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acquired data’s physical 3D and 2D contour surfaces are used to demonstrate the findings,
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1. Introduction

In several fields of the social and fundamental sciences, as well as engineering, fractional differential
equations are encountered. Their significance in several disciplines requiring complex physical
processes, from electrical circuits and control theory to wave propagation, has earned more attention
in recent years. Many engineering issues are modeled and designed using them. Solutions to these
equations have been helpful since they highlight nonlinear physical properties more clearly and provide
a path for further study. In mathematical physics, nonlinear wave equations play a role in several fields,
notably chemical kinetics, solid-state physics, optical fibers, fluid mechanics, and plasma physics.

A particular kind of partial differential equation that depicts how a system changes over time is called
an evolution partial differential equation(PDE). PDEs are equations involving functions and their
partial derivatives concerning several independent variables in mathematics and science. Time is one
of these factors that evolution PDEs particularly include, so they represent how a system changes
or evolves. Dynamic processes are frequently modeled using evolution PDEs in physics, engineering,
biology, and economics, among other disciplines. The wave equation, the heat equation, and the
Schrodinger equation in quantum mechanics are a few examples of the evolution of PDEs. These
equations, essential to comprehend physical systems’ behavior, explain how variables like temperature,

displacement, or wave function change over time and space.
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Much focus has been placed on the nonlinear evolution equations recently. It is becoming more and
more attractive to look for PDE solutions directly. In applied research and sciences, the mathemati-
cal modeling of physical occurrences is an essential tool for analysis. Various mathematical methods
have been used to search for solutions and an advanced knowledge of these equations. Many ana-
lytical and numerical methods have been used to solve these equations and gain an excellent grasp
of them. A few of these analytical methods are: Unified Ansétze Method [1] for the optical solitons
and traveling wave solutions to Kudryashov’s equation, Sub-equation Method [2] for the general-
ized Benjamin, modified generalized multidimensional Kadomtsev—Petviashvili, modified generalized
multidimensional Kadomtsev-Petviashvili-Benjamin—Bona—Mahony, and the variant Boussinesq sys-
tem of equations, Sardar Sub-equation Method [3] for the Korteweg—de Vries—Zakharov—Kuznetsov
equation, Jacobi Elliptic Function Expansion Method [4] for the Korteweg—de Vries, Boussinesq,
Klein—Gordon, and variant Boussinesq equations, Exp-function Method [5] for the generalized shallow
water-like equation, Boiti-Leon—-Manna—Pempinelli, generalized variable-coefficient B-type Kadomt-
sev—Petviashvili, and Caudrey-Dodd-Gibbon-Kotera-Sawada equations, Extended sinh-Gordon Equa-
tion Expansion Method [6] for the Kundu-Eckhaus equation, Modified Kudryashov Method [7] for the
Kuramoto—Sivashinsky and seventh-order Sawada—Kotera equations, Modified Exponential Function
Method [8] for the modified Benjamin-Bona-Mahony and Sharma-Tasso-Olver equations, (G'/G)-
expansion Method [9] for the the higher order Broer—Kaup, breaking soliton, and asymmetric Nizh-
nik—Novikov—Vesselov equations, Modified Simple Equation Method [10] for the Kaup-Newell equation,
the Extended Trial Equation Method [11] for the B(n + 1,1,n) equation, and the Variational Direct
Method [12] for the complex Ginzburg-Landau equation.

Scientists became deeply interested in inventing fractional models and discovering approximations to
the generated problems. Scientists also place extensive attention on the creation and use of different
methods to get these solutions. Multiple methods, frequently discovered in literature, are used to
find numerical solutions for FDEs. These include the Residual Power Series Method(RPSM) [13],
Homotopy Analysis Method [14], Homotopy-Perturbation, and Variational Iteration Methods [15]. It
has become clear that no single method can strictly and universally solve every nonlinear problem.
Many techniques were created as the result of this insight, such as Modified Extended tanh-function
Method [16] and exp(—¢(§))-expansion Method [17].

For fractional differential equations, multiple definitions of derivative have been put upward, such as
the Riemann-Liouville [18], Caputo [19] and conformable derivatives [20]. The Riemann-Liouville and
Caputo fractional derivatives are notable for often used in modern mathematical discourse. Similarly,
the conformable fractional derivative technique is prominent due to its dependability and ease of use.

Recently, Mohan et al. [21] has presented a new (3 4 1)-dimensional P-type evolution equation as
Ugzay + Q1 Uy + QQ(UUl')y + asugy + aquz, =0 (11)

The authors in this work present the Painlevé integrability analysis of the model. Using Cole-Hopf
transformation and symbolic computation, they obtain the rogue waves up to the third order. Finally,
they introduce dispersive-soliton solutions to this equation.

