

Onmanoisyet Seiance Journal

 CSD
Some Results On Quaternion 3-Space

Atilla AKPINAR*, Fatma OZEN ERDOGAN
University of Uludag, Faculty of Arts and Science, Department of Mathematics, Bursa, TURKEY

Received: 10.04.2017; Accepted: 10.04.2018
http://dx.doi.org/10.17776/csj. 434228

Abstract

In this paper, the set $\mathbf{J}^{\prime}=\mathbf{H}\left(\mathrm{Q}_{4}, \mathrm{~J} \gamma\right)$ of 4 by 4 matrices, with entries in a quaternion F -algebra Q , that are symmetric with respect to the canonical involution $\mathbf{J} \gamma$ is studied. \mathbf{J}^{\prime} is also the special Jordan matrix algebra and some results related to points and lines of the quaternion 3-space $\mathbf{P}\left(\mathbf{J}^{\prime}\right)$ defined by the algebra are introduced. Finally, by taking dual ring $\mathbf{Q}:=\mathrm{Q}+\mathrm{Q} \varepsilon\left(\varepsilon \notin \mathrm{Q}, \varepsilon^{2}=0\right)$ instead of Q , the obtained results are carried to a more general state.

2010 Mathematics Subject Classification: 51C05; 17C55; 05B25
Keywords: Special Jordan matrix algebra, quaternion, quaternion 3-space.

Kuaterniyon 3-Uzay Üzerine Bazı Sonuçlar

Özet: Bu makalede, girdileri bir Q kuaterniyon F-cebirinden alınan ve J γ kanonik involusyonuna göre simetrik olan 4×4 boyutlu matrislerin oluşturduğu $\mathbf{J}^{\prime}=\mathbf{H}\left(\mathrm{Q}_{4}, \mathrm{~J} \gamma\right)$ kümesi ile çalışılmıştır. Bu \mathbf{J}^{\prime} kümesi aynı zamanda bir özel Jordan matris cebiridir ve bu cebir ile tanımlanan $\mathbf{P}\left(\mathbf{J}^{\prime}\right)$ kuaterniyon 3-uzayın noktalar ve doğruları ile ilgili bazı sonuçlar sunulmuştur. Son olarak, Q yerine $\mathbf{Q}:=\mathrm{Q}+\mathrm{Q} \varepsilon\left(\varepsilon \notin \mathrm{Q}, \varepsilon^{2}=0\right)$ dual halkası alınarak elde edilen sonuçlar daha genel bir duruma taşınmıştır.

Anahtar Kelimeler: Özel Jordan matris cebiri, kuaterniyon, kuaterniyon 3-uzay

1. INTRODUCTION and PRELIMINARIES

In [5], Faulkner deals with $\mathbf{J}=\mathbf{H}\left(\mathbf{O}_{3}, \mathrm{~J} \gamma\right)$, the set of 3 by 3 matrices with entries in an octonion algebra \mathbf{O} defined over a field F, that are symmetric with respect to the canonical involution $J \gamma: X \rightarrow \gamma^{-1} \bar{X}^{\mathrm{t}} \gamma$ where the γ_{i} are non-zero elements of F and $\gamma:=\operatorname{diag}\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$. Hence, any element X of \mathbf{J} is of the form
$X=\left(\begin{array}{ccc}\alpha_{1} & \gamma_{2} \mathrm{a}_{3} & \gamma_{3} \bar{a}_{2} \\ \gamma_{1} \bar{a}_{3} & \alpha_{2} & \gamma_{3} \mathrm{a}_{1} \\ \gamma_{1} \mathrm{a}_{2} & \gamma_{2} \bar{a}_{1} & \alpha_{3}\end{array}\right)$ for $\alpha_{i} \in F$ and $\mathrm{a}_{i} \in \mathbf{O}$.
If it is defined a cubic form N such that $N(X):=\operatorname{det} X$, a quadratic mapping $X \rightarrow X^{\#}:=$ adjoint of X, and a basepoint $C:=I_{3}$ on \mathbf{J} are defined, then the triple (\mathbf{J}, N, C) is a quadratic (exceptional) Jordan algebra

[^0]under the operator $U_{X} Y=T(X, Y) X-2\left(X^{\#} \times Y\right)$ [9]. Then, for $X=\left(\begin{array}{ccc}\alpha_{1} & \gamma_{2} a_{3} & \gamma_{3} \bar{a}_{2} \\ \gamma_{1} \bar{a}_{3} & \alpha_{2} & \gamma_{3} a_{1} \\ \gamma_{1} a_{2} & \gamma_{2} \bar{a}_{1} & \alpha_{3}\end{array}\right)$ and $\mathrm{Y}=\left(\begin{array}{ccc}\beta_{1} & \gamma_{2} \mathrm{~b}_{3} & \gamma_{3} \overline{\mathrm{~b}}_{2} \\ \gamma_{1} \overline{\mathrm{~b}}_{3} & \beta_{2} & \gamma_{3} \mathrm{~b}_{1} \\ \gamma_{1} \mathrm{~b}_{2} & \gamma_{2} \overline{\mathrm{~b}}_{1} & \beta_{3}\end{array}\right) \in \mathbf{J}$, we can give the similar results to those given in [6, 9]:

$$
\begin{aligned}
& N(X)=\alpha_{1} \alpha_{2} \alpha_{3}-\alpha_{1} \gamma_{2} \gamma_{3} n\left(a_{1}\right)-\alpha_{2} \gamma_{3} \gamma_{1} n\left(a_{2}\right)-\alpha_{3} \gamma_{1} \gamma_{2} n\left(a_{3}\right)+\gamma_{1} \gamma_{2} \gamma_{3} 2 \mathrm{t}\left(\left(\mathrm{a}_{1} \mathrm{a}_{2}\right) \mathrm{a}_{3}\right), \\
& \mathrm{X}^{\#}=\left(\mathrm{X}_{\mathrm{ij}}\right)_{3 \times 3} \text { for } \mathrm{X}_{\mathrm{ii}}=\alpha_{\mathrm{j}} \alpha_{\mathrm{k}}-\gamma_{j} \gamma_{\mathrm{k}} \mathrm{n}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{ij}}=\gamma_{\mathrm{i}} \gamma_{\mathrm{k}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}-\gamma_{\mathrm{i}} \alpha_{\mathrm{k}} \overline{\mathrm{a}}_{\mathrm{k}} \text { and } \mathrm{X}_{\mathrm{ji}}=\overline{\mathrm{X}_{\mathrm{ij}}}, \\
& \mathrm{X} \times \mathrm{Y}=\left(\mathrm{z}_{\mathrm{ij}}\right)_{3 \times 3} \text { for }\left\{\begin{array}{l}
\mathrm{z}_{\mathrm{ii}}=(1 / 2)\left[\alpha_{\mathrm{j}} \beta_{\mathrm{k}}+\beta_{\mathrm{j}} \alpha_{\mathrm{k}}-2 \gamma_{\mathrm{j}} \gamma_{\mathrm{k}} \mathrm{n}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}}\right)\right] \\
\mathrm{z}_{\mathrm{ii}}=(1 / 2)\left(\gamma_{\mathrm{j}}\left[\gamma_{\mathrm{k}} \overline{\left(\mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{j}}+\mathrm{b}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\right)}-\left(\alpha_{\mathrm{k}} \mathrm{~b}_{\mathrm{k}}+\beta_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}\right)\right]\right), \mathrm{z}_{\mathrm{ji}}=\overline{\mathrm{Z}}_{\mathrm{ij}},
\end{array}\right.
\end{aligned}
$$

$$
T(X, Y)=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+2 \gamma_{2} \gamma_{3} n\left(a_{1}, b_{1}\right)+2 \gamma_{3} \gamma_{1} n\left(a_{2}, b_{2}\right)+2 \gamma_{1} \gamma_{2} n\left(a_{3}, b_{3}\right)
$$

where ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) is a cyclic permutation of $(1,2,3)$, n (defined by $\mathrm{n}(\mathrm{x}):=\mathrm{x} \overline{\mathrm{x}}$) is the norm (quadratic) form over \mathbf{O}, t (defined by $\mathrm{t}(\mathrm{x}):=(1 / 2)(\mathrm{x}+\overline{\mathrm{x}})$) is the trace (linear) form over \mathbf{O} and finally $\mathrm{n}(\mathrm{x}, \mathrm{y})$ (defined by $n(x, y):=(1 / 2)[n(x+y)-n(x)-n(y)])$ is symmetric bilinear norm w.r.t. n.

