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New upper bounds of Ostrowski type integral
inequalities utilizing Taylor expansion

Hiiseyin Budak*, Fuat Usta'® and Mehmet Zeki Sarikaya’

Abstract

In this paper, we have been introduced and tested some significant
new bounds of Ostrowski type integral inequalities. In accordance with
this purpose we have taken advantageous of the Taylor expansion for
functions. Some numerical experiments have been given to show the
applicability and accuracy of the proposed method.
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1. Introduction and Preliminaries

In 1938, Ostrowski proved the following integral inequality. The inequality of Os-
trowski [12] gives us an estimate for the deviation of the values of a smooth function
from its mean value. More precisely, if f : [a,b] — R is a differentiable function with
bounded derivative, then
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for every z € [a,b]. Moreover the constant 1/4 is the best possible.
Recently, several generalisations of the Ostrowski integral inequality for mappings of
bounded variation and for Lipschitzian, monotonic, absolutely continuous and n-times
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differentiable mappings with error estimates for some special means and for some numer-
ical quadrature rules are considered by many authors. For recent results and generaliza-
tions concerning Ostrowski’s inequality see [2]-[11], [13]-[16] and the references therein.

1.1. Theorem. [1]Let f : [a,b] — R and let n be a positive integer. If f is such that
™ s absolutely continuous on [a,b], xo € (a,b), then for all x € (a,b) we have

where Tn(f;xo,-) is Taylor’s polynomial of degree n, i.e.,

n

(*) Xo) (X — X0 k
Tn(f;xw)zzw

k!
k=0

(note that £ = f and 0! = 1), and the remainder can be given by
L
Ra(fi,) = o [ (@ =07 £ 0.

zo

2. Main Findings & Cumulative Results

2.1. Theorem. Let Let f : [a,b] — R be a twice continuously differentiable mapping on
(a,b) with f" € LP(a,b), 1 < p < oo, we have
b
1 (z —a) f(a) + (b— =) f(b)
t)dt —
b—a/f()d 2(b—a)

a

S F@)| < Al |17,

for all x € [a,b], where

0= g [<(xa)QHHbx)2q+1>;+2(b—a)<w)é]

2(b—a) 2q + 1 q+1
1 1 _

Proof. Define the mapping F' : [a,b] — R given by
F(z) = /f(t)dt.

If we choose f(x) = F(z) and 2o = a up to third term in Theorem 1.1, we get
F(z) = F(a) + (z —a) F'(a) + %(:c —a)’F"(a)+ = / (x —t)? F" (t)dt

which yields

(1) F@ = (-0 f@)+ 5@ -0 F @+ [ @07 O

Similarly, for f(z) = F(x) and zo = b in Theorem 1.1, we have

x

Fla) = F(b) + (¢~ b) F'(5) + 5z — b)*F"(b) + 5 / (2 — )2 F"()dt
b
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which yields

T

b
(22) F(z)= /f(t)dt + (x —b) f(b) + %(w —b)2f'(b) + % / (x — )% f(t)dt.
a b

If we subtract equality (2.2) from equality (2.1), we have the following integral equality:

/b F(t)dt

(2= a) f(@) + (b= 2) F0) + 5z — @)*f'(a) = 3 — V)T (V)

b
+ 5 [@-0rroa.
Then, we have
(3) L - =@ 0010

b
= ﬁ [(1’ — a)QfI(a) _ (l’ _ b)zf/(b) —|—/(I _ t)z f//(t)dt] .

On the other hand, using Theorem 1.1 again, for zop = a and zo = b up to second term,
we deduce that

(24) @)= f(a) + (@ —a) f(a) + / (x — ) £ (1)t
and

(2.5)  f(x) = f(b) + (z = b) f(b) +/($—t) f(tat.
b
Multiplying equality (2.2) and equality (2.1) by —(x — a) and (z — b), respectively, and
then adding the resulting equalities, we find that
26) (a-b)f(x) = —(z—a)f(a)—(0-2)f()
(& —a)*f'(a) + (b —x)* f'(b)
- (z— a)/(:v —t) f(t)dt — (b— x)/(x —t) f(t)dt.
b

Dividing both sides of equality (2.7) by 2(b — a), we obtain

(z—a)fla)+(b—2)f(b) 1

(2.7) 20— a) 5 /(@)

1 2 4 2 gt
_ ,m[(xfa)f(a)f(bfﬂf)f(b)

+ (x—a) / (x—t) ' (t)dt + (b — ) / (x — 1) f"(t)dt] .

a b
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Combining (2.3) and (2.7), we deduce that

b
(2.8) 1 /f(t)dtf (:E—a) f(a)'i_(b_x) f(b) _ lf(ilj)

b—a 2(b—a) 2

b T

1 2 o1 "

- (b—m)/(x—t) f”(t)dt] .

