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In this study, virial coefficients for one and two-electron hydrogen and helium-like quantum dot structures 
confined in an infinite potential well were calculated. The virial coefficients were determined based on the dot 
radius using the Quantum Genetic Algorithm (QGA) method. Calculations were performed using Fernandez's 
expression; however, due to calculation errors in confined systems, this equivalent expression was found 
unsuitable as a direct stopping criterion. Instead, virial coefficients were calculated using the ⟨T⟩/⟨V⟩ 
relationship, and the results were plotted. The fitting function obtained for the virial coefficients is proposed as 
an effective cutoff criterion for electronic structure calculations of quantum dot systems. 
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Introduction 
 

There are many studies on quantum structures 
confined to various confining potentials for a long time [1-
3]. Specifically, it is possible to calculate a various physical 
parameters including the optical properties of the dot 
structures, the states both with and without the influence 
of external electric and magnetic fields , and the 
transitions between these states [4-5]. Most of the 
calculations made have been used methods based on 
energy minimization and the calculations involve many 
iterations [6]. However, in order to ensure that precise 
and reliable results are obtained in iterative calculations, 
a termination criterion is needed to know where to stop 
the iteration. It is possible to reach the solution of such 
problems with the help of the virial Theorem, which was 
first formulated in classical mechanics and later found 
applications in quantum mechanics. The virial coefficient 
obtained from the virial theorem can be used as a cut off 
parameter in calculations based on the minimization of 
energy for any quantum system in a bound state.  

The virial theorem, a fundamental concept in 
theoretical physics and astrophysics, plays a crucial role in 
understanding the dynamics of many-particle systems. 
Lord Rayleigh, a prominent physicist, published a 
generalized version of the virial theorem concerning gas 
pressure [7]. This theorem establishes an equality 
between the average total kinetic and potential energies 
of systems with many particles, providing insight into the 
energy transformations and formation processes of 
complex systems [8-11]. 

Cottrell and Paterson derived a version of the virial 
theorem in quantum mechanics, specifically for a particle 
system confined within a box. [12]. 

 2�̅� − ∑ 𝒓𝑗𝑗 . ∇𝑗𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛼
𝜕𝐸

𝜕𝛼
= 0 

 Parker's formulation of the tensor form of the 
virial theorem [13] is regarded as a pioneering application 
of this theorem. Moreover, the virial theorem facilitates 
intricate calculations in statistical mechanics, such as 
those involving the proportionality theorem and 
temperature calculations based on average total kinetic 
energy. In astrophysics, it assists in determining the 
internal temperature, mass, radius, and stability of stars. 
Additionally, it provides insights into systems that exhibit 
temperature independence and are not in thermal 
equilibrium. 

In 1964, William G. Hoover and Francis H. Ree 
presented a comprehensive combinatorial approach to 
star integrals, enabling the precise calculation of the first 
five virial coefficients for gases composed of rigid parallel 
squares and cubes with attractive forces [14]. 

A trial wave function uniformly expands all its 
coordinate vectors from a specific origin by a certain scale 
factor, aiming to better align with the actual spatial 
domain occupied by the system. By treating the scale 
factor as a variable parameter, the variational principle 
can be used to derive the virial theorem. In equilibrium or 
with fixed nuclei, the virial theorem has demonstrated its 
applicability for any normalized trial function through an 
appropriate choice of the scale factor. Therefore, 
satisfying the virial theorem is necessary but not sufficient 
to confirm that a wave function is an exact solution to the 
Schrödinger equation. By considering the first derivative 
of energy with respect to any parameter, a general form 
of the Hellmann-Feynman theorem is obtained. Using 
Ritz's variational method to solve the Schrödinger 
equation allows one to derive not only the energy for each 
state but also its derivative with respect to the scale 
factor. While scale factors can be independently varied for 
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states with different symmetry types, scaling becomes 
more complex for states sharing the same symmetry. 

Fernandez et al. [15,16] conducted research on 
applying the virial theorem to confined systems. These 
studies propose modifications to the formulation of the 
virial theorem, taking into account its relationship with 
boundary conditions. Mukhopadhyay and Bhattacharya 
[17] derived the accurate modified form of the virial 
theorem for bounded systems. Demir and colleagues [18] 
computed the virial coefficients for He and Li atoms 
confined within infinite spherical potentials, as defined for 
free atoms. 