Let Π denote the set of elements of rank 1 in \mathbf{J}. Then,
$\Pi=\left\{X \mid X \in \mathbf{J}-\{0\}\right.$ and $\left.X \times X=X^{\#}=0\right\}$.
Note that, if $X \in \Pi$ and α is a non-zero element in F, then $\alpha X \in \Pi$. For $X \in \Pi$, let X_{*} and X^{*} be two copies of the set $\{\alpha \mathrm{X} \mid \alpha \in \mathrm{F}-\{0\}\}$.

Now, we are ready to give the definition of an octonion plane $\mathbf{P}(\mathbf{J})$ from [5, Chapter 3].
The octonion plane $\mathbf{P}(\mathbf{J})=(\mathbf{P}, \mathbf{L}, \mid, \sqcup)$ consists of the incidence structure $(\mathbf{P}, \mathbf{L}, \mid)$ (points, lines, and incidence), and the connection relation is defined as follows:
$\mathbf{P}=\left\{X_{*} \mid \mathrm{X} \in \Pi\right\}, \mathbf{L}=\left\{\mathrm{X}^{*} \mid \mathrm{X} \in \Pi\right\}$,
$X_{*} \mid Y^{*}, X_{*}$ is on Y^{*}, if $V_{Y, X}=0$, that is, $V_{Y, X}=:\{1 X Y\}=\{X 1 Y\}=\{X Y 1\}=X \cdot Y=0$ where $\mathrm{X} \cdot \mathrm{Y}=(1 / 2)(\mathrm{XY}+\mathrm{YX})$ (Jordan multiplication),
$X_{*} \sqcup Y_{*}, X_{*}$ is connected to Y_{*} if $X \times Y=0$,
$X^{*} \sqcup Y^{*}, X^{*}$ is connected to Y^{*} if $X \times Y=0$,
$\mathrm{X}_{*} \sqcup \mathrm{Y}^{*}, \mathrm{X}_{*}$ is connected (or near) to Y^{*} if $\mathrm{T}(\mathrm{X}, \mathrm{Y})=0$.
In [7, Chapter III.2, Theorem 1], Jacobson showed that the fact that $\left(\mathbf{D}_{\mathrm{n}}, \mathrm{J} \gamma\right)$ is a Jordan algebra implies that \mathbf{D} is associative if $\mathrm{n} \geq 4$ but alternative with its symmetric elements in the nucleus if $n=3$. Therefore, in the case of $n \geq 4$ we can study with the elements of a quaternion algebra, which is associative (but not commutative) and moreover the Jordan matrix algebra ($\mathbf{D}_{\mathrm{n}}, \mathrm{J} \gamma$) is necessarily special (that is, not exceptional) since \mathbf{D} is associative [7, p.138].

Let F be a field and let $\mathrm{Q}=\left\{\mathrm{r}_{0}+\mathrm{r}_{11} i_{1}+\mathrm{r}_{2} i_{2}+\mathrm{r}_{3} i_{3} \mid \mathrm{r}_{\mathrm{i}} \in \mathrm{F}\right\}$ be a quaternion division F -algebra. From now on, we assume that the characteristic of F is different from 2. We denote the anti-involution over Q by j $(\mathrm{j}(\mathrm{x}):=\mathrm{x})$, the norm (quadratic) form over Q by $\mathrm{n}(\mathrm{n}(\mathrm{x}):=\mathrm{x} \overline{\mathrm{x}} \in \mathrm{F})$, and the trace (linear) form over Q by t $(\mathrm{t}(\mathrm{x}):=(1 / 2)(\mathrm{x}+\overline{\mathrm{x}}) \in \mathrm{F})$. In this case, $\mathrm{x}=\mathrm{r}_{0}-\mathrm{ri}_{11}-\mathrm{r}_{2} \mathrm{i}_{2}-\mathrm{r}_{3} \mathrm{i}_{3}, \mathrm{n}(\mathrm{x})=\mathrm{r}_{0}{ }^{2}-\mathrm{c}_{1} \mathrm{r}_{1}{ }^{2}-\mathrm{c}_{2} \mathrm{rr}_{2}{ }^{2}+\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{r}_{3}{ }^{2}$ where $\mathrm{c}_{1}, \mathrm{c}_{2}$ are nonzero elements in the multiplication table [8, p.448] and $t(x)=r_{0}$ for any $x=r_{0}+r_{1 i_{1}}+r_{21} i_{2}+r_{3} i_{3} \in Q$. For example, for $\mathrm{F}=\mathbb{R}$ and $\mathrm{c}_{1}=\mathrm{c}_{2}=-1$ we have Hamilton's quaternion (division) algebra and so we reach the result: $\mathrm{n}(\mathrm{x})=\mathrm{r}_{0}{ }^{2}+\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}+\mathrm{r}_{3}{ }^{2}=0 \Leftrightarrow \mathrm{x}=0$.
$\mathbf{J}^{\prime}=\mathbf{H}\left(\mathrm{Q}_{4}, \mathrm{~J} \gamma\right)$, the set of 4 by 4 matrices, with entries in an quaternion division F -algebra, that are symmetric with respect to the canonical involution $\mathrm{J} \gamma: \mathrm{X} \rightarrow \gamma^{-1} \overline{\mathrm{X}}^{\mathrm{t}} \gamma$ where the γ_{i} are non-zero elements of F and $\gamma:=\operatorname{diag}\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$. Hence, any element X of \mathbf{J}^{\prime} is of the form

$$
\mathrm{X}=\left[\mathrm{x}_{\mathrm{ij}}\right]=\left(\begin{array}{cccc}
\alpha_{1} & \gamma_{2} \mathrm{a}_{12} & \gamma_{3} \overline{\mathrm{a}}_{13} & \gamma_{4} \mathrm{a}_{14} \\
\gamma_{1} \overline{\mathrm{a}}_{12} & \alpha_{2} & \gamma_{3} \mathrm{a}_{23} & \gamma_{4} \overline{\mathrm{a}}_{24} \\
\gamma_{1} \mathrm{a}_{13} & \gamma_{2} \overline{\mathrm{a}}_{23} & \alpha_{3} & \gamma_{4} \mathrm{a}_{34} \\
\gamma_{1} \overline{\mathrm{a}}_{14} & \gamma_{2} \mathrm{a}_{24} & \gamma_{3} \overline{\mathrm{a}}_{34} & \alpha_{4}
\end{array}\right) \text { for } \alpha_{\mathrm{i}} \in \mathrm{~F} \text { and } \mathrm{a}_{\mathrm{ij}} \in \mathrm{Q} .
$$

If we take a quartic (fourth degree) form N such that $N(X):=\operatorname{det} X$, a cubic mapping $X \rightarrow X^{\#}:=$ adjoint of X , and a basepoint $\mathrm{C}:=\mathrm{I}_{4}$ on \mathbf{J}, then: it is clear that

$$
\begin{aligned}
\mathrm{T}(\mathrm{X}, \mathrm{Y})= & \alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+\alpha_{4} \beta_{4}+2 \gamma_{1} \gamma_{2 \mathrm{n}}\left(\mathrm{a}_{12}, \mathrm{~b}_{12}\right)+2 \gamma_{1} \gamma_{3} \mathrm{n}\left(\mathrm{a}_{13}, \mathrm{~b}_{13}\right)+2 \gamma_{1} \gamma_{4 \mathrm{n}}\left(\mathrm{a}_{14}, \mathrm{~b}_{14}\right) \\
& +2 \gamma_{2} \gamma_{3} \mathrm{n}\left(\mathrm{a}_{23}, \mathrm{~b}_{23}\right)+2 \gamma_{2} \gamma_{4 \mathrm{n}}\left(\mathrm{a}_{24}, \mathrm{~b}_{24}\right)+2 \gamma_{3} \gamma_{4 \mathrm{n}}\left(\mathrm{a}_{34}, \mathrm{~b}_{34}\right),
\end{aligned}
$$

as $T(X, Y):=T(X \cdot Y)=\operatorname{trace}(X \cdot Y)$. Besides, note that $X \times Y$ must be equal to $(1 / 6)\left[(X+Y)^{\#}-X^{\#}-Y^{\#}\right]$ and specifically, $X \times X=X^{\#}$ as in the case of $n=3$.