In this paper, we address some new analytical and numerical solutions of the model that do not exist
in the literature. The structure of the paper is as follows: Section 2 provides some basic definitions to
be needed for the following sections. Section 3 details the modified, extended tanh-function method.
Section 4 describes exp(—¢(§))-expansion method in detail. Section 5 presents the approximation
approach known as the residual power series method(RPSM). Section 6 contains analytical and nu-
merical solutions to the underlying equation. Section 7 discusses the need for further research.
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2. Preliminaries

This section provides some basic notions to be needed for the following sections.

Definition 2.1. [24] The following defines the conformable derivative of a function of order w,
j:[0,00) >R, t>0,we (0,1),

y 1-w) _ .
.@m)(wzmﬂ”ét : ) — ()

In addition, if lim, ,o+ Z;(j7)(t) exists and j is w-differentiable in the range (0,k) for & > 0, the
definition becomes

¢ (5)(0) = lim Z7(5)(t)

t—0+
Lemma 2.2. [22-24] For 0 < w < 1, let /; and j» be w-differentiable at ¢ > 0. Then,
1. .@,‘{u(tpl) =mth ¥ peR

. D¢ (pijr + paj2) = M2y (1) + p22¢ (J2), p1,p2 € R
iti. 7¢( 2) _ j2-@t“’(j1)j§j1<2“’(j2)

w. Z¢(j1-d2) = 1 Z¢ (32) + 22 ()

v FE () () =t

vi. 2¢(S) =0, if S is a constant

Definition 2.3. [25] Let j(y1, 42, - ,yn) be the function with n variables. Following is the partial
derivatives of j in y; of order w € (0, 1].
d” . j(ylayQ)”' 7yi—1)yi+5y'1_w7yn)_j(y17y27”' 7yn)
- -1 i
dy (y17 Y2, ) yn) (51—I>I(1) 5

(2

The following sections will introduce modified extended tanh-function, exp(—¢(¢))-expansion, and RPS

methods.
3. Modified Extented tanh-function Method

The primary stages of the modified extended tanh-function method [25-27] are explained in this section
as follows. Suppose we have a nonlinear evolution equation of the type
B(uv Utauxvuyauxmuyya"') =0 (31)

where [ is a polynomial in u(x,y, - - - ,t) and nonlinear components are found in its partial derivatives.
Utilizing the transformation,

1w

will turn (3.1) to an ODE as
B (u(€),d'(&),u" (&), --)=0 (3.2)

Suppose that the form of the solution of (3.1),
AO + Z m¢m + Bm¢7m(§)) , M€ {07 ]-7 27 o 7N} (33)

where Ay # 0, By # 0, and A, and B, are constants that have to be found and ¢(§) satisfies the

Riccati equation

¢'(&) = o+ (&) (3.4)
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In this case, o is an unknown parameter. Numerous solutions can be found for (3.4), as illustrated

below

1. If 0 <0, then
#(€) = —v/—o tanh (\/—7—5) or (&) = —v/—o coth (\/—75)

7. If o > 0, then

6(6) = Vatan (Vag) or ¢(¢) = —v/a cot (v/a€)

7. If 0 =0, then

In (3.3), the positive integer N is obtained by balancing the biggest nonlinear variable and the highest-

order derivatives.

By replacing (3.3), its derivative, and (3.4) into (3.2), as well as collecting all the terms of the same
power ¢, (m € {0,1,2,---, N}) and equating them to zero, one can use a symbolic computation tool
to determine the values of A,, and B,,. By entering these values and the solutions to (3.4) into (3.3),
we can obtain the exact solutions to (3.1).

4. exp(—¢(£))-expansion Method

Examine the nonlinear evolution equation presented in the following manner
D(u, Dy, Dyu, Dyu, D2, @gu, ) =0 (4.1)

The arbitrary order conformable derivative operator is represented by Z;” in this case. u = u(z,y, - ,t)
is an unknown function, and the subscripts stand for partial derivatives. When using exp(—¢(&))-
expansion method [28-30] in order to obtain wave solutions for (4.1), the following steps must be

carried out.

1. The real variables z,y, z, -+ ,t are combined using a compound variable named & as

w

c
ii. The next ordinary differential equation may be obtained by reducing (4.1)

G (u(€), ' (§),u"(€),--) =0 (4.2)

774. As the following finite series, the exact solutions may be constructed:

§) => Brlexp({(—¢))), By #0,0<r<N (4.3)

iv. The following ordinary differential equation can be solved for ¢ = ¢(&)
¢'(§) = exp(=¢(£)) + nexp(p(§)) + A (4.4)

v. The following are the possible solutions to (4.4) for A2 — 4n > 0 and 5 # 0, depending on the
pertinent parameters.

