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Research Article

Abstract − The paper examines the conformable nonlinear evolution equation in (3 + 1)-
dimensions. First, basic definitions and characteristics for the conformable derivative are
given. Then, the modified extended tanh-function and exp(–ϕ(ξ))-expansion techniques are
utilized to determine the exact solutions to this problem. The consequences of some of the
acquired data’s physical 3D and 2D contour surfaces are used to demonstrate the findings,
providing insight into how geometric patterns are physically interpreted. These solutions
help illustrate how the studied model and other nonlinear representations in physical sciences
might be used in real-world scenarios. It is clear that these methods have the capacity to
solve a large number of fractional differential equations with beneficial outcomes.

Keywords (3 + 1)-dimensional evolution equation, modified extended tanh-function method, exp(–ϕ(ξ))-expansion
method, residual power series method, conformable derivative

Mathematics Subject Classification (2020) 35R11, 65J15

1. Introduction

In several fields of the social and fundamental sciences, as well as engineering, fractional differential
equations are encountered. Their significance in several disciplines requiring complex physical
processes, from electrical circuits and control theory to wave propagation, has earned more attention
in recent years. Many engineering issues are modeled and designed using them. Solutions to these
equations have been helpful since they highlight nonlinear physical properties more clearly and provide
a path for further study. In mathematical physics, nonlinear wave equations play a role in several fields,
notably chemical kinetics, solid-state physics, optical fibers, fluid mechanics, and plasma physics.

A particular kind of partial differential equation that depicts how a system changes over time is called
an evolution partial differential equation(PDE). PDEs are equations involving functions and their
partial derivatives concerning several independent variables in mathematics and science. Time is one
of these factors that evolution PDEs particularly include, so they represent how a system changes
or evolves. Dynamic processes are frequently modeled using evolution PDEs in physics, engineering,
biology, and economics, among other disciplines. The wave equation, the heat equation, and the
Schrödinger equation in quantum mechanics are a few examples of the evolution of PDEs. These
equations, essential to comprehend physical systems’ behavior, explain how variables like temperature,
displacement, or wave function change over time and space.
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Much focus has been placed on the nonlinear evolution equations recently. It is becoming more and
more attractive to look for PDE solutions directly. In applied research and sciences, the mathemati-
cal modeling of physical occurrences is an essential tool for analysis. Various mathematical methods
have been used to search for solutions and an advanced knowledge of these equations. Many ana-
lytical and numerical methods have been used to solve these equations and gain an excellent grasp
of them. A few of these analytical methods are: Unified Ansätze Method [1] for the optical solitons
and traveling wave solutions to Kudryashov’s equation, Sub-equation Method [2] for the general-
ized Benjamin, modified generalized multidimensional Kadomtsev–Petviashvili, modified generalized
multidimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony, and the variant Boussinesq sys-
tem of equations, Sardar Sub-equation Method [3] for the Korteweg–de Vries–Zakharov–Kuznetsov
equation, Jacobi Elliptic Function Expansion Method [4] for the Korteweg–de Vries, Boussinesq,
Klein–Gordon, and variant Boussinesq equations, Exp-function Method [5] for the generalized shallow
water-like equation, Boiti–Leon–Manna–Pempinelli, generalized variable-coefficient B-type Kadomt-
sev–Petviashvili, and Caudrey-Dodd-Gibbon-Kotera-Sawada equations, Extended sinh-Gordon Equa-
tion Expansion Method [6] for the Kundu–Eckhaus equation, Modified Kudryashov Method [7] for the
Kuramoto–Sivashinsky and seventh-order Sawada–Kotera equations, Modified Exponential Function
Method [8] for the modified Benjamin-Bona-Mahony and Sharma-Tasso-Olver equations, (G′/G)-
expansion Method [9] for the the higher order Broer–Kaup, breaking soliton, and asymmetric Nizh-
nik–Novikov–Vesselov equations, Modified Simple Equation Method [10] for the Kaup-Newell equation,
the Extended Trial Equation Method [11] for the B(n + 1, 1, n) equation, and the Variational Direct
Method [12] for the complex Ginzburg–Landau equation.