Now, from [1], we can give some informations about the quaternion (but, not dual) 3 -space $\mathbf{P}\left(\mathbf{J}^{\prime}\right)=(\mathbf{P}, \mathbf{L}, \mid, \sqcup)$ where \mathbf{J}^{\prime} is the 28 -dimensional special Jordan matrix algebra. Then, the set of points \mathbf{P} consists of the following four classes (which we call as points of types 1,2,3 and 4, respectively):

$$
\begin{aligned}
& \left\{P_{1}=\left(\begin{array}{cccc}
1 & \gamma_{1}{ }^{-1} \gamma_{2} \bar{x}_{2} & \gamma_{1}^{-1} \gamma_{3} \bar{x}_{3} & \gamma_{1}^{-1} \gamma_{4} \bar{x}_{4} \\
\mathrm{x}_{2} & \gamma_{1}^{-1} \gamma_{2} n\left(\mathrm{x}_{2}\right) & \gamma_{1}^{-1} \gamma_{3} \mathrm{x}_{2} \overline{\mathrm{x}}_{3} & \gamma_{1}^{-1} \gamma_{4} \mathrm{x}_{2} \overline{\mathrm{x}}_{4} \\
\mathrm{x}_{3} & \gamma_{1}^{-1} \gamma_{2} \mathrm{x}_{3} \overline{\mathrm{x}}_{2} & \gamma_{1}^{-1} \gamma_{3} n\left(\mathrm{x}_{3}\right) & \gamma_{1}^{-1} \gamma_{4} \mathrm{x}_{3} \overline{\mathrm{x}}_{4} \\
\mathrm{x}_{4} & \gamma_{1}{ }^{-1} \gamma_{2} \mathrm{x}_{4} \overline{\mathrm{x}}_{2} & \gamma_{1}^{-1} \gamma_{3} \mathrm{x}_{4} \overline{\mathrm{x}}_{3} & \gamma_{1}{ }^{-1} \gamma_{4} \mathrm{n}\left(\mathrm{x}_{4}\right)
\end{array}\right)=: \left.\left(\begin{array}{c}
1 \\
\mathrm{x}_{2} \\
\mathrm{x}_{3} \\
\mathrm{x}_{4}
\end{array}\right)^{\mathrm{t}} \right\rvert\, \mathrm{x}_{\mathrm{i}} \in \mathrm{Q}\right\} \cup \\
& \left\{P_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & \gamma_{2}{ }^{-1} \gamma_{3} \bar{x}_{3} & \gamma_{2}{ }^{-1} \gamma_{4} \bar{x}_{4} \\
0 & x_{3} & \gamma_{2}{ }^{-1} \gamma_{3} n\left(x_{3}\right) & \gamma_{2}{ }^{-1} \gamma_{4} x_{3} \bar{x}_{4} \\
0 & x_{4} & \gamma_{2}{ }^{-1} \gamma_{3} \mathrm{x}_{4} \overline{\mathrm{x}}_{3} & \gamma_{2}{ }^{-1} \gamma_{4} n\left(x_{4}\right)
\end{array}\right)=: \left.\left(\begin{array}{c}
0 \\
1 \\
\mathrm{x}_{3} \\
\mathrm{x}_{4}
\end{array}\right)^{\mathrm{t}} \right\rvert\, \mathrm{x}_{3}, \mathrm{x}_{4} \in \mathrm{Q}\right\} \cup \\
& \left\{\mathrm{P}_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & \gamma_{3}^{-1} \gamma_{4} \overline{\mathrm{x}}_{4} \\
0 & 0 & \mathrm{x}_{4} & \gamma_{3}{ }^{-1} \gamma_{4} \mathrm{n}\left(\mathrm{x}_{4}\right)
\end{array}\right)=: \left.\left(\begin{array}{c}
0 \\
0 \\
1 \\
\mathrm{x}_{4}
\end{array}\right)^{\mathrm{t}} \right\rvert\, \mathrm{x}_{4} \in \mathrm{Q}\right\} \cup\left\{\mathrm{P}_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=:\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)^{t}\right\},
\end{aligned}
$$

the set of lines \mathbf{L} consists of the following four classes (which we call as lines of types 1,2,3 and 4, respectively):
$\left\{1_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=:\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]^{t}\right\} \cup$
$\left\{l_{2}=\left[\begin{array}{cccc}\gamma_{1}{ }^{-1} \gamma_{2} n\left(m_{1}\right) & -\gamma_{1}{ }^{-1} \gamma_{2} \bar{m}_{1} & 0 & 0 \\ -m_{1} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=: \left.\left[\begin{array}{c}m_{1} \\ 1 \\ 0 \\ 0\end{array}\right]^{t} \right\rvert\, \mathrm{m}_{1} \in Q\right\} \cup$
$\left\{l_{3}=\left[\begin{array}{cccc}\gamma_{1}{ }^{-1} \gamma_{3} n\left(m_{1}\right) & \gamma_{1}{ }^{-1} \gamma_{3} \bar{m}_{1} m_{2} & -\gamma_{1}{ }^{-1} \gamma_{3} \bar{m}_{1} & 0 \\ \gamma_{2}{ }^{-1} \gamma_{3} \bar{m}_{2} m_{1} & \gamma_{2}{ }^{-1} \gamma_{3} n\left(m_{2}\right) & -\gamma_{2} \gamma_{3} \gamma_{3} \bar{m}_{2} & 0 \\ -m_{1} & -m_{2} & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=: \left.\left[\begin{array}{c}m_{1} \\ m_{2} \\ 1 \\ 0\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{Q}\right\} \cup$
$\left\{1_{4}=\left[\begin{array}{cccc}\gamma_{1}{ }^{-1} \gamma_{4} \mathrm{n}\left(\mathrm{m}_{1}\right) & \gamma_{1}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{1} \mathrm{~m}_{2} & \gamma_{1}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{1} \mathrm{~m}_{3} & -\gamma_{1}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{1} \\ \gamma_{2}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{2} \mathrm{~m}_{1} & \gamma_{2}{ }^{-1} \gamma_{4} \mathrm{n}\left(\mathrm{m}_{2}\right) & \gamma_{2}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{2} \mathrm{~m}_{3} & -\gamma_{2}{ }_{2} \gamma_{4} \overline{\mathrm{~m}}_{2} \\ \gamma_{3}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{3} \mathrm{~m}_{1} & \gamma_{3}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{3} \mathrm{~m}_{2} & \gamma_{3}{ }^{-1} \gamma_{4} \mathrm{n}\left(\mathrm{m}_{3}\right) & -\gamma_{3}{ }^{-1} \gamma_{4} \overline{\mathrm{~m}}_{3} \\ -\mathrm{m}_{1} & -\mathrm{m}_{2} & -\mathrm{m}_{3} & 1\end{array}\right]=:\left[\begin{array}{l}\mathrm{m}_{1} \\ \mathrm{~m}_{2} \\ \mathrm{~m}_{3} \\ 1\end{array}\right]_{\mid}^{\mathrm{m}} \mathrm{m} \in \mathrm{Q}\right\}$.
The incidence relation |, equivalent to $\mathrm{X} \cdot \mathrm{Y}=0$, is defined as follows:

$$
\begin{aligned}
& {[1,0,0,0]=}\left\{\left(0,1, \mathrm{y}_{3}, \mathrm{y}_{4}\right) \mid \mathrm{y}_{3}, \mathrm{y}_{4} \in \mathrm{Q}\right\} \cup\left\{\left(0,0,1, \mathrm{z}_{4}\right) \mid \mathrm{z}_{4} \in \mathrm{Q}\right\} \cup\{(0,0,0,1)\}, \\
& {\left[\mathrm{l}_{1}, 1,0,0\right]=}\left\{\left(1,1_{1}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \mid \mathrm{x}_{3}, \mathrm{x}_{4} \in \mathrm{Q}\right\} \cup\left\{\left(0,0,1, \mathrm{z}_{4}\right) \mid \mathrm{z}_{4} \in \mathrm{Q}\right\} \cup\{(0,0,0,1)\}, \\
& {\left[\mathrm{m}_{1}, \mathrm{~m}_{2}, 1,0\right]=}\left\{\left(1, \mathrm{x}_{2}, \mathrm{~m}_{1}+\mathrm{m}_{2} \mathrm{x}_{2}, \mathrm{x}_{4}\right) \mid \mathrm{x}_{2}, \mathrm{x}_{4} \in \mathrm{Q}\right\} \cup\left\{\left(0,1, \mathrm{~m}_{2}, \mathrm{y}_{4}\right) \mid \mathrm{y}_{4} \in \mathrm{Q}\right\} \cup\{(0,0,0,1)\}, \\
& {\left[\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, 1\right]=}\left\{\left(1, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{n}_{1}+\mathrm{n}_{2} \mathrm{x}_{2}+\mathrm{n}_{3} \mathrm{x}_{3},\right) \mid \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathrm{Q}\right\} \cup\left\{\left(0,1, \mathrm{y}_{3}, \mathrm{n}_{2}+\mathrm{n}_{3} \mathrm{y}_{3},\right) \mid \mathrm{y}_{3} \in \mathrm{Q}\right\} \cup \\
& \quad\left\{\left(0,0,1, \mathrm{n}_{3}\right)\right\} .
\end{aligned}
$$