( Wtanh(m(f—i—h)) )\)

2n

ur(§) =
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when A2 — 41 < 0 and 7 # 0 are present,

o In <\/4n—)\2tanh (m €+ h)> - /\)

2n

U2

when A2 — 49 > 0, A # 0, and 1 = 0 are present,

A
u3z(§) = —In (sinh()\(g + h)) 4+ cosh(A(E+ h)) — 1>

when A\? — 49 =0, A\ # 0, and 1 # 0 are present,

B 20M&+h)+2)
U4(£) =1In <_ )\Q(h + 5) )

when A2 — 417 =0, A = 0, and n = 0 are present,
us(§) = In(§ +h)

in which h serves as the integration constant.

vi. The positive integer N is determined by considering the homogeneous balance between the highest
order derivatives of u(§) as given in (4.2) and the biggest nonlinear term. When (4.2) is replaced by
(4.3) along with (4.4), and terms with the same powers of exp(—¢) are combined, the left side of (4.2)
becomes a polynomial. A series of algebraic equations in terms of B,(r € {0,1,2,3,--- ,N}), ¢

and n are produced. We get solutions for (4.2) by equating all of this polynomial’s coefficients to zero,

solving the ensuing system of algebraic equations, and then substituting the solutions back into (4.3).
5. Residual Power Series Method(RPSM)

Examine the following nonlinear fractional differential equation to illustrate the basis of the RPS
method [31,32].

h(xvya Z7t) = @wu(%.% th) + R[JI,y, Z]U($, y727t) + N[‘T7y7 Z}U(%ya Zat) (51)

The initial condition is
U(.’L‘,y, Z70) :fo(ZE,y,Z) :f(wvyvz) (52)

R[z,y,z] is a linear operators and N|[z,y,z] is a nonlinear operators. The RPS method requires
expanding the unknown function to a fractional series at t = 0 to find the approximate solutions to
(5.1), subject to (5.2).

Thus, the solution may be represented as follows using a series expansion
tnw
u(xvyuz)t) = Z fn X y7 nn'
Consequently, for 0 < t < Ry and 0 < w < 1, the k-th series of u(z,y, z,t), or ug(z,y,z,t), is
determined to be as follows

nw

t
Uk:(xaz%'zat):fxy) +an$y7 W ‘7 k€{17273>"'} (53)

Then, we express the residual function and the coefficient k-th residual function as
Resug(z,y, z,t) = Dyur(x,y, 2, t) + Rz, y, zJug(z,y, z,t) + Nz, y, zJug(z,y, z,t) — h(x,y, z,t) (5.4)

where k € {1,2,3,---}. For Resu(z,y,z,t) = 0 and limg_,, Resug(z,y, 2,t) = Resu(z,y, z,t), it is
obvious that t > 0.
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Calculating out Resuq(z,y,2,0) = 0, yields the first unknown function, fi(x,y,z). The fractional
derivative of a constant is 0 in the conformable sense, hence @t(nfl)wResuk(x, y,z,t) = 0 relative to
n€{1,2,3,--- ,k}. The desired f,(z,y, z) coefficients are obtained by solving this equation for ¢ = 0.
Thus, u,(x,y, 2z,t) solutions may be determined, respectively.

6. Solutions for the Equation

Examine the conformable version of (1.1) in the specific situation provided as follows for the next two
analytical methods
Upzay + Dy 01ty + az(uum)y + a3tz + aauz, =0 (6.1)

A conformable fractional derivative is a mathematical concept that extends the notion of classical
derivatives to non-integer orders in a more flexible and generalized manner. It is a relatively recent
development in the field of fractional calculus [24]. Compared to classical fractional derivatives,
conformable fractional derivative has two essential advantages. First, most of the properties of the
classical derivative, including linearity, quotient rule, product rule, power rule, and chain rule, are
satisfied by the conformable fractional derivative. Second, differential equations with a conformable
fractional derivative are more straightforward to solve numerically than those involving the Riemann-
Liouville or Caputo fractional derivatives, making it very convenient to model many physical problems.

After doing the transformation as u(z,y, z,t) = u(€) with € = kx + wy + sz + <%, the following ODE

is obtained

u(§) = (alcw +ask® + a432> + KPwu” (€) + %%kwu(ﬁ)g

By balancing, u? = 2N, u” = N 4+ 2, and N = 2 is calculated. The exact solutions are obtained by
substituting them into (3.3) and (4.3).

6.1. Modified Extended tanh-function Method Solutions
For N = 2, (3.3) takes the following form,
u=Ag+ A19(&) + B1o(&) " + A20(£)* + Baop(£)?