Scientists became deeply interested in inventing fractional models and discovering approximations to
the generated problems. Scientists also place extensive attention on the creation and use of different
methods to get these solutions. Multiple methods, frequently discovered in literature, are used to
find numerical solutions for FDEs. These include the Residual Power Series Method(RPSM) [13],
Homotopy Analysis Method [14], Homotopy-Perturbation, and Variational Iteration Methods [15]. It
has become clear that no single method can strictly and universally solve every nonlinear problem.
Many techniques were created as the result of this insight, such as Modified Extended tanh-function
Method [16] and exp(–ϕ(ξ))-expansion Method [17].

For fractional differential equations, multiple definitions of derivative have been put upward, such as
the Riemann-Liouville [18], Caputo [19] and conformable derivatives [20]. The Riemann-Liouville and
Caputo fractional derivatives are notable for often used in modern mathematical discourse. Similarly,
the conformable fractional derivative technique is prominent due to its dependability and ease of use.

Recently, Mohan et al. [21] has presented a new (3 + 1)-dimensional P-type evolution equation as

uxxxy + α1uyt + α2(uux)y + α3uxx + α4uzz = 0 (1.1)

The authors in this work present the Painlevé integrability analysis of the model. Using Cole-Hopf
transformation and symbolic computation, they obtain the rogue waves up to the third order. Finally,
they introduce dispersive-soliton solutions to this equation.

In this paper, we address some new analytical and numerical solutions of the model that do not exist
in the literature. The structure of the paper is as follows: Section 2 provides some basic definitions to
be needed for the following sections. Section 3 details the modified, extended tanh-function method.
Section 4 describes exp(–ϕ(ξ))-expansion method in detail. Section 5 presents the approximation
approach known as the residual power series method(RPSM). Section 6 contains analytical and nu-
merical solutions to the underlying equation. Section 7 discusses the need for further research.
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2. Preliminaries

This section provides some basic notions to be needed for the following sections.

Definition 2.1. [24] The following defines the conformable derivative of a function of order ω,
j : [0, ∞) → R, t > 0, ω ∈ (0, 1),

Dω
t (j)(t) = lim

δ→0

j
(
t + δt1−ω

)
− j(t)

δ

In addition, if limt→0+ Dω
t (j)(t) exists and j is ω-differentiable in the range (0, k) for k > 0, the

definition becomes
Dω

t (j)(0) = lim
t→0+

Dω
t (j)(t)

Lemma 2.2. [22–24] For 0 < ω ≤ 1, let j1 and j2 be ω-differentiable at t > 0. Then,

i. Dω
t (tp1) = p1tp1−ω, p1 ∈ R

ii. Dω
t (p1j1 + p2j2) = p1Dω

t (j1) + p2Dω
t (j2), p1, p2 ∈ R

iii. Dω
t ( j1

j2 ) = j2.Dω
t (j1)−j1T ω

t (j2)
j2
2

iv. Dω
t (j1.j2) = j1Dω

t (j2) + j2Dω
t (j1)

v. Dω
t (j1)(t) = t1−ω dj1(t)

dt

vi. Dω
t (S) = 0, if S is a constant

Definition 2.3. [25] Let j(y1, y2, · · · , yn) be the function with n variables. Following is the partial
derivatives of j in yi of order ω ∈ (0, 1].

dω

dyω
i

j(y1, y2, · · · , yn) = lim
δ→0

j(y1, y2, · · · , yi−1, yi + δy1−ω
i , yn) − j(y1, y2, · · · , yn)
δ

The following sections will introduce modified extended tanh-function, exp(–ϕ(ξ))-expansion, and RPS
methods.

