New Characterizations for Pseudo Null and Partially Null Curves in R_{2}^{4}

Zühal KÜÇÜKARSLAN YÜZBAȘI ${ }^{1}$

ABSTRACT: In this paper, pseudo-spherical pseudo null and partially null curves are defined by using curvature functions in R_{2}^{4}, respectively. Also, some new characterizations for pseudo null and partially null curves are obtained in R_{2}^{4}, respectively.

Key words: Pseudo null curve, Partially null curve, Semi-Euclidean space

R_{2}^{4} de Pseudo Null ve Partially Null Eğriler İçin Yeni Karakterizasyonlar

ÖZET: Bu makalede, R_{2}^{4} de eğrilik fonksiyonları kullanılarak sırasıyla pseudo-küresel pseudo null ve partially null eğriler tanımlandı. Ayrıca, sırasıyla R_{2}^{4} de pseudo null ve partially null eğriler için yeni karakterizasyonlar elde edildi.

Anahtar Kelimeler: Pseudo null eğri, Partially null eğri, Semi-Euclidean uzay

[^0]
INTRODUCTION

A pseudo null or a partially null curves in R_{1}^{4} is defined as a spacelike curves along which the first binormal B_{1} is the null vector and the second binormal B_{2} is the null vector, respectively, in (Ilarslan, 2002). The Frenet equations and Frenet frame for a pseudo null or a partially null curve such that it lies fully in R_{1}^{4} are obtained (Walrave, 1995). Also, such curves had at most two curvatures in R_{1}^{4}.

Recently, M. Petrovic-Torgasev and et al. obtained the Frenet equations of a pseudo null or a partially null curve such that it lies fully in R_{2}^{4}. Moreover, they characterized all W -pseudo null and W-partially null curves lying in R_{2}^{4} (Petrovic-Torgasev et al. 2005). In particular, when the Frenet frame along a spacelike or a timelike curve contains a null vectors, such curve is said to be a pseudo null or a partially null curve (Walrave, 1995.).

In this paper, we characterize the pseudo-spherical pseudo null and partially null curves by using the curvature functions in R_{2}^{4}. Moreover, we obtain some new characterizations of pseudo null and partially null curves in R_{2}^{4}, respectively.

MATERIAL AND METHODS

In this section, we construct the Frenet frames and obtain the Frenet equations of pseudo null and partially null curves, lying fully in R_{2}^{4}. Hence, we consider the following two cases.

The semi-Euclidean space R_{2}^{4} is the standard vector space R^{4} equipped with an indefinite flat metric \langle,$\rangle given by$

$$
\langle,\rangle=-d x_{1}^{2}-d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2},
$$

where $\left(x_{1}, \ldots, x_{4}\right)$ is rectangular coordinate system of R_{2}^{4}. A tangent vector u to R_{2}^{4} is spacelike, if $\langle u, u\rangle>0$ or $u=\emptyset \quad$ timelike, if $\langle u, u\rangle<\emptyset$ null, if $\langle u, u\rangle=0$ and $u^{l} 0$, (Synge, 1967). Arbitrary two vectors v and w in R_{2}^{4} are called be orthogonal, if $\langle\mathrm{v}, \mathrm{w}\rangle=0$. The norm of a vector u is given by $\|v\|=\sqrt{|\langle u, u\rangle|}$.

Case 1. Pseudo Null Curves

Let $\alpha: I \rightarrow R_{2}^{4}$ be a spacelike or a timelike curve in R_{2}^{4}, parametrized by the arclenght parameter s, such that respectively hold $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle= \pm 1$. Assume that $\left\langle\alpha^{\prime \prime}(s), \alpha^{\prime \prime}(s)\right\rangle=0$ and that $\alpha^{\prime \prime}(s) \neq 0$ for each $s \in I \subset R$. Define the tangent and the principal normal vector fields by $T(s)=\alpha^{\prime}(s), N(s)=\alpha^{\prime \prime}(s)$, respectively. By differentiation with respect to s of the relation

$$
\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle= \pm 1
$$

we obtain

$$
\left\langle\alpha^{\prime}(s), \alpha^{\prime \prime}(s)\right\rangle=0
$$

Taking the derivative with respect to s of the previous equation, it follows that

$$
\left\langle\alpha^{\prime}(s), \alpha^{\prime \prime \prime}(s)\right\rangle=0
$$