When combined with (3.4), the following algebraic equation system is created.
2 2 3 2 1 2 3,, _
A1 Brikw + agAs Bokw + Ag aicw + ask” + aygs® ) + 2A5k°c“w + 2a2A0kw 4+ 2B5k’w =0

2 2 3 1 2

As (alcw + ask® + ays ) + 8Ask’cw + iagAlk‘w + agAgAskw =0
2A1k3w + agA1Askw =0

1

6 Ak w + §a2A%k‘w =0

asAsBrkw + Ay (alcw + ask® + a482> + 2410w + anAgArkw = 0

2 2 3 1 2
azAoBokw + By (arcw + agk? + aus®) + 8BakPow + SaeBikw =0
angBlkw + OéQAlBka + B1 (alcw + Oégk:Z + a452> + 231]433010 =0

2B k20w + as By Bokw = 0

and .
6Bok3 0w + §agB§k‘w =0



Journal of New Theory 46 (2024) 71-88 / New Conformable P-type (3 4 1)-dimensional Evolution Equation and - - - 77

For Ag, A1, Ay, B1, Bs, and ¢, we have six cases and six sets of solutions

Case 1.
— 94k dmo. A 1942 B0, By—— 12k252 ind e k? (a3 — 16kow) + auys?
ay ’ a ’ ay arw
Set 1.
For o < 0,
@ (k2(a3—16k 2
o112y 12k20tanh2 (\/jg (_t ( (a3 alwzw)—i—ms ) + kx + sz + wy>>
t) = —
ul({rvyaf% ) as + a2
w 2 _ 2
12k20 coth2 (\/—70' (_t (k (a3 allﬁjzw)-&-aﬁ ) + kxr + sz + wy))
n - (6.2)
or
“(k2(az—16k 2
o112 12k20 tanh? (\/jg (_t ( (a3 allewHMS ) + kx + sz + wy>>
t) = —
u2($,y,z, ) s + (%)
w 2 _ 2
1220 coth? (\/—70 <_t - a1161ﬁzw)+a48 ) + kx + sz + wy))
+ o
For ¢ > 0,
w (k2 (s —16k 2
24]{;20' 12k20 tan2 (ﬁ (_t ( = a1wgw)+a48 ) + kx + sz + wy>>
t) = — -
u3(z,y, 2, 1) Qs (e %)
w 2 _ 2
12k20 cot? <ﬁ (t o e oss ) | kat szt wy))
_ -
or
) 9 1 (k2 (a3 —16kow)+ays?) i
o4k2 12k*c tan® ( /o | — e +RT + sz +wy
t) = — -
u4(x,y,z, ) a9 o)
w 2 _ 2
12k20 cot? <\/f7 (t o e oas )kt szt wy))
_ -
For 0 =0,
12k2
u5(5L‘, Y, =, t) == t¥(agk2+aqs?)
) (—W+k$+sz+wy>2
Case 2.
12k 12k0> K (o — Ak ’
Ag= — 0" A1=0, As=0, Bi;=0, By=-— o , and c=— (Oé3 O"w) + 48
o a9 aqw
Set 2.
For o < 0,
9 9 (k2 (az—4kow)+ays?)
12k2%0 coth <\/ja (— aruw + kz + sz 4wy 12k%0
u6(x7y7zvt) = -

a2 a2
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or
w k‘2 —4k 2
12k20 tanh? (ﬁ (t ( e R wy)) 12k20
urle, .2, 1) = - (&3)
a9 a2
For o > 0,
9 9 t“’(k2(a3—4kow)+a482)
19k20 12k*c cot? (/o | — aTww + kr + sz +wy
t)=— -
u8($ayv 2y ) s fe%)
or
12820 ta? (o thow) s
19%20 2k?c tan? (/o [ — PR + kx + sz + wy
s Yy 7t = - -
ug(z,y, 2,t) s (e%)
For ¢ =0,
uto(z,y,2,t) =0
which is a trivial solution.
Case 3.
122 122 K (a3 — 4k i
AO: — U, Al:O, A2: - Bl:O, BQ:O, and c= — (Oé3 gw) + e
o o aw
Set 3.
For o < 0,
w k2 —4k 2
12k2¢ tanh? (\/—7 (—t ( s d st kot Sz+wy>) 1220
t) = B
ull(xayvza ) e %} g
or
w (|2 —4ko 2
12]{320' CO‘Eh2 <\/_70 <_t ( (@ a1www>+a4s ) + kx +sz+ wy)> 12k‘20'
)] M 7t = B
u12(2, Y, 2, t) a9 0%)]
For o > 0,
© (k2 (a3 —4k 2
12k20 12k%0 tan2 (ﬁ (_t it alwszw ) + kx + sz + wy))
» Yy 7t = - -
’U,13(.’L' Y,z ) o a9
or
19k 9 t“(kQ(a3—4kaw)+a482) k
12k2o5 7 cot® { Vo | = aruw AL+ sz wy
t)=— -
u14(x7yuz7 ) Qo [o%)
For o =0,
12k2
u15(2,y, 2,t) = — 1 (azk?+ays?)
fa%) (,W+kx+sz+wy>2
Case 4.
A Ak A0 A0 B0, Bye 12k252 i e k% (a3 + 4kow) + ays?

