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Abstract. In this paper, a differential transform method (DTM) has been applied to
solve one-dimensional Burger’s and K(m,p,1) equations with initial conditions and exact
solutions have been obtained as same as [1-5]. The results show that DTM has got many
merits and much more advantages and it is also a powerful mathematical tool for solving
partial differential equations having wide applications in engineering and physics.
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1. Introduction

Most scientific problems in physics and other fields such as biology, chemistry, me-
chanics, etc., are modeled by nonlinear partial differential equations. Except a lim-
ited number of these problems, most of them do not have any analytical solution.
Some of them are solved by using numerical techniques and some by the analytical
perturbation method. In recent years, some researchers used many powerful meth-
ods for obtaining exact solutions of nonlinear partial differential equations, such
as inverse scattering method [6], Hirota’s bilinear method [7], Backlaund transfor-
mation [8], Painleve expansion [9], sine-cosine method [10], homogenous balance
method [11], homotopy perturbation method [12], variational method [13], asymp-
totic methods [14], nonperturbative methods [15], Adomian Pade approximation
[16], improved tanh function method [17], Jacobi elliptic function expansion method
[18], F- expansion method [19], Weierstrass semi-rational expansion method [20] and
SO on.

The differential transform method (namely DTM) was first introduced by
Pukhov et al. [21] who solved linear and nonlinear initial value problems in electric
circuit analysis. It is a semi-numerical and semi-analytic technique that formulizes
Taylor series in totally different manner. With this technique, the given differential
equation and its related initial conditions are transformed into a recurrence equation
that finally leads to the solution of a system of algebraic equations as coeflicients of
a power series solution. This method is useful to obtain the exact and approximate
solutions of linear and nonlinear differential equations. No need to linearization
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or discretization, large computational work and round-off errors are avoided [22].
Recently, this methods has been successfully applied to solve many types of nonlinear
problems in science and engineering by many authors ([23]-[30]).

The aim of this paper is to extend the differential transform method to obtain
exact solutions to the nonlinear dispersive one-dimensional Burger’s and K(m,p,1)
equation equation with initial condition, respectively:

Up + Uy = VUgy (1.1)
ur+ (W) — (UWP)gge + s =0, m>1, 1<p<3 (1.2)
u(z,0) = f(x)

where v > 0 is the coefficient of kinematics.

In this letter, the basic idea of the DTM is introduced and then its applica-
tions in one-dimensional Burger’s, K(2,2,1) and K(3,3,1) equations are studied for
initial conditions. Closed form solutions are obtained as same as ([1]-[5]).

2. Two-Dimensional Differential Transform Method

The basic definitions and fundamental operations of the two-dimensional differential
transform are defined in ([27]-[33]) as follows:

If function u(z, y) is analytic and differentiated continuously with respect to
x and y in the domain of interest, then let

1 [0 u(z,y)
Uk, h) = kb { dzkoyh ]x_o 21)

where the spectrum U(k,h) is the transformed function,which is also called T-
function in brief. In this paper, the lowercase u(z,y) represent the original function
while the uppercase U(k, h) stand for the transformed function (T-function ).

The differential inverse transform of U(k, h) is defined as follow:

u(z,y) = iiU(k, h)xkyl (2.2)

k=0h=0
Combining (2.1) and (2.2), it can be obtained that
L [0 u(z,y) k. h
k=0h=0 y=0

In real applications, the function u(z,y) is estimated by a finite number of terms of
Eq. (2.2) or Eq. (2.3 ). Hence, Eq. (2.2) can be written as follow:

n m

u(z,y) = ZU(k‘, h)xFy". (2.4)

k=0h=0
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THE DIFFERENTIAL TRANSFORM METHOD

Usually, the values of n and m are decided by convergency of the series coefficients.
The fundamental operations of two-dimensional differential transform method

are listed in Table 1.