3. Modified Extented tanh-function Method

The primary stages of the modified extended tanh-function method [25–27] are explained in this section
as follows. Suppose we have a nonlinear evolution equation of the type

β (u, ut, ux, uy, uxx, uyy, · · · ) = 0 (3.1)

where β is a polynomial in u(x, y, · · · , t) and nonlinear components are found in its partial derivatives.
Utilizing the transformation,

u(x, y, · · · , t) = u(ξ), ξ = kx + wy + · · · + ctω

ω

will turn (3.1) to an ODE as
β
(
u(ξ), u′(ξ), u′′(ξ), · · ·

)
= 0 (3.2)

Suppose that the form of the solution of (3.1),

u(ξ) = A0 +
N∑

m=1

(
Amϕm(ξ) + Bmϕ−m(ξ)

)
, m ∈ {0, 1, 2, · · · , N} (3.3)

where AN ̸= 0, BN ̸= 0, and Am and Bm are constants that have to be found and ϕ(ξ) satisfies the
Riccati equation

ϕ′(ξ) = σ + ϕ(ξ)2 (3.4)
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In this case, σ is an unknown parameter. Numerous solutions can be found for (3.4), as illustrated
below

i. If σ < 0, then

ϕ(ξ) = −
√

−σ tanh
(√

−σξ
)

or ϕ(ξ) = −
√

−σ coth
(√

−σξ
)

ii. If σ > 0, then
ϕ(ξ) =

√
σ tan

(√
σξ
)

or ϕ(ξ) = −
√

σ cot
(√

σξ
)

iii. If σ = 0, then
ϕ(ξ) = −1

ξ

In (3.3), the positive integer N is obtained by balancing the biggest nonlinear variable and the highest-
order derivatives.

By replacing (3.3), its derivative, and (3.4) into (3.2), as well as collecting all the terms of the same
power ϕm, (m ∈ {0, 1, 2, · · · , N}) and equating them to zero, one can use a symbolic computation tool
to determine the values of Am and Bm. By entering these values and the solutions to (3.4) into (3.3),
we can obtain the exact solutions to (3.1).

4. exp(−ϕ(ξ))-expansion Method

Examine the nonlinear evolution equation presented in the following manner

D(u, Dω
t , Dxu, Dyu, D2

xu, D2
y u, · · · ) = 0 (4.1)

The arbitrary order conformable derivative operator is represented by Dω
t in this case. u = u(x, y, · · · , t)

is an unknown function, and the subscripts stand for partial derivatives. When using exp(–ϕ(ξ))-
expansion method [28–30] in order to obtain wave solutions for (4.1), the following steps must be
carried out.

i. The real variables x, y, z, · · · , t are combined using a compound variable named ξ as

ξ = kx + wy + · · · + ctω

ω
, u(x, y, z, · · · , t) = u(ξ)

ii. The next ordinary differential equation may be obtained by reducing (4.1)

G (u(ξ), u′(ξ), u′′(ξ), · · · ) = 0 (4.2)

iii. As the following finite series, the exact solutions may be constructed:

u(ξ) =
N∑

r=0
Br(exp (ξ(−ϕ)))r, BN ̸= 0, 0 ≤ r ≤ N (4.3)

iv. The following ordinary differential equation can be solved for ϕ = ϕ(ξ)

ϕ′(ξ) = exp(−ϕ(ξ)) + η exp(ϕ(ξ)) + λ (4.4)

v. The following are the possible solutions to (4.4) for λ2 − 4η > 0 and η ̸= 0, depending on the
pertinent parameters.

u1(ξ) =
ln
(

−
√

(λ2 − 4η) tanh
(√

(λ2−4η)
2 (ξ + h)

)
− λ

)
2η
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when λ2 − 4η < 0 and η ̸= 0 are present,

u2(ξ) =
ln
(√

(4η − λ2) tanh
(√

(4η−λ2)
2 (ξ + h)