In this study, virial coefficients were calculated for H 
and He type quantum dot structures with one and two 
electrons confined to infinite potential. It has been 
suggested that virial coefficients can be used as a cut-off 
criterion to stop the iteration in electronic structure 
calculations of quantum dots performed with variational 
methods. 
 
Theory 

Where H is the time-independent Hamiltonian and 𝜓 
is state function of the system, the Schrödinder equation 
of the system is as follows, 

�̂�𝜓 = 𝐸𝜓.         (1) 

If the operatör �̂� is a linear and time-independent 
operator as below, 

�̂� = ∑ �̂�𝑖�̂�𝑖𝑖 = −𝑖ℏ ∑ 𝑞𝑖
𝜕

𝜕𝑞𝑖
𝑖 ,       (2) 

Where the sum is over on 3n coordinates of n particles and 
then 

∫ 𝜓[�̂�, �̂�]𝜓𝑑𝜏 = 0 (3) 

can be written  and, is known as hypervirial theorem [19]. 

The commutation of �̂� ve �̂� is, 

[�̂�, ∑ �̂�𝑖�̂�𝑖𝑖 ] = 𝑖ℏ ∑ 𝑞𝑖
𝜕𝑉

𝜕𝑞𝑖
𝑖 − 2𝑖ℏ�̂� = 0.      (4) 

Here, �̂� and �̂� are kinetic and potential energy operators, 
respectiveliy and, 

⟨∑ 𝑞𝑖
𝜕𝑉

𝑑𝑞𝑖
𝑖 ⟩ = 2⟨𝑇⟩          (5) 

is written. Where bra-ket represents to quantum 
mechanical averages.This equation is known as the 
quantum mechanical virial theorem for bound states. If 
there is a confining potential surrounding system and R is 
the dot Radius then Eq. 5 is written as follows [20]. 

⟨∑ 𝑞𝑖
𝜕𝑉

𝑑𝑞𝑖
𝑖 ⟩ = 2⟨𝑇⟩ + 𝑟

𝜕𝐸

𝜕𝑟0
         (6) 

 

Materials and Methods  
 
For one electron system with an impurity confined 

infinite potential, Hamiltonian in given Eq.1 can be written 
as follow, 

�̂� = −
ℏ2

2𝑚∗ ∇2 −
𝑍𝑒2

𝜀𝑟
+ 𝑉𝑐(𝑟)         (7) 

where 𝑍 is the impurity charge, 𝑚∗ is the effective mass 
and 𝜀 is the dielectric constant of the medium. The 
confining potential  𝑉𝑐   is, 

𝑉𝑐(𝑟) = {
0,           𝑟 < 𝑅
∞,         𝑟 ≥ 𝑅 

             (8) 

If Hamiltonien in Eq.7 is submitted in Eq.1 the energy and 
state function of the system can be computed from 
Schrödinger equations. In this case, state function of the 
system is one-electron wave fuction ∅𝑛𝑙𝑚. where 𝑛𝑙𝑚 is 
the quantum numbers of the state function, this function 
can be written as linear combination of Slater-type orbital 
as follows, 

𝜙𝑝 = ∑ 𝑐𝑝𝑘𝜒𝑘(𝜁𝑘 , 𝑟)𝜎
𝑘=1             (9) 

Where 𝑘𝑛𝑙𝑚, 𝜎 is size of the basis set, 𝑐𝑝𝑘 is the 

expansion coefficients and 𝜁𝑘  is screening constant. 
Unnormalized complex STOs  𝜒𝑘(𝜁𝑘 , 𝑟) are as follows 

𝜒𝑘(𝜁𝑘 , 𝑟) = 𝑟𝑛−1𝑒−𝜁𝑟𝑌ℓ𝑚(𝜃, 𝜑)      (10)
   
Hamiltonian of the two-electron system confined to 
infinite spherical potential (𝑉𝑐) can be written as, 

�̂� = − ∑ (
ℏ2

2𝑚∗ ∇𝑖
2 −

𝑍𝑒2

𝜀𝑟𝑖
)2

𝑖=1 +
𝑍𝑒2

𝜀|𝑟1−𝑟2|
+ 𝑉𝑐(𝑟1, 𝑟2) .  (11) 

where, 

𝑉𝑐(𝑟1, 𝑟2)  = {
0,           𝑟1, 𝑟2 < 𝑅

∞,         𝑟1, 𝑟2 ≥ 𝑅 
. 