To end the proof, it remains to find an upper bound of equality (2.8). Therefore using
the properties of modulus, we have

L - @010 Ly

2(b—a)
1
S Sh-a [

x

(b-2) / (x — ) £ (t)dt

b

(2.9)

b

[ @0 £

o

Then, by the well-known Hélder inequality, one finds that

T

(& —a) / (x — ) £ (t)dt

a

+

+

b b %
(2.10) /(x—t)Qf”(t)dt < 70, </ (x —t)* dt)
R R R ) Rk i
= |, (=)
(2.11) /(a:—t) roa < |17, (/ (;t—t)th>

RS

If we substitute (2.10) and (2.11) into (2.9), we have

1 /f(t)dtf (ac—a) féa()bt(;)_ :L‘) f(b) _ %f(:ﬂ)

< g [(Lmt 0o (),

The theorem is completely proved. O

2.2. Corollary. Under the assumptions of Theorem 2.1,
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1) if we choose x = a, then we have the following trapezoid type inequality

b 142
1 /f(t)dtff(a);f(b) < (b—a) Hqup7

b—a T 2(2q+1)7

2) if we choose x = b, then we have the following trapezoid type inequality

b
! f(@) + f(b) 1 1
di —
b‘”a/f(t) t > |® [2(2q+1>3 T

14+ 1
b—a)" |,

3) if we choose x = “TH’, then we have the following Bullen type inequality

b_laa/bf“)dt O CNED)

2

(b—a)'*s
2

1 1
42+ 1) [2(g+D)s

2.3. Theorem. Let f : [a,b] — R be a twice continuously differentiable mapping on
(a,b) with f” € LP(a,b), 1 < p < oo, we have

bia/bﬂt)dt— (e 45) 1@

for all z € [a,b], where

= (52) L (SR d oot

<

"
1711,

fa) - < B(z,q)[|£]],

)

g+1 20+ 1
1,1
andg—l—g_l.

Proof. Clearly, by Theorem 1.1 one can easily find that

T

(@) = f(a) + (@ — a)f'(a) + / (z — 1)1 (t)dt.

Similarly
(2.12)

b
_ 1 / 1 (b—x)?
= f(a)+§(b—a)f(a)+m 5

a

On the other hand by Fundamental Theorem of Calculus,

(213) (@) =f(a)+ [ 10
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By multiplying the appropriate coefficients of the above equalities and adding the result-
ing equality, we find that

(2.14) fz) - ﬁ / F(tydt — (w - ”;b) f(x)

_ /(a:—t)f”(t)dt— bia/b(b_;)Qf”(t)dt— <m— a;—b)/zf”(t)dt.

a a

Taking modulus of (2.14), we get

(215)  |f(@) - bia/bﬂt)dt— (+-45) 1@
< /I(x—t)f”(t)dt +ﬁ /b(b_;)zf”(t)dt v (ac— a;b>/zf”(t)dt .

Then, by the well-known Hoélder inequality, we obtain

b e b g _ )20+ :
o) | [ war < 1, (/(b—m)Q"dt) =30, (452

a

and
(2.17) (x—a;b>/f"(t)dt < b;“ /f”(t)dt
b—a " r q !
< s ||p</1dt)
b—a 10
= S @=a |,

If we substitute (2.11), (2.16) and (2.17) into (2.15), we have

fa) - bla/bﬂt)dt— (e~ 45) 1@

< I [(E) () s i)

This completes the proof. O

2.4. Corollary. Under the assumptions of Theorem 2.1, if we choose x = “TH’, then we
have the following midpoint type inequality

b 1
+b 1 vy (b—a\'"a
(o)t o] < e, (52)
(i) (a)
qg+1 2q+1
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2.5. Corollary. Under the same assumptions of Theorem 2.8 with x = a and x = b, re-
spectively, then adding the resulting inequalities and using the property triangle inequality
for the modulus, we get the following inequality

J 10 L [ rwa =3 170 - @)

2 4

1 \@ N g L1
g+1 2¢+1 2|
2.6. Theorem. Let f : [a,b] — R be a twice continuously differentiable mapping on
(a,b) with f" € LP(a,b), 1 < p < oo, we have

‘f(w) (- rw- /bf(t)dt

< S0, G-t

2 / /

+ [214(ba)2+;(xa;rb) f(bl)):(]:(a)

< |l C(x,q)
where
(2.18)  C(z,q) = [((xqf)lqﬂ)q + b;a(m—a)%

1 (b—a)? ' — (h— )2\ (h—a)'Td

+ 2(bfa)< 21 1 ) TG ]

and % + % =1.