)
− λ

)
2η

when λ2 − 4η > 0, λ ̸= 0, and η = 0 are present,

u3(ξ) = − ln
(

λ

sinh(λ(ξ + h)) + cosh(λ(ξ + h)) − 1

)
when λ2 − 4η = 0, λ ̸= 0, and η ̸= 0 are present,

u4(ξ) = ln
(

−2(λ(ξ + h) + 2)
λ2(h + ξ)

)
when λ2 − 4η = 0, λ = 0, and η = 0 are present,

u5(ξ) = ln(ξ + h)

in which h serves as the integration constant.

vi. The positive integer N is determined by considering the homogeneous balance between the highest
order derivatives of u(ξ) as given in (4.2) and the biggest nonlinear term. When (4.2) is replaced by
(4.3) along with (4.4), and terms with the same powers of exp(−ϕ) are combined, the left side of (4.2)
becomes a polynomial. A series of algebraic equations in terms of Br(r ∈ {0, 1, 2, 3, · · · , N}), c, λ,

and η are produced. We get solutions for (4.2) by equating all of this polynomial’s coefficients to zero,
solving the ensuing system of algebraic equations, and then substituting the solutions back into (4.3).

5. Residual Power Series Method(RPSM)

Examine the following nonlinear fractional differential equation to illustrate the basis of the RPS
method [31,32].

h(x, y, z, t) = Dωu(x, y, z, t) + R[x, y, z]u(x, y, z, t) + N [x, y, z]u(x, y, z, t) (5.1)

The initial condition is
u(x, y, z, 0) = f0(x, y, z) = f(x, y, z) (5.2)

R[x, y, z] is a linear operators and N [x, y, z] is a nonlinear operators. The RPS method requires
expanding the unknown function to a fractional series at t = 0 to find the approximate solutions to
(5.1), subject to (5.2).

Thus, the solution may be represented as follows using a series expansion

u(x, y, z, t) =
∞∑

n=0
fn(x, y, z) tnω

ωnn!

Consequently, for 0 ≤ t < R
1
v and 0 < ω ≤ 1, the k-th series of u(x, y, z, t), or uk(x, y, z, t), is

determined to be as follows

uk(x, y, z, t) = f(x, y, z) +
k∑

n=1
fn(x, y, z) tnω

ωnn! , k ∈ {1, 2, 3, · · · } (5.3)

Then, we express the residual function and the coefficient k-th residual function as

Resuk(x, y, z, t) = Dωuk(x, y, z, t) + R[x, y, z]uk(x, y, z, t) + N [x, y, z]uk(x, y, z, t) − h(x, y, z, t) (5.4)

where k ∈ {1, 2, 3, · · · }. For Resu(x, y, z, t) = 0 and limk→∞ Resuk(x, y, z, t) = Resu(x, y, z, t), it is
obvious that t ≥ 0.
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Calculating out Resu1(x, y, z, 0) = 0, yields the first unknown function, f1(x, y, z). The fractional
derivative of a constant is 0 in the conformable sense, hence D

(n−1)ω
t Resuk(x, y, z, t) = 0 relative to

n ∈ {1, 2, 3, · · · , k}. The desired fn(x, y, z) coefficients are obtained by solving this equation for t = 0.
Thus, un(x, y, z, t) solutions may be determined, respectively.

6. Solutions for the Equation

Examine the conformable version of (1.1) in the specific situation provided as follows for the next two
analytical methods

uxxxy + Dω
t α1uy + α2(uux)y + α3uxx + α4uzz = 0 (6.1)

A conformable fractional derivative is a mathematical concept that extends the notion of classical
derivatives to non-integer orders in a more flexible and generalized manner. It is a relatively recent
development in the field of fractional calculus [24]. Compared to classical fractional derivatives,
conformable fractional derivative has two essential advantages. First, most of the properties of the
classical derivative, including linearity, quotient rule, product rule, power rule, and chain rule, are
satisfied by the conformable fractional derivative. Second, differential equations with a conformable
fractional derivative are more straightforward to solve numerically than those involving the Riemann-
Liouville or Caputo fractional derivatives, making it very convenient to model many physical problems.