(6] a9 aqw
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Set 4.
For o < 0,
w 2 2
12k20 coth? (\/—70 (—t G (angzzwwraw ) + kx + sz + wy)) e
ulﬁ(x)yazvt) = -
a9 Q2
or
w 2( . 2
12k%0 tanh? (x/—a <—t (k (%ziszms ) + kx4 sz + wy)) Ak2o
u17($7yaz7t) = -
Qa2 a2
For o > 0,
w 2 2
1Ko 12k%0 cot? (ﬁ (—t (k (QSZTZZMHMS ) + kx4 sz + wy))
UlS(l‘,?/,Zat) = - -
a9 a
or
w 2 o 2
12 12k?0 tan? (ﬁ <—t (k (QSZ?fHUJmHMS ) + kx + sz + wy))
ul9(x7yvzat) = - -
a9 Q2
For ¢ =0,
’LLQ(](-%', Y, z, t) =0
which is a trivial solution.
Case 5.
4K* 12k2 k2 4k 2
Ag= — 0, A1=0, Ay=———, B1=0, By=0, and c=-— (a3 + dkow) + ass
(&%) €5) aw
Set 5.
For ¢ < 0,
w 2( . 2
12k20 tanh? <\/—a <—t (k (%Z?ZZMHMS ) + kx4 sz + wy>> 420
ug1 (,y, 2,t) = -
a9 a2
or
w 2 2
12k20 coth? (\/—70 (—t (k (a?’ﬁzzwyra‘ls ) +kx + sz + wy)) 420
ugs (2, y,2,t) = -
63 a2
For o > 0,
w 2 o 2
1o 12k?0 tan? (ﬁ (—t (k (QBZ?wa)+a4s ) +kx+ sz + wy))
u23($7yvzat) = - -
a9 Q2
or
12]{32 2 t¥ (k2(a3+4kaw)+a4s2) k
AR20 ocot® (o |— e + kx + sz +wy
u24(x7y727t) = - -
(%) Q2
For ¢ =0,
- 12k2
uQ5(x,y,z, ) - _a2 (_tw(a3k2+a452)

] ww

+kx+sz+wy>2

79
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Case 6.
8k2 12]€2 12]{72 2 k2 16k 2
AO: U’ A1:07 A2: - 9 B1:07 B2: - 7 ) and CcC= — (a3 + O'IU) + a48
g a9 9 aqw
Set 6.
For o < 0,
W (L2 (e 2
g2y 12k%0 tanh’ <ﬁ (_t (los t10kow) tourt) | oy 4 sz 4+ wy>>
U26($,y,z,t) - +
s o
2 2 12 (k2 (o3 +16kow)+aas?)
12k%0 coth® ( V=0 | — oW +kx + sz +wy
+
Qa2
or
w 2 o 2
k2o 12k20 tanh? (\/—a (—t (k (a3+a116£ww)+°‘48 ) + kx + sz + w?/))
UQ?(QT,iU,Z,t) = +
a9 o9
w 2 o 2
12k20 coth? (Jja (—t (k (a34;116£ww)+a45 ) Ckrdoss wy))
_|_
Q2
For o > 0,
w (1.2 2
si2y 12K otan® (ﬁ <t (BlootiObow)rons]) | g 452+ wy>)
U28(337y72’7t) = -
a9 o
2 2 tw (kQ(a3+16k0w)+a432)
12k%0o cot” | /o [ — aTow +kr + sz +wy
_ -
or
2 2 t“(kz(a3+16kaw)+a432)
g2y L2Kotan® (o | - o +kx + sz +wy
U29(.§E,y, th) — -
a9 a9
2 2 tw (kz(a3+16kaw)+a432)
12k*o cot” | /o [ — T +kr + sz +wy
_ -
For 0 =0,
( ) 12k?
u30 1’, y; Z, - - )
Q2 (—W:f#m—i-kx—ksz—kwy)?