Thus, the vector $\alpha^{\prime \prime \prime}(s)$ is orthogonal to both of vectors $\alpha^{\prime}(s)$ and $\alpha^{\prime \prime}(s)$. Next, assume that $\left\langle\alpha^{\prime \prime \prime}(s), \alpha^{\prime \prime \prime}(s)\right\rangle \neq 0$ for each s. We define the first binormal vector field B_{1} by

$$
B_{1}(s)=\frac{\alpha^{\prime \prime \prime}(s)}{\left\|\alpha^{\prime \prime \prime}(s)\right\|} .
$$

Then in the space R_{2}^{4} there exists the unique null vector field B_{2} such that

$$
\left\langle T, B_{2}\right\rangle=\left\langle B_{1}, B_{2}\right\rangle=\left\langle B_{2}, B_{2}\right\rangle=0,\left\langle N, B_{2}\right\rangle=1,
$$

and such that the orientation of the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ is the same as the orientation of the space R_{2}^{4}. We call B_{2} the second binormal vector field.

Then, let $\langle T, T\rangle=\boldsymbol{\varepsilon}_{1}= \pm 1,\left\langle B_{1}, B_{1}\right\rangle=\boldsymbol{\varepsilon}_{2}= \pm 1$, where by $\varepsilon_{1} \varepsilon_{2}=-1$. By using the conditions as follows

$$
\begin{align*}
& \langle T, T\rangle=e_{1},\left\langle B_{1}, B_{1}\right\rangle=e_{2},\left\langle N, B_{2}\right\rangle=1,\langle N, N\rangle=\left\langle B_{2}, B_{2}\right\rangle=0, \tag{1}\\
& \langle T, N\rangle=\left\langle T, B_{1}\right\rangle=\left\langle T, B_{2}\right\rangle=\left\langle N, B_{1}\right\rangle=\left\langle B_{1}, B_{2}\right\rangle=0 .
\end{align*}
$$

Since $\left\langle T^{\prime}, B_{2}\right\rangle=\left\langle N, B_{2}\right\rangle=1$ It follows that $k_{1}(s)=1$ for each s. Thus, the first curvature $k_{1}(s)$ can only take two values: $k_{1}=0$ if α is straight line, or $k_{1}=1$ in all other cases.

The following Frenet equations of a pseudo null curve are given by

$$
\begin{align*}
& T^{\prime}(s)=N(s), \tag{2}\\
& N^{\prime}(s)=k_{2}(s) B_{1}(s) \\
& B_{1}^{\prime}(s)=k_{3}(s) N(s)-\varepsilon_{2} k_{2}(s) B_{2}(s), \\
& B_{2}^{\prime}(s)=-\varepsilon_{1} T(s)-\varepsilon_{2} k_{3}(s) B_{1}(s) .
\end{align*}
$$

where are only two curvatures $k_{2}(s)$ and $k_{3}(s)$ (Petrovic-Torgasev et al. 2005).

Case 2. Partially Null Curves

$\alpha: I \rightarrow R_{2}^{4}$ be a spacelike or a timelike curve in R_{2}^{4}, parametrized by the arclenght parameter s, such that hold $\left\langle\alpha^{\prime \prime}(s), \alpha^{\prime \prime}(s)\right\rangle<0$ or $\left\langle\alpha^{\prime \prime}(s), \alpha^{\prime \prime}(s)\right\rangle>0$ for each $s \in I \subset R$, respectively. Define the tangent and the principal normal vector fields respectively by $T(s)=\alpha^{\prime}(s), N(s)=\frac{\alpha^{\prime \prime}(s)}{\left\|\alpha^{\prime \prime}(s)\right\|}$
of index 1. . Then $\{T, N\}$ is the timelike plane

Since α is a partially null curve, B_{1} is a null vector. Thus there exist the unique null vector field B_{2} such that

$$
\left\langle T, B_{2}\right\rangle=\left\langle N, B_{2}\right\rangle=\left\langle B_{2}, B_{2}\right\rangle=0, \quad\left\langle B_{1}, B_{2}\right\rangle=1,
$$

and such that the orientation of the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ is the same as the orientation of the space R_{2}^{4}. We call B_{2} the second binormal vector field.

