k)
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So scheme is additional homomorphic. Secondly we show that multiplication is
correct.

E(x, k).E(y, k) = [k−1.diag(x, a, b, c).k].[k−1.diag(y, d, e, f).k]

= k−1.(diag(x, a, b, c).diag(y, d, e, f)).k

= k−1.(diag(x.y, a.d, b.e, c.f)).k

= E(x.y, k)

So scheme is multiplicational homomorphic. Thus scheme is fully homomorphic.
�

Note that above two theorems are taken from [7]. Also in our encryption scheme
we use matrix like in [7]. So this two theorems are valid for our scheme.

5. Differences between Xiao et al.’s scheme and our scheme

Xiao et al.’s Scheme Our Scheme
Keygen Keygen
2m prime 2m random
fi values must be different fi values can be same

Compute (f1, f2, ..., fm) = a

Compute N
a = N1

Pick an inversible matrix k ∈M4(ZN ) Pick an inversible matrix k ∈M4(ZN1)
Public Key {N} and Secret Key {k, fi} Public Key {N1} and Secret Key {k, fi}
Encryption Encryption
Take Public and Secret Key Take Public and Secret Key
Determine plaintext in mod N Determine plaintext in mod N1

Compute k−1 matrix in mod N Compute k−1 matrix in mod N1

Evaluate (f1, fi) = bj , for 2 ≤ i ≤ m and
1 ≤ j ≤ m− 1

Chose a random r Chose a r like that seperately for every j,
bj |x − r, r 6= x and r ∈ ZN1 . If does not
provide this condition, chose again.

Construct a matrix Xm.3 such that each row
has only one element equal to x, and other two
equal to r.

Construct a matrix Xm.3 such that each row
has only one element equal to x, and other two
equal to r.

Solve congrances with Using CRT Solve congrances with Using GCRT
Ciphertext is C = (k−1.diag(x, a, b, c).k)
(mod N)

Ciphertext is C = (k−1.diag(x, a, b, c).k)
(mod N1)

Decryption Decryption
Compute x = (k.C.k−1)11 (mod N) Compute x = (k.C.k−1)11 (mod N1)

6. Example of Our Scheme

A simple example of our scheme is following:
Keygen

(1) Let m = 2 and consider pi and qi values p = (3, 8), q = (6, 10).
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(2) f1 = 3.6 = 18 and f2 = 8.10 = 80 so that N = f1.f2 = 18.80 = 1440.
(3) Compute (f1, f2) = a = (18, 80) = 2.
(4) Compute N

a = N1 is 1440
2 = 720.

(5) We randomly chose the key k =


17 44 25 126
91 121 84 85
85 71 119 25
0 85 57 44

matrix (mod720).

(6) Public key is {N1 = 720} and secret key is {k, f1 = 18, f2 = 80}.

Encryption:

(1) Take the keys {N1, k, f1, f2}.
(2) Determine plaintext as x = 42 ∈ Z720.

(3) Compute k’s inverse matrix k−1 =


605 181 329 120
146 123 449 611
146 253 403 566
347 711 296 1

 (mod720).

(4) Compute (f1, f2) = (bj) = (18, 80) = 2.
(5) To be r ∈ Z720, r 6= x = 42 and 2|42− r −→ 42− r = 2k −→ r = 42− 2k

for k = −25 r = 92 chosen.

(6) For m = 2 so we construct m.3 = 2.3 type X =

(
92 42 92
92 92 42

)
matrix.

(7) This gives us the linear congruences as follows:
a) a ≡ 92(mod 18)
a ≡ 92(mod 80)
b) b ≡ 42(mod 18)
b ≡ 92(mod 80)
c) c ≡ 92(mod 18)
c ≡ 42(mod 80)
If we solve the congruences with using GCRT, solutions are a ≡ 92(mod 720),

b ≡ 492(mod 720), c ≡ 362(mod 720).
Encryption proceeds as :

(8) C = (k−1.diag(x, a, b, c).k) =


2 440 150 500

300 142 390 80
140 180 492 520
90 110 600 352

 (mod720).

Decryption:

(1) Is done as: x = (k.C.k−1)11 =


42 0 0 0
0 92 0 0
0 0 492 0
0 0 0 362

 = 42 (mod720).

For example of homomorphism of our scheme; if we encrypt x2 = 5 ∈ Z720

plaintext

we obtain this chiphertext: C2=


93 40 570 700
564 1 474 400
484 108 707 440
198 226 264 655

 (mod 720).
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So C1 + C2 =


95 480 0 480
144 143 144 480
624 288 479 240
288 336 144 287

 (mod 720)

and decryption of C1 + C2 is


47 0 0 0
0 95 0 0
0 0 335 0
0 0 0 527

 (mod 720).

Really addition of x1 and x2 is 47.
So our scheme is additional homomorphic.

With same idea C1.C2 =


186 120 630 660
108 342 198 480
588 36 84 600
666 462 648 360

 (mod 720)

and decryption of C1.C2 is


210 0 0 0
0 276 0 0
0 0 516 0
0 0 0 690

 (mod 720).

Really multiplication of x1 and x2 is 210.
So our scheme is multiplicational homomorphic. So our scheme is fully homo-

morphic.

7. Security and Conclusion

In [7] authors proved that the security of their scheme based on factorization
problem. Security assumptions of our scheme is same with this scheme. Addi-
tionally D. Vizar and S. Vaudenay have broken this scheme in 2014. They broken
the scheme with a known plaintext key-recovery attack. Also they can break our
scheme with same attack.

But difference of our scheme is that our scheme allows using random numbers
in keygen algorithm and we use first time GCRT.

As a conclusion of this paper, we extended the study on [7]. We designed a
new FHE scheme which uses GCRT and allows using random numbers in keygen
algorithm.
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