H Original Function ‘ Transformed Function
w(z,y) = u(z,y) £ v(z,y) W(k,h) =U(k,h) £ V(k,h).
w(z,y) = Au(z,y) W (k,h) = AU(k, h),(\ is a constant).
w(z,y) = 2400 W(k,h) = (k+ 1)Uk + 1,h)
w(z,y) = f’“@ Sulea), W (k,h) = (h+ 1)U (k, h + 1).
w(z,y) = a;igy» W(k,h) = (k+ 1)(k +2)...(k +7)

(h+1)(h+2)....(h+s)U(k +1,h+5).

w(z,y) ="y W (ks h) = 30k — m, h —n) = 6(k — m)a(h — 1)
1, k=m and h=n

Ok —m,h —n) = 0, otherwise
w(z,y) = ulz, y)v(x,y) W(k,h) = 20 éOU(r, h—8)V(k—r,s)
w(@,y) = ulz, y)o(@,y) 2SS0 | W(k,h) = Ei:olz;o Eijohz;:;(k ot 2k —r—t+1)
U(r,h—s—p)V(t,s)C(k—r—t+2,p)
w(z,y) = 2oy olw) W(k,h) = zk; ’Z (r+1)(k—r+ 1)U +1,h—s)V(k—r+1,s)
r:Os:O
w(z,y) = u(z, y)M W (k,h) = 2020( —r+2)(k—r+ DU h—s)V(k—1+2,5).

k k—r h h—s

w(z,y) = u(z, y)v(z,y)q(z,y) | Wk,h) =3 > > Z U(r,h —

r=0t=0s=0p=

—p)V(t,s)Q(k —r—tp)

Table 1: The operations for the two-dimensional differential transform method

3. Differential Transform Method for One-Dimensional Burger’s

Equation

3.1. Here we consider the solution of Eq. (1.1) with the initial condition and

boundary conditions as follows,
T
u(x,0) = up(x) = ug tan 72

u(0,t) = u(l,t) = 0.

where v > 0 is the coefficient of kinematic viscosity [1].

(3.1)

(3.2)

Taking two-dimensional transform of Eq. (1.1) by using the related definition

Table 1, we have

(h+ 1)Uk h+ 1)+ (k—r+ DU h—s)U(k—r+1,5) =

r=0s=0
vk + 1) (k +2)U(k + 2, h)
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By using the series form of Eq.
U(k,0) are listed in Table 2.

(o -7 (2 )
l 1
U(1,0) = 21 U@B,0) = ~——F5—"—
47( 207" 27\-2 —Luzw 27'r5 502(2u 2ﬂ2 - HLZW 271'7
[ [ [ [
U(5,0) = 3005 2 U(7,0) = 31517 ,
2 2
553 2ugr” 14T ) o 324419(%#_“4[& Rl
l L
U@,0) = 40519 U(11,0) = EYNGITLL
324419(%7“2%’r w1l
. L
Uk,0)=0if k=0,2,4,... | U(11,0) = S

Table 2: Some values of U(k,0) of Ex 2.1.

(3.1), some of the initial transformation coefficients

By substituting U(k, 0) values in Table 2 into Eq. (3.3), we obtain some values

of U(k,h) in Table 3.

E 7

_ 2u07r‘3t u07r3t _ 8u07r t 411.07\' t
v@,1) = ( B =\"a5 T Tad

_ 34u07r7t _ 17ug7r6t 496u07‘r t 248u(2)7'r8t
Us,1) = ( 1517 1516 u(7,1) 31519 31508

_ (276ugnttt 1382u%7r10t . —

’ - T 10 ) - — YUy 4y Ey e

U(9,1) = (Zouar S2up U(k,1) =0 if k =0,2,4

Table 3: Some values of U(k,1) of Ex 2.1.

Hence, substituting sufficient number of computed U (k, h) values into Eq. (2.2),

we have series solution as follow:

2 - 2
(2ul027r2 o uﬁTw) T 7 (Qulo;rz . u%i) 7.[.3
3
u(z,t) = 57 x+ E x
ar (22 - “37”)2 m 502 (2 - 1@”)2 T
5 7
+ 3005 v 31507 v
2 2
553 (24 - 47) w0 32441y (2 - M) A
* 40509 "+ 31150111 vt
o 2u07r3t u07r3t Suom°t Znit B
B 305 314
3dugmt 7 17u07r6t 5 496uomIt 7 248ud St 2Tt
1507 1506 31509 31508
276uor'tt  1382u2ri0t\
. I NI 3.4
( 2835011 TR RS (34)