Moreover, let $\langle T, T\rangle=\varepsilon_{1}= \pm 1,\langle N, N\rangle=\mathrm{e}_{2}= \pm, \quad$ whereby $\varepsilon_{1} \varepsilon_{2}=-1$. By using the conditions

$$
\begin{align*}
& \langle T, T\rangle=\varepsilon_{1},\langle N, N\rangle=\varepsilon_{2},\left\langle B_{1}, B_{2}\right\rangle=1,\left\langle B_{1}, B_{1}\right\rangle=\left\langle B_{2}, B_{2}\right\rangle=0 \tag{3}\\
& \langle T, N\rangle=\left\langle T, B_{1}\right\rangle=\left\langle T, B_{2}\right\rangle=\left\langle N, B_{1}\right\rangle=\left\langle N, B_{2}\right\rangle=0
\end{align*}
$$

The following Frenet equations of a partially null curve are given by:

$$
\begin{align*}
& T^{\prime}(s)=k_{1}(s) N(s) \tag{4}\\
& N^{\prime}(s)=k_{1}(s) T(s)+k_{2}(s) B_{1}(s), \\
& B_{1}^{\prime}(s)=k_{3}(s) B_{1}(s), \\
& B_{2}^{\prime}(s)=-\varepsilon_{2} k_{2}(s) N(s)-k_{3}(s) B_{2}(s) .
\end{align*}
$$

In the result, we prove that $k_{3}(s)=0$ for each s, (Petrovic-Torgasev et al. 2005)ç

RESULTS AND DISCUSSION

Pseudo-spherical Pseudo Null Curves

In this section, we characterize pseudo-spherical pseudo null curves by using curvature functions in R_{2}^{4}.

The pseudo-sphere of radius r and center p_{0} in R_{2}^{4} is given by

$$
S_{2}^{3}=\left\{X \in R_{2}^{4}:\left\langle x-p_{0}, x-p_{0}\right\rangle=r^{2}\right\}
$$

(Duggal and Bejancu, 1996.). A pseudo null curve $\alpha(s)$ in R_{2}^{4} is called pseudo-spherical if it lies on a pseudo sphere. A Pseudo null curve $\alpha(s)$ in R_{2}^{4} parameterized by the Frenet curvatures $\left\{k_{1}, k_{2}\right\}$ and $k_{i} \neq 0,1 \leq i \leq 2$.

Teorem 3.1. Let $\alpha(s)$ be a pseudo null curve in R_{2}^{4} parametrized by the pseudo-arc such that $k_{i} \neq 0$ and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ be differentiable functions.
$\alpha(s)$ lies on a pseudo-sphere of radius r if and only if the following condition is satisfied

$$
\lambda(s)=r^{2}
$$

where $\lambda(s)=2 a_{2} a_{4}$.
Proof. Assume that $\alpha(s)$ lies on a pseudo-sphere of radius r. That is, there exists a fixed point $p_{0} \in R_{2}^{4}$ such that

$$
\begin{equation*}
\left\langle\alpha(s)-p_{0}, \alpha(s)-p_{0}\right\rangle=r^{2} \tag{5}
\end{equation*}
$$

Set

$$
\alpha(s)-p_{0}=\alpha_{1} T+\alpha_{2} N+\alpha_{3} B_{1}+\alpha_{4} B_{2}
$$

From differentiation (5) and by using (2), we have

$$
\begin{equation*}
\left\langle\alpha(s)-p_{0}, T\right\rangle=0, \tag{6}
\end{equation*}
$$

and $a_{1}=0$ From differentiation of (6), we have

$$
\begin{align*}
& \langle T, T\rangle+k_{1}\left\langle\alpha(s)-p_{0}, N\right\rangle=0, \tag{7}\\
& \left\langle\mathrm{a}(s) \square p_{0}, N\right\rangle=\square \mathrm{e}_{1},
\end{align*}
$$

and $a_{4}=-\varepsilon_{1}$. From differentiation of (7), we get

$$
\begin{align*}
& \langle T, N\rangle+\left\langle a(s)-p_{0}, k_{1} B_{1}\right\rangle=0, \tag{8}\\
& \left\langle\alpha(s)-p_{0}, B_{1}\right\rangle=0,
\end{align*}
$$