Finally by the relation equivalent to the connection relation \sqcup given by $X \times Y=0$ in the case $n=3$ (see [2] for this equivalence), we can define the connection relation \sqcup in this space as follows:

$$
\begin{aligned}
& \left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \sqcup\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right) \Leftrightarrow \mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}=0 \text { for } \mathrm{i}=1,2,3,4, \\
& {\left[\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}\right] \sqcup\left[\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4}\right] \Leftrightarrow \mathrm{k}_{\mathrm{i}}-\mathrm{n}_{\mathrm{i}}=0 \text { for } \mathrm{i}=1,2,3,4 .}
\end{aligned}
$$

Besides, from types of points on lines, it is clear that a point and a line of same type is not connected (near). Moreover, the result is equivalent to $\mathrm{T}(\mathrm{X}, \mathrm{Y}) \neq 0$ for a point (or line) X and a line Y (or point), respectively. In the other cases, we say that they are connected (near).

2. THE MAIN RESULTS

Now, we will investigate the intersection points of lines in the space $\mathbf{P}\left(\mathbf{J}^{\prime}\right)$.

First we take the different types of lines:

$$
\begin{aligned}
& {[1,0,0,0] \cap[\mathrm{r}, 1,0,0]=\{(0,0,1, \mathrm{z}) \mid \mathrm{z} \in \mathrm{Q}\} \cup\{(0,0,0,1)\}} \\
& {[1,0,0,0] \cap[\mathrm{r}, \mathrm{~s}, 1,0]=\{(0,1, \mathrm{~s}, \mathrm{z}) \mid \mathrm{z} \in \mathrm{Q}\} \cup\{(0,0,0,1)\}} \\
& {[1,0,0,0] \cap[\mathrm{r}, \mathrm{~s}, \mathrm{t}, 1]=\{(0,1, \mathrm{y}, \mathrm{~s}+\mathrm{ty}) \mid \mathrm{y} \in \mathrm{Q}\} \cup\{(0,0,1, \mathrm{t})\}} \\
& {[\mathrm{m}, 1,0,0] \cap[\mathrm{r}, \mathrm{~s}, 1,0]=\{(1, \mathrm{~m}, \mathrm{r}+\mathrm{sm}, \mathrm{z}) \mid \mathrm{z} \in \mathrm{Q}\} \cup\{(0,0,0,1)\}} \\
& {[\mathrm{m}, 1,0,0] \cap[\mathrm{r}, \mathrm{~s}, \mathrm{t}, 1]=\{(1, \mathrm{~m}, \mathrm{y}, \mathrm{r}+\mathrm{sm}+\mathrm{ty}) \mid \mathrm{y} \in \mathrm{Q}\} \cup\{(0,0,1, \mathrm{t})\}} \\
& {[\mathrm{m}, \mathrm{n}, 1,0] \cap[\mathrm{r}, \mathrm{~s}, \mathrm{t}, 1]=\{(1, \mathrm{x}, \mathrm{~m}+\mathrm{nx}, \mathrm{r}+\mathrm{sx}+\mathrm{t}(\mathrm{~m}+\mathrm{nx}) \mid \mathrm{x} \in \mathrm{Q}\} \cup\{(0,1, \mathrm{n}, \mathrm{~s}+\mathrm{tn})\} .}
\end{aligned}
$$

Now we examine the same types of lines:
First we take lines $[\mathrm{m}, \mathrm{n}, \mathrm{p}, 1]$ and $[\mathrm{r}, \mathrm{s}, \mathrm{t}, 1]$ of the fourth types. We can determine the intersection points of these lines in three cases as follows:
i. If $n-s \neq 0, p-t=0$, then the intersection points are

$$
\left\{\left(1,-(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{~m}-\mathrm{r}), \mathrm{y}, \mathrm{~m}-\mathrm{n}(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{~m}-\mathrm{r})+\mathrm{py}\right) \mid \mathrm{y} \in \mathrm{Q}\right\} \cup\{(0,0,1, \mathrm{p}=\mathrm{t})\} .
$$

ii. If $\mathrm{p}-\mathrm{t} \neq 0$, then the intersection points are

$$
\begin{aligned}
& \left\{\left(1, x,-(p-t)^{-1}((m-r)+(n-s) x), m+n x-p(p-t)^{-1}((m-r)+(n-s) x)\right) \mid x \in Q\right\} \\
& \cup\left\{\left(0,1,-(p-t)^{-1}(n-s), n-p(p-t)^{-1}(n-s)\right)\right\}
\end{aligned}
$$

iii. If $\mathrm{n}-\mathrm{s}=0, \mathrm{p}-\mathrm{t}=0$ and $\mathrm{m}-\mathrm{r} \neq 0$, then the intersection points are

$$
\{(0,1, \mathrm{v}, \mathrm{n}+\mathrm{pv}) \mid \mathrm{v} \in \mathrm{Q}\} \cup\{(0,0,1, \mathrm{p})\} .
$$

Now we take lines [$\mathrm{m}, \mathrm{n}, 1,0]$ and $[\mathrm{r}, \mathrm{s}, 1,0]$ of the third types. We can determine the intersection points of these lines in two cases as follows:
i. If $m-r \neq 0$ and $n-s=0$, then the intersection points are

$$
\{(0,1, \mathrm{n}=\mathrm{s}, \mathrm{w}) \mid \mathrm{w} \in \mathrm{Q}\} \cup\{(0,0,0,1)\} .
$$

ii. If $n-s \neq 0$, then the intersection points are

$$
\left\{\left(1,-(n-s)^{-1}(m-r), m-n(n-s)^{-1}(m-r), z\right) \mid z \in Q\right\} \cup\{(0,0,0,1)\} .
$$

Finally we take $[\mathrm{m}, 1,0,0]$ and $[\mathrm{r}, 1,0,0]$ of the second types lines. In this case, If $\mathrm{m}-\mathrm{r} \neq 0$, then the intersection points are

$$
\{(0,0,1, w) \mid w \in Q\} \cup\{(0,0,0,1)\} .
$$

Now, conversely, we would like to determine the lines joining these two points, according to the two points in the space $\mathbf{P}\left(\mathbf{J}^{\prime}\right)$ are of different and of the same types.