6.2. exp (—¢(&))-expansion Method Solutions
Considering that N = 2, (4.3) is as follows:

u = By + Biexp(—¢(€)) + B exp(—¢(£))*
The algebraic system of equations next develops when (4.4) is included

1
a1 Bocw + 232n2k3w + Bm)\k3w + agBok2 + iaQngw + a43052 =0
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a1Bicw + 6 Bon k3w + 2Bink3w + BiA2k3w 4+ asB1k? + as BoBikw + ay By s* = 0
1
o Bacw + 8 Bonk3w + 4Bo N2 k3w + 3B w + azBok? + §agB%kw + apByBokw + iy Bas? = 0

10Bo 3w + 2B1 k3w + ag By Bokw = 0

and 1
6Bok*w + 5012322]“” =0
Case 7.
o 120k? - 19k2) B 12k2 ond e k? (a3 + kw (A2 — 4n)) + ays?
0 oy 1 oy 2 oy o w
Set 7.
For A2 —4n>0,n#0,
( ) 48n% k2
v\r, Yy, <, = = ¢ —
- <_\/Mtanh (% A2 — 4n (G _t (k2(a3+k12§)qu 477))+a452))) — )\) 2
- 24nk?\ (6.4)
g (_\/mtanh (%\/m (G _ tw(kQ(a3+k12§)1f;477))+a432))) — A) .
B 12nk?
a2
For \> — 4n < 0 and 7 # 0,
va(x,y, 2, t) Gl
2\L5 Yy <, - - a : —
az (V=X tan (§/n =¥ (G - ilestgiliasl)) - )2
24nk2\
— w (2 w(\2— 52
az (V=X tan (/= ¥ (G — ettt )) - 3)
12nk?

a2

For A2 —4n >0, A # 0 and n =0,

v,y t,2) = — 12Kk2)2
Qs (sinh (/\ (G - tw(kQ(%zlfiina“Sz))) + cosh (/\ (G - tw(kz(%j;’fi:mesz))) — 1)
- 12222
Qs (sinh (/\ (G — tw(kQ(a3zlfiiw)+a4s2))> + cosh (/\ (G — tw(kz(%j;]fi:w)"’a“z))) — 1) 2
For A2 —4np =0, A\ # 0 and 1 # 0,
e (G B tw(az;fwzmsz)) ) e (G B tw(azﬁjwmsz)) -
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For A2 —4n =0, A=0and = 0,

vs(2,y,2,1) = — el
- (G ~ t“(kQ(a3zéllllfuw)+a4s2)) 5
Case 8.
Bo— — 2k? (2;7; ,\2)’ By— — 125?7 B — 12;;2 nd C:ksw (A2 — 477())[1wa3k2 — oys?

Set 8.
For A2 —4n>0,n#0,

ve(z,y,2,t) = — 4877k

Qs (—\/mmnh (%\/m (G + tw(k%()\?*j?l?l)u;ask?*aﬁ?))) - )\) 2
24nk2\

o (—\/m tanh (%\/m (G n tW(ksw(AL;l?zU;askLmsZ))) - A)

2K (20 + N7

Qg
For A2 — 41 < 0 and n # 0,
48n%k?
U7($7 Y, %, t) = - 5 1 5 1 (k3w(A2—4n)—azk?—ays?) 2
ar (Vi — A tan (3y/an— 32 (G + it ) -
24n\k?

Qg ( 4n — A2 tan (%\/m (G + t“(k3w(/\2—j7l7zu;a3k2—a4sz))) _ /\)

2k (20 + N2
a2

For A2 —4n >0, A\ # 0 and 1 = 0,

opet) — 12k2\2
3 ) (3 )
- 12k2 )2
o (sinh ()\ (G i tW(A2k3wa:cl);rzf2—a432)>) © cosh ()\ (G N tw(/\2k3wa—$f2—a452))) _ 1) 2
2k2)\2
-

For A2 —4n =10, A # 0 and n # 0,

3k2)\4 <G n WW) 2 1 (s (—k?) —uas?)

6k2\3 (G + W) 1277k2
B o Y (FB e ey iy ERN Y (R e e R

aww aww
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For A2 —4n =0, A=0,and =0,

( 9 12k2 8nk?
V10\T, Y, =z, = - ") — — -
(G SR s

where, G = h + kx + sz + wy.
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Figure 1. Tanh-function method solution ui(z,y, z,t) of (6.2) in three dimensions(a), contour(b),

and two dimensions(c)
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Figure 2. (a) 3D,(b) contour and (c) 2D plots of exp(—¢(§))-expansion method solution vy (z,y, 2, t)
of (6.4)
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6.3. RPSM Solutions

First, consider an initial condition for ¢ = 0, using any of the previously obtained exact solutions. If
(6.3) is taken as the exact solution, the initial condition is becomes

w 2 _ 2
12k%0 tanh? (x/—a (—t (K(aa—dkow)taus?) + kx4 sz + wy)) 12k20

ajww

U7(IL“, Y, z, 0) =
a9 (6]

The RPSM solution takes the form of (5.3) for the approximate solutions to the (3 4 1)-dimensional
P-type evolution (6.1), where u = u(z,y, 2,t) and t > 0, 0 < w < 1 the generic form of the k — th
residual function of the time-fractional equation may be shown using (5.4) as follows:

Resuy(x,y, 2,t) = Upgay + D 1uy + a(uux)y + a3tgy + aqtiz; =0

It is required to determine fi(z,y, z) for a known f(x,y, z) function in order to establish Resu;(x,y, 2, t).
In considering it, Resu;(z,y, z,t) is obtained as

Resui(z,y,2,t) = a1 (f1), + a2 ((Ul)—ztw +(f)z) (M -I—(f)y) + (% +f) (M +(f)zy>>

w w w

o (—(ﬁ)z—”” = (f>xm> ! (UI)T#O) o (WTW H )“> e

w

when f1 = fi(z,y,2) and f = f(z,y, z) occur. Thus, the first unknown coefficient is calculated when
t=0.

f 24k20? (4k3ow — azk?® — ayus?) tanh (V=0 (kx + sz + wy)) sech? (v/—o (kz + sz + wy))
1= -

a1/ —ow
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Hence, the first approximate RPSM solution u; = wui(x,y, 2,t) is subsequently obtained as

12k%0 N 12k%0 tanh? (/= (kz + sz + wy))
a9 Q2

24k2021 (4kPow — azk? — ayus?) tanh (V=0 (kx + sz + wy)) sech? (vV=o (kz + sz + wy))
102\ —oWwW

Uy =

Likewise, to get the second unknown parameter, the second residual function is established as

2w 2w—1 w
Resu2 = UQ);Zgyt + altlfw <(f1)y twfl + (fz)y(j ) + (fl)xjmyt
w w 2w w
(G B0 (BB
(f2):1:x £ (f1>gm t
+as ( 202 + » + (f)m>
2w w 2w w

+®<U2§ +Uit+f>Ch;g +¢ﬁtﬂ +uu»

22 W

+M<m@ﬂ%¢hu”+gM>+mmw

where fo(x,y,z) = fo. Taking the first order derivative, we can get the second unknown parameter
for t = 0 as follows:

F 2402 (—4k*ow + azk® + ayks?) 2 (cosh (2v/ =0 (kz + sz + wy)) — 2) sech? (vV=0o(kz + sz + wy))
2 = 2

ajogw?

As a result, the second approximation of ug = ug(x,y, z,t) becomes

12k%0 N 12k20 tanh? (vV=0(kx + sz + wy))
(65 (65)

Ug =

N 12022 (—4kiow + azk® + auks?) ? (cosh (2y/ =0 (kz + sz +wy)) — 2) sech* (vV=0c(kz + sz + wy))

a?apuw?w?

24k20%t (4k3ow — azk? — ays?) tanh (vV—o(kz + sz + wy)) sech? (vV=0o(kz + sz + wy))

102/ —OoWW

Likewise, the following approximate solutions appear

12k N 12k20 tanh? ((A))
a9 a9

us =

N 120212 (—4k*ow + azk® + asks?) 2 (cosh (2(A)) — 2) sech? ((A))

a?agw?

w?

8k203t% (—4kPow + azk? + ays?) ? (cosh (2(A)) — 5) tanh ((A)) sech? ((A))
adagy/—owdw?

| 24k%0% (4kPow — azk? — ays?) tanh ((A)) sech® ((4))
100/ —OWW
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1202 (cosh(2A) — 2)sech? (A)t* (—4k4ow + azk® + a4ks2) 2

Ug =

12k%0 tanh?(A)
+

Q2

a? apw2w?

85

N k%03 (—26 cosh(2A) + cosh(4A) + 33)sech®(A)t* (4k30w — azk? — 2a432) (—4k3aw + azk? + a432) 3

8k*c® (cosh(2A4) — 5) tanh(A)sech® (A)t* (—4k’ow + ask® + aas®) ?

2ataswiw?

3 3,,3
ofazy/ —owdw

24k*0% tanh(A)sech?(A)t (4k3aw — azk? — a452) 12k%0

o102

where, A = \/—o(kx + sz + wy).

—oww

Qa2

Table 1. Comparison of specific numerical values of RPSM approximate solution u4 of (6.5) and
Modified Extended tanh-function Method exact solution w7 of (6.3)

w = 0.55 w = 0.85 w=0.95

t RPSM Exact Abs. Error RPSM FEzxact Abs. Error RPSM Exact Abs. Error
0.0 —0.418977 —0.418977 0.00000 —0.418977  —0.418977 0.00000 —0.418977  —0.418977 0.00000