After doing the transformation as u(x, y, z, t) = u(ξ) with ξ = kx + wy + sz + ctω

ω , the following ODE
is obtained

u(ξ) =
(
α1cw + α3k2 + α4s2

)
+ k3wu′′(ξ) + 1

2α2kwu(ξ)2

By balancing, u2 = 2N , u′′ = N + 2, and N = 2 is calculated. The exact solutions are obtained by
substituting them into (3.3) and (4.3).

6.1. Modified Extended tanh-function Method Solutions

For N = 2, (3.3) takes the following form,

u = A0 + A1ϕ(ξ) + B1ϕ(ξ)−1 + A2ϕ(ξ)2 + B2ϕ(ξ)−2

When combined with (3.4), the following algebraic equation system is created.

α2A1B1kw + α2A2B2kw + A0
(
α1cw + α3k2 + α4s2

)
+ 2A2k3σ2w + 1

2α2A2
0kw + 2B2k3w = 0

A2
(
α1cw + α3k2 + α4s2

)
+ 8A2k3σw + 1

2α2A2
1kw + α2A0A2kw = 0

2A1k3w + α2A1A2kw = 0

6A2k3w + 1
2α2A2

2kw = 0

α2A2B1kw + A1
(
α1cw + α3k2 + α4s2

)
+ 2A1k3σw + α2A0A1kw = 0

α2A0B2kw + B2
(
α1cw + α3k2 + α4s2

)
+ 8B2k3σw + 1

2α2B2
1kw = 0

α2A0B1kw + α2A1B2kw + B1
(
α1cw + α3k2 + α4s2

)
+ 2B1k3σw = 0

2B1k3σ2w + α2B1B2kw = 0

and
6B2k3σ2w + 1

2α2B2
2kw = 0
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For A0, A1, A2, B1, B2, and c, we have six cases and six sets of solutions

Case 1.

A0=− 24k2σ

α2
, A1=0, A2=− 12k2

α2
, B1=0, B2=− 12k2σ2

α2
, and c=− k2 (α3 − 16kσw) + α4s2

α1w

Set 1.

For σ < 0,

u1(x, y, z, t) = −24k2σ

α2
+

12k2σ tanh2
(√

−σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

+
12k2σ coth2

(√
−σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

(6.2)

or

u2(x, y, z, t) = −24k2σ

α2
+

12k2σ tanh2
(√

−σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

+
12k2σ coth2

(√
−σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ > 0,

u3(x, y, z, t) = −24k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

−
12k2σ cot2

(√
σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

or

u4(x, y, z, t) = −24k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

−
12k2σ cot2

(√
σ

(
− tω(k2(α3−16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ = 0,

u5(x, y, z, t) = − 12k2

α2
(
− tω(α3k2+α4s2)

α1wω + kx + sz + wy
)

2

Case 2.

A0= − 12k2σ

α2
, A1=0, A2=0, B1=0, B2= − 12k2σ2

α2
, and c= − k2 (α3 − 4kσw) + α4s2

α1w

Set 2.

For σ < 0,

u6(x, y, z, t) =
12k2σ coth2

(√
−σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 12k2σ

α2
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or

u7(x, y, z, t) =
12k2σ tanh2

(√
−σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 12k2σ

α2
(6.3)

For σ > 0,

u8(x, y, z, t) = −12k2σ

α2
−

12k2σ cot2
(√

σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

or

u9(x, y, z, t) = −12k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ = 0,

u10(x, y, z, t) = 0

which is a trivial solution.

Case 3.