Proof. By Fundamental Theorem of Calculus, we have

(219) f®)-f@= [ O

Then combining equalities (2.4), (2.12), (2.13) and (2.19), we deduce that

) fw- (o= ) @ - / o

+ {214(1’_“)2+;< —a;b>2 f,(bl)):f(a)
- a/(x t)f”(t)dt—( - a+b>a/zf”(t)dt— 2(b1_ )a/(b—t)zf”(t)dt
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To end the proof, it remains to find an upper bound of equality (2.20). Therefore using
the properties of modulus, we have

(221) ‘f(a?) (o= ) rw- / o
+ 214(b—a)2+;(a;—“;rb>2 f/(bz)):f(“)

< ](w—t) £ (t)dt| + <:r— “;Lb> ]f”(t)dt
o = / (b—1)* £ (t)dt
+ bi [;l(b—a)Q—i—;(x—a;b)z /bf”(t)dt

Then, by the well-known Hoélder inequality, one finds that

(2.22) /z(b—t)zf”(t)dt < 170 (]” — dt>;
(et
and
b
e st from
< b;a /bf”(t)dt < b—Ta 171, (/blth) i

b—aH% ,
= ==,
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If we substitute (2.11), (2.17), (2.22) and (2.23) into (2.21), we have

fa) = (2= 450 Fo) - bia/bf(t)dt
Q{L(b—a)u;(gg—“;b)Q

< W [(SreE) v gt

. /')~ f'(a)

L1 (b— )2t — (b— z)20+1\ @ L - a)ti
2(b—a) 2q +1 6
which completes the proof. O
2.7. Corollary. Under the assumptions of Theorem 2.1 with * = GT%’ we have the

following inequality

F(552) 4 g -0 70 - r@) - 52 [ o

1 1 1 1
b—a\'"e 1\ 1 /2%t'_1\7 3423
< L, (750) | Ga) i G )
P 2 g+1 4 2g+1 3
2.8. Corollary. Under the same assumptions of Theorem 2.6 with x = a and x = b, re-

spectively, then adding the resulting inequalities and using the property triangle inequality
for the modulus, we get the following inequality

fla) £ 10) b= (pigy_ pi) - L [ fw

1 %+ 1 %+§
q+1 2 +1 6|

1
1+q

7 b—a
< I, =2

N | —

3. Numerical Experiments

We now deal with applications of the integral inequalities to obtain estimates of com-
posite quadrature rules.
Consider the partition of the interval [a,b], given by

In:a=x0 <21 < ... <xp_1<xp =020,

such that h; = x;41 — z; = b_Ta, i=0,....,n—1.

3.1. Experiment 1. We obtain the following Theorem by using Corollary 2.2-1.

3.1. Theorem. The assumptions of Theorem 2.1 hold. Then we have the representation

b
b [ FOd = S L) + Re (5.1

a
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where St(f, I..) is as defined by

1=
Sr(f : ?;0 (zi) + f(zit1)],

and the remainder term Rr(f,I,) satisfies the estimation:

e
Re(f 1) < 5 8= "0y

2 1
2(2¢+1)a
Proof. Applying Corollary 2.2 on the interval [z;, z;41], we obtain

Tiq1

1

n zi) + f(x: (b%)ua

e IO s N M e

b-a ) 2 22q+ 10 b
for all i =0,...,

we obtain

n — 1. Summing over ¢ from 0 to n — 1 and using the triangle inequality

n /f(t)dt_ l” l[f(x1)+f($z+1)] < ﬁnzlufuu
b=a) 23 2(2¢+1)s plesie]’
Define
o [irora

then using the discrete Holder inequality, we have

— 7 17l — 1—1 "

S e = 2 X)) =i,

1= : 1=
Thus we have

=

M

1
1 (b—a)'te ’
R (f,1n)| < —~———[I1"]],,-
n"2(2¢g+1)q
Hence, the proof is completed (]
3.2. Experiment 2. We obtain the following Theorem by using Corollary 2.4

3.2. Theorem. The assumptions of Theorem 2.8 hold. Then we have the representation

b [ FOd = S (L) + Ras (7.1
where Sy (f,

n)
I,,) is as defined by

I,) = :sz;lf (xz +2m¢+1) ;

and the remainder term Ra(f,

Sm(f

I,,) satisfies the estimation

N g 1 \v 2 \s
| R (f, n)‘_ﬁ 1 + 2+ 1 +

2

"
171,
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Proof. Applying Corollary 2.4 on the interval [z;,x;+1], we obtain

Ti+1

f(.Z'z +2xi+1)_bﬁa / f(t)dt

T

IN

7 b—a 1+%
17 ey ()

! %—F 2 %—i-l
q+1 2qg+1

for all i = 0,...,n — 1. Summing over ¢ from 0 to n — 1 and using the triangle inequality
we obtain

S () gl froal < (P50)

(71) + ()
qg+1 2q+1

n—1
X Z Hf”||Pv[Ii@z‘+1] ’
1=0

X

Similarly using the discrete Holder inequality, we have

1 (b—a g
Rar 1) < o (P50

(71) + ()
g+1 2g+1

1"
171,

which completes the proof. O

4. Concluding Remarks

In this study, new bounds of Ostrowski type integral inequalities have been presented
and tested. Some numerical examples have been given for validation.
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