0.1 —0.421380 —0.421380 4.4640 x 10~'*  —0.419759 —0.419759 4.5158 x 10~13  —0.419533 —0.419533 1.1368 x 1013
0.2 —0.422485 —0.422485 2.1718 x 10~10  —0.420385 —0.420385 4.9379 x 10~'2  —0.420050 —0.420050 1.6314 x 10~12
0.3 —0.423351 —0.423351 5.5319 x 10710 —0.420961 —0.420961 2.0229 x 10~'1  —0.420553 —0.420553 7.8329 x 10~ 12
0.4 —0.424090 —0.424090 1.0792 x 10—°  —0.421508 —0.421508 5.5392 x 10~ —0.421045 —0.421045 2.4008 x 10— !
0.5 —0.424747 —0.424747 1.8182x 102  —0.422032 —0.422032 1.2156 x 1010 —0.421531 —0.421531 5.7522 x 10~ 1
0.6 —0.425345 —0.425345 2.7903 x 1079  —0.422539 —0.422539 2.3187 x 10~1°0  —0.42201  —0.42201  1.1791 x 1010
0.7 —0.425898 —0.425898 4.0145 x 109  —0.423033 —0.423033 4.0137 x 10~10  —0.422484 —0.422484 2.1700 x 10— 10
0.8 —0.426415 —0.426415 5.5082 x 102  —0.423514 —0.423514 6.4705 x 10~10  —0.422953 —0.422953  3.6900 x 1010
0.9 —0.426901 —0.426901 7.2881 x 109  —0.423986 —0.423986 9.8777 x 10~10  —0.423418 —0.423418 5.9063 x 10~ 10
1.0 —0.427363 —0.427363 9.3700 x 1072  —0.424448 —0.424448 1.4443 x 1072  —0.423880 —0.423880 9.0121 x 10~1°

~

20 g0

(a) RPSM solution

~<

~

(b) Exact solution
Figure 3. Comparison of surface plots of RPSM approximate solution ug of (6.5) and Modified
Extended tanh-function Method exact solution uy of (6.3)

|/
|/

20 g0

The surface plots show some novel solutions to the present equation that might be useful for other types

of differential equations of arbitrary order. Figures 1 and 2 display some of the physical characteristics

of the acquired analytical solutions in 3D, 2D, and contour representations. Besides, Figure 3 compares

the surface graphics of the approximate and exact solutions obtained in 3D. Concurrently, for the

given Table 1 and the mentioned figures, the following values and ranges are used for the exact and

approximate solutions.

i. Figure 1: £k =0.01, s =0.01, a1 = 0.9, ag = —0.8, a3 = 0.7, ay = 0.4, 0 = —0.04, y = 0.3, 2 = 0.2,
w = 0.95, and w = 0.95, =50 < z < 5, for (a) and (b); t = 0.99, for (c).
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ii. Figure 2: k=02, w=1,5=0.01,y=0.1, 2= 0.5, h = 0.1, 7 = 0.05, A = 0.5, a1 = 0.1, as = 0.5,
a3 =0.1, oy = 0.1, w = 0.95, =50 < = < 50, for (a) and (b); ¢t = 0.99, for (c).

71, Table 1: a1 = 0.3, ae = —0.2, a3 = 0.01, a4y =04, k=03, s=0.1, 0 = -0.09, w =09, x = 1,
w=09,y=1z=1and 0 <t < 1.

w. Figure 3: a1 = 0.3, ag = —0.2, a3 = 0.01, a4y =04, k=03, s=0.1, 0 = —-0.09, w = 0.9, x = 1,
w=0095y=1z=1and w=0.95 —25 <z <25, for (a) and (b); 0 <t < 1.

7. Conclusion

In the main study [21], the authors presented the Painlevé integrability analysis of the model.
Additionally, they can acquire the rogue waves up to the third order by using symbolic computation
and the Cole-Hopf transformation. Dispersive-soliton solutions to this equation are finally introduced.
Next, very recently, multi-wave, breather, and other localized wave solutions via the Hirota bilinear
method have been presented in [33]. In this paper, using modified extended tanh-function and the
exp(—¢(&))-expansion methods, solutions to the (3 + 1)-dimensional P-type evolution equation with
conformable derivative were explored in this study. The residual power series method(RPSM) was also
employed to get approximate solutions. Modified extended tanh-function and exp(—¢(§))-expansion
methods produced several accurate exact solutions with low processing complexity. Furthermore,
there is no requirement for discretization, translation, or perturbation when applying the RPSM to
the governing equation. 3D, 2D, and contour plots were illustrated to visually present the solutions
discovered. Besides, a comparison table is presented to compare the approximate solutions with the
exact solutions. These solutions have important physical characteristics that have not been previously
reported in the literature and are unique. According to some interpretations of the figures, the
exact solutions’ physical behavior appears for particular values. Comprehending these applications
is essential for their possible practical uses. Thus, analytical and numerical solutions are essential to
understanding real-world scenarios. As a result, further fractional order differential equations may be
handled and solved using the suggested methods in later research.
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