The closed form of the first curly bracket is ug tan 7z, the closed form of the second

(2u07r2 _ Uo

curly bracket is )

) sec?(F

x) tan(7x)t, and so on.
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Letting (2“[)—2”2 - "é—ﬂ) = C then Eq. (3.4) can be written as

t2
u(z,t) = up tan T+ Csecz(gx) tan(%x)t + Csec4(§x) tan(zx)i + ...

l l
t2
= uotanjx{1—}—05602(7;95)15—1—05604(7;30)2—|—...} (3.5)

This is also the same result with obtained by decomposition method and in a closed
form solution is given by Gorguis [1].

u(z,t) = up tan ?m exp(C’secQ(?x)t) (3.6)

3.2 Consider the solution of Eq. (1.1) the initial condition as in [1]
u(z,0) = 2z. (3.7
From the initial condition Eq. (3.7), we can write

U(k,0) = 0if k=0,2,3,4,5,6, ...,
U(1,0) = 2. (3.8)

For each k, substituting Eq. (3.8) into Eq. (3.3 ), and by recursive method, the
result are listed as follows:

U(k,3) =0if k=0,2,3,4,..,U(1,3) = —16. (3.9)

The rest of the terms of the series have been calculated using Maple. Substituting
all U(k, h) into Eq. (2.2), we have series solution as follow:

u(z,t) = 2z — 4wt + 8xt? — 162> + 32xt* — 64xtd + .. (3.10)

The exact analytical solution of u(x,t) is given

_ 2z
142t

u(z,t) (3.11)

which is exactly the same as those obtained by the Adomian decomposition method

).

3.3. We consider Eq. (1.1) with initial condition

a+ B+ (B —a)exp(y)
1+ exp(y)

u(z,0) = ,t=0 (3.12)

where v = (a/v)(z — \) and the parameters «, 8 and v are arbitrary constants.
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U(0,0) = a+5tfi;;c():)xr)(u)

U(,0) = 228

U(2,0) = e

U(3,0) = %exp(u)a4({;ﬁ;i?z?]%ungexp(w))

U(4,0) = % eXP(M)as(*1+e)[€f_‘(_9:;)pz:)l]§zz(2u)+ll exp(p))

U(5,0) = &eXp(H)QG(*le?GeXP(3ﬁ)_;ii?:I;](ggg*EXP(4M)*66EXP(QM))

Table 4: Some values of U(k,0) of Ex 2.3. (u = —22)

From the initial condition Eq. (3.12), some of the initial transformation coeffi-
cients U (k,0) are listed in Table 4.

Hence, substituting U(k,0) values in Table 4 into Eq. (3.3), and by recursive
method, some of the results are listed in Table 5. Substituting all U(k, h) into Eq.
(2.2), we have series solution as follow:

w(a,t) = {Oz + B+ (B — ) exp(p) _9 exp(p)a? exp(p)ad(—1 + exp()) o

T Trow@Pe " Lrepmpe )
o exp(p)a?s 3 2exp(u)a3ﬁ(—1 + exp(p)) ot
[1+ exp(p)]*v [1 + exp(p)]?v?

exp(u)atB(1 + dexp(p) +exp(2pr) o,
[1 4 exp(p)]*v?
41 exp(p)a®B(1 — exp(3p) + 11 exp(2u) — 11 exp(n))
3 [1 + exp(p)]>v*
exp(p)a’f?(—1+ exp(u) o exp(p)af?(~1 = dexp(p) +exp(2u))
[EEm) 1T ()8
L xp(r)a®B2 (=1 + exp(3u) — 1l exp(2u) + 11 exp(p))
[1 + exp(p)]Pvvt
L1 exp(p)a’®5?(26 exp(u) — 66 exp(2u) + 26 exp(3p) — exp(4p) — 1)
6 [1 + exp(p)]ov®
N 1exp(p)a’2(1 — dexp(p) + exp(2p))
3 1T oxp(a)] 8
L Lexp(u)a®B3(1 — exp(3p) + L exp(2u) — Ll exp(k)) s
3 [1 4 exp(p)]Pv?
+1 exp(p)a®B3(1 — 26 exp(2u) + 66 exp(2u) — 26 exp(3k) + exp(4k)) 243
6 (1 + exp(p)]ov®
1 exp(p)a’B3(1 + 302 exp(2u) — 57 exp(p) + 57 exp(4u) — exp(5u) — 302 exp(3k))
18 [1+ exp(p)]70S

3+ (3.13)

-2

23t + o}

xt?