First let us examine the case that the two points are of different types:

$$
\begin{aligned}
& (1, \mathrm{x}, \mathrm{y}, \mathrm{z}) \cup(0,1, \mathrm{v}, \mathrm{w})=\{[\mathrm{z}-(\mathrm{w}-\mathrm{tv}) \mathrm{x}-\mathrm{ty}, \mathrm{w}-\mathrm{tv}, \mathrm{t}, 1] \mid \mathrm{t} \in \mathrm{Q}\} \cup\{[\mathrm{y}-\mathrm{vx}, \mathrm{v}, 1,0]\}, \\
& (1, \mathrm{x}, \mathrm{y}, \mathrm{z}) \cup(0,0,1, \mathrm{w})=\{[\mathrm{z}-\mathrm{sx}-\mathrm{wy}, \mathrm{~s}, \mathrm{w}, 1] \mid \mathrm{s} \in \mathrm{Q}\} \cup\{[\mathrm{x}, 1,0,0]\}, \\
& (1, \mathrm{x}, \mathrm{y}, \mathrm{z}) \cup(0,0,0,1)=\{[\mathrm{y}-\mathrm{sx}, \mathrm{~s}, 1,0] \mid \mathrm{s} \in \mathrm{Q}\} \cup\{[\mathrm{x}, 1,0,0]\}, \\
& (0,1, \mathrm{y}, \mathrm{z}) \cup(0,0,1, \mathrm{w})=\{[\mathrm{r}, \mathrm{z}-\mathrm{wy}, \mathrm{w}, 1] \mid \mathrm{r} \in \mathrm{Q}\} \cup\{[1,0,0,0]\}, \\
& (0,1, \mathrm{y}, \mathrm{z}) \cup(0,0,0,1)=\{[\mathrm{r}, \mathrm{y}, 1,0] \mid \mathrm{r} \in \mathrm{Q}\} \cup\{[1,0,0,0]\}, \\
& (0,0,1, \mathrm{z}) \cup(0,0,0,1)=\{[\mathrm{r}, 1,0,0] \mid \mathrm{r} \in \mathrm{Q}\} \cup\{[1,0,0,0]\} .
\end{aligned}
$$

Now we can examine the other case. Let the two points be of the same type:
If we take points $(1, \mathrm{x}, \mathrm{y}, \mathrm{z})$ and $(1, \mathrm{u}, \mathrm{v}, \mathrm{w})$ of the first type, then we complete this examination in the following three cases:
i. If $x-u \neq 0$, then the lines joining these points are

$$
\begin{aligned}
& \left\{\left[z-((z-w)+c(v-y))(x-u)^{-1} x-c y,(z-w)(x-u)^{-1}+c(v-y)(x-u)^{-1}, c, 1\right] \mid c \in Q\right\} \\
& u\left\{\left[y-(y-v)(x-u)^{-1} x,(y-v)(x-u)^{-1}, 1,0\right]\right\} .
\end{aligned}
$$

ii. If $\mathrm{x}-\mathrm{u}=0, \mathrm{y}-\mathrm{v}=0$ and $\mathrm{z}-\mathrm{w} \neq 0$, then the lines joining these points are

$$
\{[\mathrm{y}-\mathrm{sx}, \mathrm{~s}, 1,0] \mid \mathrm{s} \in \mathrm{Q}\} \cup\{[\mathrm{x}, 1,0,0]\} .
$$

iii. If $x-u=0$ and $y-v \neq 0$, then the lines joining these points are

$$
\left\{\left[z-b x-(z-w)(y-v)^{-1} y, b,(z-w)(y-v)^{-1}, 1\right] \mid b \in Q\right\} \cup\{[x=u, 1,0,0]\} .
$$

If we take points $(0,1, \mathrm{y}, \mathrm{z})$ and $(0,1, \mathrm{v}, \mathrm{w})$ of the second type, then we can determine the lines joining these points in the following two cases:
i. If $y-v \neq 0$, then the lines joining these points are

$$
\left\{\left[\mathrm{a}, \mathrm{z}-(\mathrm{z}-\mathrm{w})(\mathrm{y}-\mathrm{v})^{-1} \mathrm{y},(\mathrm{z}-\mathrm{w})(\mathrm{y}-\mathrm{v})^{-1}, 1\right] \mid \mathrm{a} \in \mathrm{Q}\right\} \cup\{[1,0,0,0]\} .
$$

ii. If $\mathrm{y}-\mathrm{v}=0$ and $\mathrm{z}-\mathrm{w} \neq 0$, then the lines joining these points are

$$
\{[\mathrm{r}, \mathrm{y}=\mathrm{v}, 1,0] \mid \mathrm{r} \in \mathrm{Q}\} \cup\{[1,0,0,0]\} .
$$

Finally, if we take points $(0,0,1, \mathrm{z})$ and $(0,0,1, \mathrm{w})$ of the third type then we obtain the lines joining these points in the following one case:
i. If $\mathrm{z}-\mathrm{w} \neq 0$, then the lines joining these points are

$$
\{[\mathrm{r}, 1,0,0] \mid \mathrm{r} \in \mathrm{Q}\} \cup\{[1,0,0,0]\} .
$$

Now, we would like to carry the results over the dual ring $\mathbf{Q}:=\mathrm{Q}+\mathrm{Q} \varepsilon, \varepsilon \notin \mathrm{Q}$ and $\varepsilon^{2}=0$ with the maximal ideal $\mathbf{I}=\mathrm{Q} \varepsilon$ (of non-units). Note that \mathbf{Q} does not have to be a local ring with the maximal ideal \mathbf{I} in the case $\varepsilon^{2}=k \in F-\{0\}$. For, in this case, the inverse of any $x=a+b \varepsilon \in \mathbf{Q}$ would be $x^{-1}=b^{-1}\left[a\left(a b^{-1} a-k b\right)^{-1}\right]+(k b-$ $\left.a b^{-1} a\right)^{-1} \varepsilon$. As for the case we study, that is, for $k=0$, it is clear that $(a+b \varepsilon)^{-1}=a^{-1}-a^{-1} b a^{-1} \varepsilon$ (we know that
a^{-1} exists for all $\mathrm{a} \in \mathrm{Q}-\{0\}$). Therefore, the non-unit elements of \mathbf{Q} consist of the maximal ideal $\mathbf{I}=\mathrm{Q} \varepsilon$. For more detailed information about \mathbf{Q} it can be seen to $[3,4]$. So, we can find the intersection points of any two lines and the lines joining any two points in the space $\mathbf{P}\left(\mathbf{J}^{\prime \prime}\right)$ where $\mathbf{J}^{\prime \prime}=\mathbf{H}\left(\mathbf{Q}_{4}, \mathbf{J} \gamma\right)$. By similar calculations, first we take the different types of lines:

$$
\begin{aligned}
& {[1, \mathrm{~m}, \mathrm{n}, \mathrm{k}] \cap[\mathrm{q}, 1, \mathrm{~s}, \mathrm{t}] } \\
&=\left\{\left((1-\mathrm{mq})^{-1}(\mathrm{~ms}+\mathrm{n}+(\mathrm{mt}+\mathrm{k}) \mathrm{z}), \mathrm{q}(1-\mathrm{mq})^{-1}(\mathrm{~ms}+\mathrm{n}+(\mathrm{mt}+\mathrm{k}) \mathrm{z})+\mathrm{s}+\mathrm{tz}, 1, \mathrm{z}\right) \mid \mathrm{z} \in \mathbf{Q}\right\} \\
& \mathrm{U}\left\{\left((1-\mathrm{mq})^{-1}((\mathrm{~ms}+\mathrm{n}) \mathrm{w}+\mathrm{mt}+\mathrm{k}), \mathrm{q}(1-\mathrm{mq})^{-1}((\mathrm{~ms}+\mathrm{n}) \mathrm{w}+\mathrm{mt}+\mathrm{k})+\mathrm{sw}+\mathrm{t}, \mathrm{w}, 1\right) \mid \mathrm{w} \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{m}, \mathrm{n}, \mathrm{k}, \mathrm{s}, \mathrm{t} \in \mathbf{I}$,
$[1, \mathrm{~m}, \mathrm{n}, \mathrm{k}] \cap[\mathrm{q}, \mathrm{s}, 1, \mathrm{t}]$

$$
\begin{aligned}
= & \left\{\left(\mathrm{m}+\mathrm{n}(1-\mathrm{qn})^{-1}(\mathrm{qm}+\mathrm{s}+(\mathrm{qk}+\mathrm{t}) \mathrm{z})+\mathrm{kz}, 1,(1-\mathrm{qn})^{-1}(\mathrm{qm}+\mathrm{s}+(\mathrm{qk}+\mathrm{t}) \mathrm{z}), \mathrm{z}\right) \mid \mathrm{z} \in \mathbf{Q}\right\} \\
& \cup\left\{\left(\mathrm{mv}+\mathrm{n}(1-\mathrm{qn})^{-1}((\mathrm{qm}+\mathrm{s}) \mathrm{v}+\mathrm{qk}+\mathrm{t})+\mathrm{k}, \mathrm{v},(1-\mathrm{qn})^{-1}((\mathrm{qm}+\mathrm{s}) \mathrm{v}+\mathrm{qk}+\mathrm{t}), 1\right) \mid \mathrm{v} \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{m}, \mathrm{n}, \mathrm{k}, \mathrm{t} \in \mathbf{I}$,