and $a_{3}=0$ From differentiation of (8), we obtain

$$
\begin{align*}
& \left\langle T, B_{1}\right\rangle+\left\langle a(t)-p_{0}, k_{3} N-e_{2} k_{2} B_{2}\right\rangle=0, \tag{9}\\
& \left\langle\alpha(t)-p_{0}, B_{2}\right\rangle=-\frac{\alpha_{1} k_{3}}{\alpha_{2} k_{2}} \\
& \left\langle\alpha(t)-p_{0}, B_{2}\right\rangle=\frac{k_{3}}{k_{2}},
\end{align*}
$$

and $a_{2}=\frac{k_{3}}{k_{2}}$, we have

$$
\alpha(s)-p_{0}=\alpha_{2} N+\alpha_{4} B_{2}
$$

and by (5),

$$
2 a_{2} a_{4}=r^{2}
$$

and so we can write,

$$
\lambda(s)=r^{2} .
$$

Conversely, assume that

$$
\begin{equation*}
\lambda(s)=r^{2} \tag{10}
\end{equation*}
$$

for some positive constant r. Set

$$
B(s)=\alpha(s)-\alpha_{2} N-\alpha_{4} B_{2} .
$$

Then, using Frenet equations in (2) and the definition of $\left\{a_{i}\right\}$, we can obtain

$$
B^{\prime}(s)=T-\left(\frac{k_{3}}{k_{2}}\right)^{\prime} N-\frac{k_{3}}{k_{2}}\left(k_{2} B_{1}\right)+\varepsilon_{1}\left(-\varepsilon_{1} T-\varepsilon_{2} k_{3} B_{1}\right),
$$

$$
B^{\prime}(s)=-\left(\frac{k_{3}}{k_{2}}\right)^{\prime} N
$$

by using the (2) we can easily show that $\left\|B^{\prime}\right\|=0$, and so we get $B(s)=p_{0}$ for some fixed point $p_{0} \in R_{2}^{4}$ Thus, we have

$$
\alpha(s)-p_{0}=a_{2} N+a_{4} B_{2},
$$

and using (10) , we find

$$
\left\langle\alpha(s)-p_{0}, \alpha(s)-p_{0}\right\rangle=r^{2} .
$$

Thus $\alpha(s)$ lies on a pseudo-sphere of radius r.

Pseudo-spherical Partially Null Curves

In this section, we characterize pseudo-spherical partially null curves in R_{2}^{4} by using the curvature functions.

$$
S_{2}^{3}=\left\{X \hat{I} R_{2}^{4}:\left\langle x-p_{0}, x-p_{0}\right\rangle=r^{2}\right\}
$$

(Duggal and Bejancu , 1996.). A partially null curve a (s) in R_{2}^{4} is called pseudo-spherical if it lies on a pseudo-sphere.

A Partially null curve $\alpha(s)$ in R_{2}^{4} parametrized by the Frenet curvatures $\left\{k_{1}, k_{2}\right\}$ and $k_{i}=0,1 \leq i \leq 2$.

Teorem 3.2 Let $\alpha(s)$ be a partially null curve in in R_{2}^{4} such that $k_{i} \neq 0$ and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ be differentiable functions.

The pseudo-sphere of radius r and center p_{0} in R_{2}^{4} is given by

From differentiation of (11) and by using Frenet equations in (4), we obtain

$$
\begin{equation*}
\left\langle\alpha(s)-p_{0}, T\right\rangle=0, \tag{12}
\end{equation*}
$$

and $a_{1}=0$ From differentiation of (12), we find

$$
\begin{align*}
& \langle T, T\rangle+k_{1}\left\langle\alpha(s)-p_{0}, N\right\rangle=0, \tag{13}\\
& \left\langle\alpha(s)-p_{0}, N\right\rangle=-\frac{\varepsilon_{1}}{k_{1}},
\end{align*}
$$

and $a_{2}=-\frac{\varepsilon_{1}}{k_{1}}$. From differentiation of (13), we get

$$
\begin{aligned}
& \langle T, N\rangle+\left\langle\alpha(s)-p_{0}, k_{1} T+k_{2} B_{1}\right\rangle=\left(-\frac{e_{1}}{k_{1}}\right)^{\prime} \\
& \left\langle\alpha(s)-p_{0}, B_{1}\right\rangle=\frac{1}{k_{2}}\left(-\frac{\varepsilon_{1}}{k_{1}}\right)^{\prime},
\end{aligned}
$$