+{2

222

37 4}

t3

a+B+(B—a) exp(y)

T+oxp(7) , the closed form of

The closed form of the first curly bracket is
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_ 5_exp(p)a’p
U0,1) = 2<1+exp<u) T
_ exp(p)a”B(—1+exp(p))
U(la 1) - 2 ([1)+§XIE(H)]3U2 ( ) ( ))
_ exp(p)a®B(1+4exp(p)+exp(2u
U(27 1) - 2 w i ([1+6XPEH«)])4'U3 o) )
_ 1 exp(p)a®B(l—exp(3u)+11exp(2p)—11exp(p
U(3,1) et
U(4,1) = L 2®)a®5(1—exp(4u) ~26 oxp(31) 466 exp(24) ~26 exp (1))
’ 12 (T+exp(n))®v?
U(5,1) = 1 exp(p)a’ B(302 exp(3u)+exp(5u)—57 exp(4u)+57 exp(p) —302 exp(2u) —1)
’ O (s Ly el
_ oexpp)ax —1+4exp(p
U(0,2) =2 [LFexp(u)]3v?
U(1,2) = @p@aB? (-1 4 exp(n) texp(2u))
’ g1+exr»(u))4v3
U(2 2) — exp(H)OS,ﬁ (—14exp(3u)—11lexp(2n)+11exp(p))
’ [14exp(u)]5v?
U(3,2) = 1 exp(p)a®B82(26 exp (1) —66 exp(2)+26 exp(3u) —exp(4p) —1)
' 6 [1+exp(n)]6v5
U(4 2) — Lexp(“)a7ﬂ2(302eXP(SH)+eXP(5H)—57exr)(4u)+57exp(u)—302exp(zu)_1)
’ 2 [+exp(p)]7v®
U(5 2) — Lcxp(,u)a862(7120cxp(,u)72416cxp(3y‘)+1191 exp(2p)—120 exp(5p)+1191 exp(4p)+exp(6p)+1)
’ 120 [exp(w)[Fo7
U(0,3) 1 exp(p)a’B3(1—4exp(p)+exp(2p))
’ 3 [1+exp(u)] 303
U(1,3) = 1 exp(p)a®B® (1—exp(3u)+11 exp(2p) —11 exp(k))
’ 3 [1+exp(u)]®v?
U(2,3) 1 exp(u)a® B3 (1-26 exp(2u)+66 exp(2) —26 exp(3k)+exp(4k))
’ 6 [1+exp(p)]005
U(3 3) _ 1 exp(p)a’ B3 (14302 exp(2p) —57 exp(p) +57 exp(4p) —exp(5u) —302 exp(3k))
’ 18 [Lrexp(u)]Tv0

Table 5: Some values of U(k, h) of Ex 3.3.

the second curly bracket is [20’[3 () the closed form of the third curly bracket is

j 1+exp(7)]?v
op [Cffil;((;)l]ﬁsﬁp(”’)) and so on. Eq. (3.13) can be written as

a+B+(B—a)exp(y) | 2a*Bexp(y)

u(z, t) = 1+ exp(y) [1 4 exp(v)]?v 10
a?f* exp(y)(~1 +exp(7) ;5 | o*fPexp(y)[1 — dexp(y) + exp(1)*) 5
[T+ exp(y) 02 31+ exp(y)]v?

and so on, in the same manner the rest of components of the iteration formula were
obtained using the Maple Package. The solution of w(z,t) in closed form is

a+p+ (B —a)exp(C)

u(,t) = 1+ exp(Q)

where ( = (a/v)(x—t—N), which are exactly the same as obtained by Adomian
decomposition method [3] and variation iteration method [2]. The behavior of the
solutions obtained by the differential transform method is shown for different values
of times in Fig.1.