$$
\begin{aligned}
& {[1, \mathrm{~m}, \mathrm{n}, \mathrm{k}] \cap[\mathrm{q}, \mathrm{~s}, \mathrm{t}, 1] } \\
&=\left\{\left((1-\mathrm{kq})^{-1}(\mathrm{~m}+\mathrm{ks}+(\mathrm{n}+\mathrm{kt}) \mathrm{y}), 1, \mathrm{y}, \mathrm{q}(1-\mathrm{kq})^{-1}(\mathrm{~m}+\mathrm{ks}+(\mathrm{n}+\mathrm{kt}) \mathrm{y})+\mathrm{s}+\mathrm{ty}\right) \mid \mathrm{y} \in \mathbf{Q}\right\} \\
& \cup\left\{\left((1-\mathrm{kq})^{-1}(\mathrm{n}+\mathrm{kt}+(\mathrm{m}+\mathrm{ks}) \mathrm{v}), \mathrm{v}, 1, \mathrm{q}(1-\mathrm{kq})^{-1}(\mathrm{n}+\mathrm{kt}+(\mathrm{m}+\mathrm{ks}) \mathrm{v})+\mathrm{sv}+\mathrm{t}\right) \mid \mathrm{v} \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{m}, \mathrm{n}, \mathrm{k} \in \mathbf{I}$,

$$
\begin{aligned}
& {[\mathrm{m}, 1, \mathrm{n}, \mathrm{k}] \cap[\mathrm{q}, \mathrm{~s}, 1, \mathrm{t}] } \\
&=\left\{\left(1, \mathrm{~m}+\mathrm{n}(1-\mathrm{sn})^{-1}((\mathrm{q}+\mathrm{sm})+(\mathrm{sk}+\mathrm{t}) \mathrm{z})+\mathrm{kz},(1-\mathrm{sn})^{-1}((\mathrm{q}+\mathrm{sm})+(\mathrm{sk}+\mathrm{t}) \mathrm{z}), \mathrm{z}\right) \mid \mathrm{z} \in \mathbf{Q}\right\} \\
& \cup\left\{\left(\mathrm{u},(1-\mathrm{ns})^{-1}((\mathrm{~m}+\mathrm{nq}) \mathrm{u}+\mathrm{nt}+\mathrm{k}), \mathrm{qu}+\mathrm{s}(1-\mathrm{ns})^{-1}((\mathrm{~m}+\mathrm{nq}) \mathrm{u}+\mathrm{nt}+\mathrm{k})+\mathrm{t}, 1\right) \mid \mathrm{u} \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{n}, \mathrm{k}, \mathrm{t} \in \mathbf{I}$,

$$
\begin{aligned}
& {[\mathrm{m}, 1, \mathrm{n}, \mathrm{k}] \cap[\mathrm{q}, \mathrm{~s}, \mathrm{t}, 1] } \\
&=\left\{\left(1,(1-\mathrm{ks})^{-1}((\mathrm{~m}+\mathrm{kq})+(\mathrm{n}+\mathrm{kt}) \mathrm{y}), \mathrm{y}, \mathrm{q}+\mathrm{s}(1-\mathrm{ks})^{-1}((\mathrm{~m}+\mathrm{kq})+(\mathrm{n}+\mathrm{kt}) \mathrm{y})+\mathrm{ty}\right) \mid \mathrm{y} \in \mathbf{Q}\right\} \\
& \mathrm{U}\left\{\left(\mathrm{u},(1-\mathrm{ks})^{-1}((\mathrm{n}+\mathrm{kt})+(\mathrm{m}+\mathrm{kq}) \mathrm{u}), 1, \mathrm{qu}+\mathrm{s}(1-\mathrm{ks})^{-1}((\mathrm{n}+\mathrm{kt})+(\mathrm{m}+\mathrm{kq}) \mathrm{u})+\mathrm{t}\right) \mid \mathrm{u} \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{n}, \mathrm{k} \in \mathbf{I}$,
$[\mathrm{m}, \mathrm{n}, 1, \mathrm{k}] \cap[\mathrm{q}, \mathrm{s}, \mathrm{t}, 1]$
$=\left\{\left(1, \mathrm{x},(1-\mathrm{kt})^{-1}((\mathrm{~m}+\mathrm{kq})+(\mathrm{n}+\mathrm{ks}) \mathrm{x}), \mathrm{q}+\mathrm{sx}+\mathrm{t}(1-\mathrm{kt})^{-1}((\mathrm{~m}+\mathrm{kq})+(\mathrm{n}+\mathrm{ks}) \mathrm{x})\right) \mid \mathrm{x} \in \mathbf{Q}\right\}$

$$
\mathrm{u}\left\{\left(\mathrm{u}, 1,(1-\mathrm{kt})^{-1}((\mathrm{n}+\mathrm{ks})+(\mathrm{m}+\mathrm{kq}) \mathrm{u}), \mathrm{qu}+\mathrm{s}+\mathrm{t}(1-\mathrm{kt})^{-1}((\mathrm{n}+\mathrm{ks})+(\mathrm{m}+\mathrm{kq}) \mathrm{u})\right) \mid \mathrm{u} \in \mathbf{I}\right\}
$$

where $\mathrm{k} \in \mathbf{I}$.
Now we examine the same types of lines:

First we take lines [m,n,k,1] and [q,s,t,1] of the fourth types. We can determine the intersection points of these lines in three cases as follows:
i. If n-s $\notin \mathbf{I}, \mathrm{k}-\mathrm{t} \in \mathbf{I}$, then the intersection points are

$$
\begin{aligned}
& \left\{\left(1,-(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{~m}-\mathrm{q}+(\mathrm{k}-\mathrm{t}) \mathrm{y}), \mathrm{y}, \mathrm{~m}-\mathrm{n}(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{~m}-\mathrm{q}+(\mathrm{k}-\mathrm{t}) \mathrm{y})+\mathrm{ky}\right) \mid \mathrm{y} \in \mathbf{Q}\right\} \\
& \cup\left\{\left(\mathrm{a},-(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{k}-\mathrm{t}+(\mathrm{m}-\mathrm{q}) \mathrm{a}), 1, \mathrm{ma}-\mathrm{n}(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{k}-\mathrm{t}+(\mathrm{m}-\mathrm{q}) \mathrm{a})+\mathrm{k}\right) \mid \mathrm{a} \in \mathbf{I}\right\} .
\end{aligned}
$$

ii. If $\mathrm{k}-\mathrm{t} \notin \mathbf{I}$, then the intersection points are

$$
\begin{aligned}
& \left\{\left(1, x,-(k-t)^{-1}(m-q+(n-s) x), m+n x-k(k-t)^{-1}(m-q+(n-s) x)\right) \mid x \in \mathbf{Q}\right\} \\
& u\left\{\left(u, 1,-(k-t)^{-1}((m-q) u+n-s), m u+n-k(k-t)^{-1}((m-q) u+n-s)\right) \mid u \in \mathbf{I}\right\} .
\end{aligned}
$$

iii. If $n-s \in \mathbf{I}, \mathrm{k}-\mathrm{t} \in \mathbf{I}$ and $\mathrm{m}-\mathrm{q} \notin \mathbf{I}$, then the intersection points are

$$
\begin{aligned}
& \left\{\left(-(m-q)^{-1}(n-s+(k-t) v), 1, v,-m(m-q)^{-1}(n-s+(k-t) v)+n+k v\right) \mid v \in \mathbf{Q}\right\} \\
& \cup\left\{\left(-(m-q)^{-1}((n-s) b+k-t), b, 1,-m(m-q)^{-1}((n-s) b+k-t)+n b+k\right) \mid b \in \mathbf{I}\right\} .
\end{aligned}
$$