The additional term is the coulomb interaction between 
electrons. 𝜓 is the state function of the system and is 
constructed from the Slater determinant (ground state) or 
the appropriate combination of these determinants 
(excited states) and it can be given for ground states as 
follows, 

𝜓(𝑟1, 𝑟2) =
1

√2
(∅1𝑠(𝑟1)∅1𝑠(𝑟2))[𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)] (12) 

Where ∅1𝑠(𝑟1) is one electron orbital and is given Eq. 9, 
𝛼(𝑖) 𝑣𝑒 𝛽(𝑖) are electron spin up and down functions. For 
the system confined to the infinite spherical potential 
considered, with the approach of Fermandez [16], virial 
coefficients were calculated using the expression 

2𝐸−< 𝑉 ≥ −𝑟0
𝜕𝐸

𝜕𝑟𝑜
=

𝑟0

2
|

𝑑𝜓(𝑟1,𝑟2)

𝑑𝑟
|

2

       (13) 

The wave function of the system is constructed from 
Slater determinants, which are generated from single-
electron spin orbitals. Since single-electron spin orbitals 
are constructed as linear combinations of Slater-type 
orbitals in determining the electronic structure of atomic 
systems, the same approach can be applied to confined 
systems, often referred to as artificial atoms. In this study, 
a linear combination of STOs with different screening 
parameters for s (or p, d) type atomic orbitals was 
selected to construct one-electron atomic orbitals. To 
preserve the orthogonality of the orbitals, the same set of 
screening parameters was used for all spatial orbitals with 
the same angular momentum. To accurately calculate the 
expected energy value, five basis sets (σ = 5) were used, 
and the QGA procedure was combined with the HFR 
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methods to minimize the total energy over the STOs. This 
approach allowed for both the accurate representation of 
wave function behavior and the optimization of energy 
calculations. 

The Genetic Algorithm (GA) can be defined as a search 
and numerical optimization technique in which individuals 
that adapt well to the environment survive, while those 
that do not adapt are eliminated [21-24]. The Quantum 
Genetic Algorithm (QGA) consists of three main 
processes: reproduction (or copying), crossover, and 
mutation. In the reproduction process, the survival 
probabilities of individuals are calculated. Individuals with 
a high probability of survival are passed on to the next 
generation, while those with a lower probability are 
eliminated. The crossover process is similar to the natural 
crossover mechanism in biology and is carried out on 
individuals obtained during the reproduction stage. The 
genetic information of two randomly selected individuals 
is exchanged by cutting at a specific point. The 
information on the left of the cut in one individual is 
swapped with the information on the right of the cut in 
the other, and vice versa. This allows both individuals to 
carry each other's genetic information. The mutation 
process is applied to escape local minima and is 
performed on a randomly selected individual. In the 
application of crossover and mutation processes, a 
probability of execution is determined. The crossover 
probability is chosen to be high in order to increase 
diversity within the population, while the mutation 
probability is kept low to avoid incorrect solutions. If the 
probability is set too high, convergence becomes difficult, 
and randomness increases. The initial population was 
composed of 100 randomly selected individuals who were 
solutions of the Schrödinger equation. Each individual in 
the initial population was evaluated, and then the QGA 
method was executed based on these energy values. 

Achieving the desired precision in calculating physical 
quantities using the variational method often requires 
extensive iterations. However, to effectively manage 
computation time, establishing a stopping criterion is 
essential. Although its application in atomic and molecular 
systems differs, the virial coefficient can serve as a viable 
stopping parameter for determining the electronic 
structure of bonded systems, even considering their 
distinct states compared to free atoms and molecules. 
Virial ratio can be written as 

 
⟨𝑇⟩

⟨𝑉⟩
= −

1

2
          (14) 

When determining the electronic structure of confined 
systems, the ratio approaches a certain value at large dot 
radii, but significantly different values can be obtained 
due to the confinement effect at small dot radii. 

 

Results and Discussion 

The virial coefficients for one and two-electron 
confined systems were calculated using Equation 13 
derived by Fernandez. Virial coefficients were determined 
using the system energy and wave functions calculated 

with the quantum genetic algorithm. Since the errors that 
occur in calculations in confined systems depend on the 
dot radius, it was not appropriate to use Fernandez's 
equivalent expression as a direct stopping criterion. 
Considering that in finite systems errors in calculations 
depend on the dot radius, it was not considered 
appropriate to use Fernandez's equivalent expression as a 
direct stopping criterion. Virial coefficients in the system 
were calculated from ⟨T⟩/⟨V⟩. The graph of the values 
found is drawn depending on the dot radius and can be 
seen in Fig.1. 