4. Differential Transform Method for K(2,2,1) Equation

4.1. Let we take m = 2,p = 2 in Eq. (1.2), hence we have
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Fig.1. The behavior of u(x,t) evaluates by the differential transform method versus x for
different values of time with fixed values @ = 0.4, 8 = 0.6,v = 1, A = 0.125.

Ut + (u2)w - (’U/Q)mmw +usz =0 (41)
Here we consider the solution of Eq.(4.1) with the initial condition as follow,

16c —1
12 ¢

osh2(§) (4.2)

u(z,0) =

where c¢ is an arbitrary constant.

Taking the two-dimensional transform of Eq.(4.1) by using the related definitions
in Table 1, we have

k h
(h+1OU(k,h+1) = _ZZZ(k +1-r)U(r,h—s)U(k+1—r,s)
r=0s=0

+6) > (r+D)(k+1—r)(k+2-n)U(r+1,h—s)U(k+2-7,5)

r=0s5=0
k h

-I-ZZZ(IC—Fl—r)(k—l—?—T)(k—i—3—r)U(r,h—s)U(k+3—r,s)

r=0s=0
—(k+ 1)k +2)(k + 3)(k + 4)(k + 5)U (k + 5, 1)

By using the series form of Eq. (4.2), some of the initial transformation coefficients
U(k,0) can be written as bellows:
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Uk,0)=0if k=1,3,5,...,

4c 1 c c 1
U(an) = ?757(](2’0)757972’(](4’0)7 %,m
1 1
U(6,0) = —= U(8,0) ¢

T 69120 1105920’

T 15482880 247726080

(4.4)

By substituting Eq.(4.4) into Eq.(4.3), we obtain some values of U(k, h) which

are none zero and given in Table 6.
ULl =& -3 U(3,1) = — 155 + 5o
U, 1) = ﬁg + mc Uu,1) =- 193;36062 + 3096157GOC
U(0,2) = —15¢° + 5¢° U(2,2) = —5¢° + g5
U(4,2) :—ﬁf—&—?—l{,sc?’ . \ U(6,2) = —mg—!—‘%gﬁc ) \
U(8,2) = — Tosisom610¢ T 123563040 C U(10,2) = — 713551110906 ¢ + 74590699300
U(1,3) = —q5¢" + 3305€ U(3,3) = —3156¢" + 55206 ¢
U(5,3) = _m& + mcg U(7,3) = _464418640 + 7431;8240 ¢
U(9,3) = — 3377208336¢ T 2140351333120C3 U(0,4) = 575 ° — 9216 *
U(2,4) = koc® — et U(4,4) = 5505 — 775 ¢’
U(674) = ﬁc — m& U(8’4) = 265412080C — 4246;328064

Table 6: Some values of U(k, h) of Ex 3.1.

Hence, substituting sufficient number of computed U (k, h) values into Eq. (2.4),
we obtained three terms series solutions for each unknown functions as follow:

u(z,t) =

1 1 1

{gc 1t @7t Gt et (Gorn®  Tiosoa
+{(_é02 + %c)xt + (_ﬁcg + Flof)x% +(= 11;2002 + 18413QOC
+(~To35360° T 3006876% 1)

+{(_312€2 + %CS) + (_%02 + 9—16(;3)1;2752 (73725 To08
(= 884;36062 T Saaga0¢ )7 T

1

1 1 1

)b + ..