and $a_{4}=\frac{1}{k_{2}}\left(-\frac{e_{1}}{k_{1}}\right)^{\prime}$.
From differentiation of $a_{3}=\left\langle\alpha(t)-p_{0}, B_{2}\right\rangle$, we have

$$
\begin{align*}
& \left\langle\alpha(s)-p_{0}, B_{2}\right\rangle^{\prime}=\left\langle T, B_{2}\right\rangle+\left\langle\alpha(t)-p_{0},-\varepsilon_{2} k_{2} N\right\rangle, \\
& \alpha_{3}^{\prime}=\frac{\varepsilon_{1} \varepsilon_{2} k_{2}}{k_{1}}=-\frac{k_{2}}{k_{1}}, \\
& a_{3}=-\frac{k_{2}}{k_{1}} d s . \tag{14}
\end{align*}
$$

Hence, we get

$$
\alpha(s)-p_{0}=a_{2} N+a_{3} B_{1}+a_{4} B_{2},
$$

and using (11), we obtain

$$
a_{2}^{2}+2 a_{3} a_{4}=r^{2},
$$

and so, we can write

$$
\mu(s)=r^{2} .
$$

Conversely, assume that

$$
\begin{equation*}
\mu(s)=r^{2} \tag{15}
\end{equation*}
$$

for some positive constant r. We can write

$$
B(s)=\alpha(s)-a_{2} N-a_{3} B_{1}-a_{4} B_{2} .
$$

Then, using Frenet equations in (4) and the definition of $\left\{a_{i}\right\}$, we can obtain

$$
B^{\prime}(s)=T+\left(\frac{\varepsilon_{1}}{k_{1}}\right)^{\prime} N+\left(\frac{\varepsilon_{1}}{k_{1}}\right)\left(k_{1} T+k_{2} B_{1}\right)+\frac{k_{2}}{k_{1}} B_{1}+\left(\frac{1}{k_{2}}\left(\frac{\varepsilon_{1}}{k_{1}^{\prime}}\right)\right)^{\prime} B_{2}+\frac{1}{k_{2}}\left(\frac{\varepsilon_{1}}{k_{1}^{\prime}}\right)\left(-\varepsilon_{2} k_{2} N\right)
$$

If we consider $\varepsilon_{1}=-1$ and $\varepsilon_{2}=1$ at above equation, then we get

$$
\left.B^{\prime}(s)=\left(\frac{1}{k_{2}}\right)-\left(\frac{1}{k_{1}^{\prime}}\right)\right)^{\prime} B_{2}
$$

by using (4), we can easily show that $\left\|B^{\prime}\right\|=0$, and so we find $B(s)=p_{0}$ for some fixed point $p_{0} \in R_{2}^{4}$. Hence, we have

$$
\alpha(s)-p_{0}=a_{2} N+a_{3} B_{1}+a_{4} B_{2}
$$

and by (15), we can write

$$
\left\langle\alpha(s)-p_{0}, \alpha(s)-p_{0}\right\rangle=r^{2}
$$

Thus, $\alpha(s)$ lies on a pseudo-sphere of radius r.

REFERENCES

Duggal K. L, Bejancu A,1996. Ligtlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers.

Ilarslan K, 2002. Some Special Curves on Non-Euclidean Manifolds, Doctoral Thesis, Ankara University, Graduate School of Natural and Applied Sciences.

Synge J. L, 1967. Timelike Helices in Flat Space-time, Proc. Roy. Irish Academy A65: 27-42.
Walrave J, 1995. Curves and Surfaces in Minkowski Space, Doctoral thesis, K. U. Leuven, Fac. of Science, Leuven. Petrovic-Torgasev M, Ilarslan K, Nesovic E, 2005. On Partially Null and Pseudo Null Curves in the SemiEuclidean Space R_{2}^{4}, J. Geom., 84: 106-116.

[^0]: 1 Firat universitesi, Fen Fakultesi, Matematik, Elazig, Türkiye
 Sorumlu yazar/Corresponding Author: Zühal KÜÇÜKARSLAN YÜZBAŞI, zuhal2387@yahoo.com.tr