Now we take lines $[\mathrm{m}, \mathrm{n}, 1, \mathrm{k}]$ and $[\mathrm{q}, \mathrm{s}, 1, \mathrm{t}]$ of the third types, where $\mathrm{k}, \mathrm{t} \in \mathbf{I}$. We can determine the intersection points of these lines in two cases as follows:
i. If $\mathrm{m}-\mathrm{q} \notin \mathbf{I}$ and $\mathrm{n}-\mathrm{s} \in \mathbf{I}$, then the intersection points are

$$
\begin{aligned}
& \left\{\left(-(m-q)^{-1}(n-s+(k-t) w), 1,-m(m-q)^{-1}(n-s+(k-t) w)+n+k w, w\right) \mid w \in \mathbf{Q}\right\} \\
& U\left\{\left(-(m-q)^{-1}((n-s) b+k-t), b,-m(m-q)^{-1}((n-s) b+k-t)+n b+k, 1\right) \mid b \in \mathbf{I}\right\}
\end{aligned}
$$

ii. If $n-s \notin \mathbf{I}$, then the intersection points are

$$
\begin{aligned}
& \left\{\left(1,-(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{~m}-\mathrm{q}+(\mathrm{k}-\mathrm{t}) \mathrm{z}), \mathrm{m}-\mathrm{n}(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{~m}-\mathrm{q}+(\mathrm{k}-\mathrm{t}) \mathrm{z})+\mathrm{kz}, \mathrm{z}\right) \mid \mathrm{z} \in \mathbf{Q}\right\} \\
& \mathrm{U}\left\{\left(\mathrm{a},-(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{k}-\mathrm{t}+(\mathrm{m}-\mathrm{q}) \mathrm{a}), \mathrm{ma}-\mathrm{n}(\mathrm{n}-\mathrm{s})^{-1}(\mathrm{k}-\mathrm{t}+(\mathrm{m}-\mathrm{q}) \mathrm{a})+\mathrm{k}, 1\right) \mid \mathrm{a} \in \mathbf{I}\right\} .
\end{aligned}
$$

Finally we take $[\mathrm{m}, 1, \mathrm{n}, \mathrm{k}]$ and $[\mathrm{q}, 1, \mathrm{~s}, \mathrm{t}]$ of the second types lines, where $\mathrm{n}, \mathrm{k}, \mathrm{s}, \mathrm{t} \in \mathbf{I}$. In this case, if $\mathrm{m}-\mathrm{q} \notin \mathbf{I}$ then the intersection points are

$$
\begin{aligned}
& \left\{\left(-(m-q)^{-1}(n-s+(k-t) w),-m(m-q)^{-1}(n-s+(k-t) w)+n+k w, 1, w\right) \mid w \in \mathbf{Q}\right\} \\
& U\left\{\left(-(m-q)^{-1}((n-s) c+k-t),-m(m-q)^{-1}((n-s) c+k-t)+n c+k, c, 1\right) \mid c \in \mathbf{I}\right\} .
\end{aligned}
$$

Now, conversely, we would like to determine the lines joining these two points, according to the two points in the 3 -space are of different and of the same types.

First let us examine the case that the two points are of different types:

```
(1,x,y,z)\cup (u,1,v,w)
= {[z-(w-zu-t(v-yu))(1-xu)}\mp@subsup{)}{}{-1}x-ty,(w-zu-t(v-yu))(1-xu)\mp@subsup{)}{}{-1},t,1]|t\in\mathbf{Q}
    U{[y-(v-yu-k(w-zu))(1-xu)}\mp@subsup{)}{}{-1}x-kz,(v-yu-k(w-zu))(1-xu)\mp@subsup{)}{}{-1},1,k]|k\inI
```

where $\mathbf{u} \in \mathbf{I}$,

```
(1,x,y,z) U (u,v,1,w)
= {[z-sx-(w-zu-s(v-xu))(1-yu) -1 y,s,(w-zu-s(v-xu))(1-yu)}\mp@subsup{)}{}{-1},1]|s\in\mathbf{Q}
    U{[x-(v-xu-k(w-zu))(1-yu)}\mp@subsup{)}{}{-1}y-kz,1,(v-xu-k(w-zu))(1-yu)\mp@subsup{)}{}{-1},k]|k\inI
```

where $\mathrm{u}, \mathrm{v} \in \mathbf{I}$,

$$
\begin{aligned}
&(1, x, y, z) \cup(u, v, w, 1) \\
&=\left\{\left[y-s x-(w-y u-s(v-x u))(1-z u)^{-1} z, s, 1,(w-y u-s(v-x u))(1-z u)^{-1}\right] \mid s \in \mathbf{Q}\right\} \\
& U\left\{\left[x-n y-(v-x u-n(w-y u))(1-z u)^{-1} z, 1, n,(v-x u-n(w-y u))(1-z u)^{-1}\right] \mid n \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathbf{I}$,

$$
\begin{aligned}
& (x, 1, y, z) \cup(u, v, 1, w) \\
& =\left\{\left[q, z-q x-(w-z v-q(u-x v))(1-y v)^{-1} y,(w-z v-q(u-x v))(1-y v)^{-1}, 1\right] \mid q \in \mathbf{Q}\right\} \\
& \quad U\left\{\left[1, x-(u-x v-k(w-z v))(1-y v)^{-1} y-k z,(u-x v-k(w-z v))(1-y v)^{-1}, k\right] \mid k \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{x}, \mathrm{u}, \mathrm{v} \in \mathbf{I}$,

$$
\begin{aligned}
& (x, 1, y, z) \cup(u, v, w, 1) \\
& =\left\{\left[q, y-q x-(w-y v-q(u-x v))(1-z v)^{-1} z, 1,(w-y v-q(u-x v))(1-z v)^{-1}\right] \mid q \in \mathbf{Q}\right\} \\
& \quad \cup\left\{\left[1, x-n y-(u-x v-n(w-y v))(1-z v)^{-1} z, n,(u-x v-n(w-y v))(1-z v)^{-1}\right] \mid n \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathbf{I}$,

$$
\begin{aligned}
&(x, y, 1, z) \cup(u, v, w, 1) \\
&=\left\{\left[q, 1, y-q x-(v-y w-q(u-x w))(1-z w)^{-1} z,(v-y w-q(u-x w))(1-z w)^{-1}\right] \mid q \in \mathbf{Q}\right\} \\
& \cup\left\{\left[1, m, x-m y-(u-x w-m(v-y w))(1-z w)^{-1} z,(u-x w-m(v-y w))(1-z w)^{-1}\right] \mid m \in \mathbf{I}\right\}
\end{aligned}
$$

where $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathbf{I}$.
Now we can examine the other case. Let the two points be of the same type:
If we take points $(1, \mathrm{x}, \mathrm{y}, \mathrm{z})$ and $(1, \mathrm{u}, \mathrm{v}, \mathrm{w})$ of the first type, then we complete this examination in the following three cases:
i. If $x-u \notin \mathbf{I}$, then the lines joining these points are

$$
\begin{aligned}
& \left\{\left[z-(z-w-c(y-v))(x-u)^{-1} x-c y,(z-w-c(y-v))(x-u)^{-1}, c, 1\right] \mid c \in \mathbf{Q}\right\} \\
& u\left\{\left[y-(y-v-t(z-w))(x-u)^{-1} x-t z,(y-v-t(z-w))(x-u)^{-1}, 1, t\right] \mid t \in \mathbf{I}\right\} .
\end{aligned}
$$

ii. If $x-u \in \mathbf{I}, y-v \in \mathbf{I}$ and $z-w \notin \mathbf{I}$, then the lines joining these points are

$$
\begin{aligned}
& \left\{\left[y-s x-(y-v-s(x-u))(z-w)^{-1} z, s, 1,(y-v-s(x-u))(z-w)^{-1}\right] \mid s \in \mathbf{Q}\right\} \\
& U\left\{\left[x-n y-(x-u-n(y-v))(z-w)^{-1} z, 1, n,(x-u-n(y-v))(z-w)^{-1}\right] \mid n \in \mathbf{I}\right\} .
\end{aligned}
$$

iii. If $x-u \in \mathbf{I}, y-v \notin \mathbf{I}$, then the lines joining these points are

$$
\begin{aligned}
& \left\{\left[z-b x-(z-w-b(u-x))(y-v)^{-1} y, b,(z-w-b(u-x))(y-v)^{-1}, 1\right] \mid b \in \mathbf{Q}\right\} \\
& U\left\{\left[x-(x-u-k(z-w))(y-v)^{-1} y-k z, 1,(x-u-k(z-w))(y-v)^{-1}, k\right] \mid k \in \mathbf{I}\right\} .
\end{aligned}
$$