3

Yot

A)ztd.5)

Approximating the series in Eq. (4.5) appropriately, u(x,t) in closed form are given

as follow:

u(z,t) = 15

-1

ct—x

h2
os(4

)

(4.6)

which is like that obtained by Adomian decomposition method [4] and He’s
variational iteration method [5].
4.2. Now, we repeat the same procedure for obtaining DTM solution , but with
other initial conditions in the form of [4],

37



F1GEN KANGALGIL

u(z,0) D nh (4) (4.7)
_16c—1 5, ct—2x
(e 1) =~ L) (1.9
5. Differential Transform Method for K(3,3,1) Equation
5.1. Let we take m = 3,p = 3 in Eq. (1.2), hence we have
ug + (ud)w - (u3>xrr + use =0 (5.1)

Consider the solution of Eq. (5.1) with the initial conditions as in [4],

u(z,0) = ,/81054_ ! cosh(g) (5.2)

By taking the two-dimensional transform of Eq. (5.1) by using the related definitions
from Table 1, we have

k k—r h h-—s

(h+ DUk h+1) = =333 3> (k—r—t+)U(r,h—s—p)U(t,s)U(k —r —t + 1,p)
r=0t=0s=0p=0
k k—r h h—s

6D I NN r+ D+ (k—r—t+ 1)U+ 1,h—s—p)

r=0t=0s=0p=0
Ut+1,8)Uk—r—t+1,p)
k k—r h h—s

F18Y > D D+ Dk —r—t+ Dk —r—t+2)U(rh—s—p)

r=0t=0s=0p=0
Ut+1,5)U(k—r—1t+2,p)
k k—r h h—s

+3Y 3N k—r—t+D(k—r—t+2)(k—r—t+3)U(r,h—s—p)

r=0t=0s=0p=0
U(t,s)Uk—r—1t+3,p)
—(k+ D) (k +2)(k + 3)(k + 4)(k + 5)U (k + 5,1) (5.3)

From the initial conditions Eq. (5.2), we can write

VA86c =6 VA86c =6
Uk,0) = 0if k=1,3,5,...,U(0,0) = 17§,U(2,0) - TZ’
VA86c =6 VA86c =6 VA86c =6
4 — e A — = 1, ... .4
U,0) = 3590 V(6:0) = 505 VA0 = mermiisen (54)

Hence, substituting Eq.(5.4) into Eq.(5.3) , and by recursive method, some of the
results are listed in Table 7.
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UQ11) = =25 UB1) = -5 U(5,1) = = “srisag

U(T,1) = — 880 Be (0, 9) = ¥AE0e e U(2,2) = Y80t

U4,2) = Yogee™  U(6:2) = Yioenn U(8,2) = grutsous

U(1,3) = —¥V380e6< ) 7(3,3) = —VASGe8e (5, 3) = — VASGe Gt
U(7,3) = ~sfioerem  U©.3) = —sbrremmenn  U(L3) = — sptaseesitonm

Table 7: Some values of U(k, h) of Ex 4.1.

Consequently, substituting sufficient number of U(k, h) values into Eq.(2.2), we
have series solution as follow:

V/486¢ — 6 n V486c — 6 4 n V486¢ — 6x4 n v/486¢ — 6176

£) =
u(@t) = {3 324 7 34992 9447840 }
(- V/486¢ — 663:75 _ V486c — GCxSt _ V486¢c — 663:525
162 8748 1574640
V486¢c — 6¢
_NVEETOC T4
595013000 © 1 T )
VA486c — 6¢% ,  \/486c — 6¢* , ,  /486c — 6% 4 ,
¢ ¢ ¢ 5.5
H35 5332 LUt T 620856 ¢ (5:5)
VA486c — 6% 4
VEBETOC 642 4 N
70061120 © ¢ ot

Approximating the series in Eq.(5.5) appropriately, u(x,t) in closed form is given

u(x,t) =1/ 81;4_ ! cosh(Ct ; x) (5.6)

which is like that obtained by Adomian decomposition method [4] and He’s varia-
tional iteration method [5].

5.2. As a conclusive work, now, we repeat the solution steps of the same problem,
but with other initial conditions as in the form [4].

8lc—1
54

le—1 t —
u(x,t):—\/g 654 cosh(c 3 x)

u(z,0) = —

cosh(g) (5.7)

6. Conclusion

In this paper, the differential transform method has been successfully applied to
finding the solution of a Burger’s and K (m,p,1) equations. The solution obtained
by the differential transform method is an infinite power series for appropriate initial
condition, which can, in turn, be expressed in a closed form, the exact solution. The
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results show that, the differential transform method is a powerful mathematical tool
to solving Burger’s and K(m,p,1) equations.
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