In this study, virial coefficients of unconfined 
Hydrogen and Helium atoms were used as a stopping 
criterion in the electronic structure calculations of 
Hydrogen and Helium-like quantum dot structures 
confined by an infinite potential well. The graph of the 
obtained virial coefficients as a function of dot radius was 
plotted, and a fitting function was defined for this 
purpose, as shown in Figure 1 

 

 

 

Figure 1. The curves of the virial coefficients calculated 
for one and two electron systems were drawn 
according to the dot radius. The continuous lines 
show the fit functions. 

 
The best fit function representing data shown in Figure 1 

was found as follows. 

𝑉𝑓𝑖𝑡 = −2 + 𝑎. 𝑒𝑥𝑝(−𝑏. 𝑅3/2) + 𝑐/𝑅.                         (15) 

Here 𝑉𝑓𝑖𝑡 refers to virial ratios and R represents of dot 

radius. 𝑎, 𝑏 and 𝑐 are parameters and also absolute error 
values were found by fit programme of each parameter 
are given in Table 1.  
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Table 1. Parameters of fit function given in Eq. (15) 

Level, impurity a b c a b c r2 

1s1, z=1 2.0396 0.2661 -0.1112 0.0937 0.0097 0.0511 0.99 

1s1, z=2 2.2283 0.8045 -0.1090 0.0647 0.0143 0.0265 0.99 

1s2, z=1 2.0992 0.1639 -0.0876 0.0698 0.0060 0.0431 0.99 

1s2, z=2 2.2358 0.6374 -0.0714 0.1080 0.0168 0.0470 0.99 

1s1, z=1 2.0396 0.2661 -0.1112 0.0937 0.0097 0.0511 0.99 

1s1, z=2 2.2283 0.8045 -0.1090 0.0647 0.0143 0.0265 0.99 

 

Using absolute error of parameters a, b and c absolute error of 𝑉𝑓𝑖𝑡 given in Eq.15 is given as follows,  

∆𝑉𝑓𝑖𝑡 = √(( 
𝜕(𝑉𝑓𝑖𝑡)

𝜕𝑎
∆𝑎)

2

+ ( 
𝜕(𝑉𝑓𝑖𝑡)

𝜕𝑏
∆𝑏)

2

+ ( 
𝜕(𝑉𝑓𝑖𝑡)

𝜕𝑐
∆𝑐)

2

)   (16) 

Table 2. As an example, the table of virial coefficients calculated with the help of the Fernandez equation and the curve 
fitting method for the case of 1s1, z=2. 

R Vcal Vfit |Vcal-Vfit | ∆V 

1s1, z=1 2.0396 0.2661 -0.1112 0.0937 

1s1, z=2 2.2283 0.8045 -0.1090 0.0647 

1s2, z=1 2.0992 0.1639 -0.0876 0.0698 

1s2, z=2 2.2358 0.6374 -0.0714 0.1080 
1s1, z=1 2.0396 0.2661 -0.1112 0.0937 

1s1, z=2 2.2283 0.8045 -0.1090 0.0647 

 
The iteration process was stopped when the 

difference between the virial coefficient calculated from 
the iteration and the one obtained from the fit function 
was smaller than ∆Vfit. Values for several different dot 
radii are presented in Table 2. As can be seen in Table 2, 
when the 4th and 5th columns are compared, it is 
observed that Vcal - Vfit consistently remains smaller than 
∆Vfit. This indicates that while the absolute error is 
relatively large for small dot radii, it significantly decreases 
for larger dot radii. Therefore, it was concluded that these 
results provide a robust and reliable criterion for stopping 
the iteration process, ensuring the accuracy and precision 
of the calculations. In summary, this approach not only 
enhances the reliability of the method but also 
contributes to the overall efficiency and accuracy of the 
computational process. Therefore, it is deemed 
appropriate to consider the use of virial coefficients as a 
stopping criterion in iterative calculations performed with 
variational methods as a strategic approach that can both 
enhance the speed and ensure the accuracy of the 
computations. 
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