If we take points $(x, 1, y, z)$ and $(u, 1, v, w)$ of the second type, where $x, u \in \mathbf{I}$, then we can determine the lines joining these points in the following two cases:
i. If $y-v \notin \mathbf{I}$, then the lines joining these points are

$$
\begin{aligned}
& \left\{\left[a, z-a x-(z-w-a(x-u))(y-v)^{-1} y,(z-w-a(x-u))(y-v)^{-1}, 1\right] \mid a \in \mathbf{Q}\right\} \\
& U\left\{\left[1, x-(x-u-k(z-w))(y-v)^{-1} y-k z,(x-u-k(z-w))(y-v)^{-1}, k\right] \mid k \in \mathbf{I}\right\} .
\end{aligned}
$$

ii. If $y-v \in \mathbf{I}$ and $z-w \notin \mathbf{I}$, then the lines joining these points are

$$
\begin{aligned}
& \left\{\left[q, y-q x-(y-v-q(x-u))(z-w)^{-1} z, 1,(y-v-q(x-u))(z-w)^{-1}\right] \mid q \in \mathbf{Q}\right\} \\
& U\left\{\left[1, x-n y-(x-u-n(y-v))(z-w)^{-1} z, n,(x-u-n(y-v))(z-w)^{-1}\right] \mid n \in \mathbf{I}\right\} .
\end{aligned}
$$

Finally, if we take points $(x, y, 1, z)$ and $(u, v, 1, w)$ of the third type, where $x, y, u, v \in \mathbf{I}$, then we obtain the lines joining these points in the following one case:
i. If $\mathrm{z}-\mathrm{w} \notin \mathbf{I}$, then the lines joining these points are

$$
\begin{aligned}
& \left\{\left[q, 1, y-q x-(y-v-q(x-u))(z-w)^{-1} z,(y-v-q(x-u))(z-w)^{-1}\right] \mid q \in \mathbf{Q}\right\} \\
& U\left\{\left[1, m, x-m y-(x-u-m(y-v))(z-w)^{-1} z,(x-u-m(y-v))(z-w)^{-1}\right] \mid m \in \mathbf{I}\right\}
\end{aligned}
$$

So, we have completed the examination related to find the intersection points of any two lines and the lines joining any two points in the 3 -space $\mathbf{P}\left(\mathbf{J}^{\prime \prime}\right)$. Note that the previous results are obtained if we choose $\varepsilon=0$ (in this case, $\mathbf{I}=\{0\}$).

Finally, we would like to make an evaluation between quaternion 2-space (plane) and the quaternion 3space. If we follow the way which is similar to the construction given for 3 -space, we have the following for the 2 -space ($\mathbf{P}, \mathbf{L}, \mid, \sqcup)$:

The set of points is

$$
\mathbf{P}=\left\{\left(1, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \mid \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathbf{Q}\right\} \cup\left\{\left(\mathrm{x}_{1}, 1, \mathrm{x}_{3}\right) \mid \mathrm{x}_{1} \in \mathbf{I}, \mathrm{x}_{3} \in \mathbf{Q}\right\} \cup\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, 1\right) \mid \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbf{I}\right\} .
$$

The set of lines is

$$
\mathbf{L}=\left\{\left[1, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right] \mid \mathrm{m}_{2}, \mathrm{~m}_{3} \in \mathbf{I}\right\} \cup\left\{\left[\mathrm{m}_{1}, 1, \mathrm{~m}_{3},\right] \mid \mathrm{m}_{1} \in \mathbf{Q}, \mathrm{~m}_{3} \in \mathbf{I}\right\} \cup\left\{\left[\mathrm{m}_{1}, \mathrm{~m}_{2}, 1\right] \mid \mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathbf{Q}\right\} .
$$

The incidence relation " \mid " is

$$
\begin{aligned}
& {\left[1, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right]=\left\{\left(\mathrm{m}_{2}+\mathrm{m}_{3} \mathrm{y}_{3}, 1, \mathrm{y}_{3}\right) \mid \mathrm{y}_{3} \in \mathbf{Q}\right\} \cup\left\{\left(\mathrm{m}_{2} \mathrm{z}_{2}+\mathrm{m}_{3}, \mathrm{z}_{2}, 1\right) \mid \mathrm{z}_{2} \in \mathbf{I}\right\},} \\
& {\left[\mathrm{m}_{1}, 1, \mathrm{~m}_{3}\right]=\left\{\left(1, \mathrm{~m}_{1}+\mathrm{m}_{3} \mathrm{y}_{3}, \mathrm{y}_{3}\right) \mid \mathrm{y}_{3} \in \mathbf{Q}\right\} \cup\left\{\left(\mathrm{z}_{1}, \mathrm{~m}_{1} \mathrm{z}_{1}+\mathrm{m}_{3}, 1\right) \mid \mathrm{z}_{1} \in \mathbf{I}\right\},} \\
& {\left[\mathrm{m}_{1}, \mathrm{~m}_{2}, 1\right]=\left\{\left(1, \mathrm{y}_{2}, \mathrm{~m}_{1}+\mathrm{m}_{2} \mathrm{y}_{2}\right) \mid \mathrm{y}_{2} \in \mathbf{Q}\right\} \cup\left\{\left(\mathrm{z}_{1}, 1, \mathrm{~m}_{1} \mathrm{z}_{1}+\mathrm{m}_{2}\right) \mid \mathrm{z}_{1} \in \mathbf{I}\right\} .}
\end{aligned}
$$

The connection relation " \sqcup " is

$$
\begin{aligned}
& \mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \sqcup\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)=\mathrm{Q} \Leftrightarrow \mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}} \in \mathbf{I}(\mathrm{i}=1,2,3), \forall \mathrm{P}, \mathrm{Q} \in \mathbf{P} ; \\
& \left.\mathrm{g}=\left[\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right] \sqcup\left[\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right]=\mathrm{h} \Leftrightarrow \mathrm{~m}_{\mathrm{i}}-\mathrm{p}_{\mathrm{i}} \in \mathbf{I}(\mathrm{i}=1,2,3)\right), \forall \mathrm{g}, \mathrm{~h} \in \mathbf{L} .
\end{aligned}
$$

The 2 -space is isomorphic to the projective Klingenberg plane given in [3,4]. In a projective Klingenberg plane, it is well known that two non-connected (non-neighbour in [3,4]) lines meet at a unique point. However, this situation is different in 3-space as two lines with this propery meet at least at two points (see the results at pages 7 and 8). This means that 2 -space and 3 -space are different from each other.

Acknowledgement

This work was supported by the Research Fund of the University of Uludağ, Project Number: KUAP(F)-2014/50.

REFERENCES

[1]. Akpinar, A. and Erdogan, F.O., Dual Quaternionic (n-1)-Spaces Defined by Special Jordan Algebras of Dimension $4 n^{2}-2 n, 2018$ (under review)
[2]. Akpinar, A. and Erdogan, F.O., Collineations and Cross-Ratios in Octonion Planes, 2018 (under review)
[3]. Celik, B. and Erdogan, F.O., On Addition and Multiplication of Points in a Certain Class of Projective Klingenberg Planes, Journal of Inequalities and Applications, 230 (2013).
[4]. Celik, B. and Dayioglu, A., The Collineations which Act as Addition and Multiplication on Points in a Certain Class of Projective Klingenberg Planes, Journal of Inequalities and Applications, 193 (2013).
[5]. Faulkner, J.R., Octonion Planes Defined by Quadratic Jordan Algebras, Mem. Amer. Math. Soc., 104 (1970) 1-71.
[6]. Faulkner, J.R., The Role of Nonassociative Algebra in Projective Geometry, Graduate Studies in Mathematics, Vol. 159, Amer. Math. Soc., Providence, R.I., (2014).
[7]. Jacobson, N., Structure and Representations of Jordan Algebras, Colloq. Publ. 39, Amer. Math. Soc., Providence, R.I., (1968).
[8]. Jacobson, N., Basic Algebra I, W. H. Freeman and Company, New York, (1985).
[9]. McCrimmon, K., The Freudenthal-Springer-Tits Constructions of Exceptional Jordan Algebras, Trans. of the Amer. Math. Soc., 139 (1969) 495-510.

[^0]: * Corresponding author. Email address: aakpinar@uludag.edu.tr
 http://dergipark.gov.tr/csj ©2016 Faculty of Science, Cumhuriyet University