A0= − 12k2σ

α2
, A1=0, A2= − 12k2

α2
, B1=0, B2=0, and c= − k2 (α3 − 4kσw) + α4s2

α1w

Set 3.

For σ < 0,

u11(x, y, z, t) =
12k2σ tanh2

(√
−σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 12k2σ

α2
or

u12(x, y, z, t) =
12k2σ coth2

(√
−σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 12k2σ

α2

For σ > 0,

u13(x, y, z, t) = −12k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

or

u14(x, y, z, t) = −12k2σ

α2
−

12k2σ cot2
(√

σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ = 0,

u15(x, y, z, t) = − 12k2

α2
(
− tω(α3k2+α4s2)

α1wω + kx + sz + wy
)

2

Case 4.

A0= − 4k2σ

α2
, A1=0, A2=0, B1=0, B2= − 12k2σ2

α2
, and c= − k2 (α3 + 4kσw) + α4s2

α1w
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Set 4.

For σ < 0,

u16(x, y, z, t) =
12k2σ coth2

(√
−σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 4k2σ

α2
or

u17(x, y, z, t) =
12k2σ tanh2

(√
−σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 4k2σ

α2

For σ > 0,

u18(x, y, z, t) = −4k2σ

α2
−

12k2σ cot2
(√

σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

or

u19(x, y, z, t) = −4k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ = 0,

u20(x, y, z, t) = 0

which is a trivial solution.

Case 5.

A0= − 4k2σ

α2
, A1=0, A2= − 12k2

α2
, B1=0, B2=0, and c= − k2 (α3 + 4kσw) + α4s2

α1w

Set 5.

For σ < 0,

u21(x, y, z, t) =
12k2σ tanh2

(√
−σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 4k2σ

α2
or

u22(x, y, z, t) =
12k2σ coth2

(√
−σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 4k2σ

α2

For σ > 0,

u23(x, y, z, t) = −4k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

or

u24(x, y, z, t) = −4k2σ

α2
−

12k2σ cot2
(√

σ

(
− tω(k2(α3+4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ = 0,

u25(x, y, z, t) = − 12k2

α2
(
− tω(α3k2+α4s2)

α1wω + kx + sz + wy
)

2
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Case 6.

A0=8k2σ

α2
, A1=0, A2= − 12k2

α2
, B1=0, B2= − 12k2σ2

α2
, and c= − k2 (α3 + 16kσw) + α4s2

α1w

Set 6.

For σ < 0,

u26(x, y, z, t) = 8k2σ

α2
+

12k2σ tanh2
(√

−σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

+
12k2σ coth2

(√
−σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

or

u27(x, y, z, t) = 8k2σ

α2
+

12k2σ tanh2
(√

−σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

+
12k2σ coth2

(√
−σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ > 0,

u28(x, y, z, t) = 8k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

−
12k2σ cot2

(√
σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

or

u29(x, y, z, t) = 8k2σ

α2
−

12k2σ tan2
(√

σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

−
12k2σ cot2

(√
σ

(
− tω(k2(α3+16kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

For σ = 0,

u30(x, y, z, t) = − 12k2

α2
(
− tω(α3k2+α4s2)

α1wω + kx + sz + wy
)

2

6.2. exp (−ϕ(ξ))-expansion Method Solutions

Considering that N = 2, (4.3) is as follows:

u = B0 + B1 exp(−ϕ(ξ)) + B2 exp(−ϕ(ξ))2

The algebraic system of equations next develops when (4.4) is included

α1B0cw + 2B2η2k3w + B1ηλk3w + α3B0k2 + 1
2α2B2

0kw + α4B0s2 = 0
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α1B1cw + 6B2ηλk3w + 2B1ηk3w + B1λ2k3w + α3B1k2 + α2B0B1kw + α4B1s2 = 0

α1B2cw + 8B2ηk3w + 4B2λ2k3w + 3B1λk3w + α3B2k2 + 1
2α2B2

1kw + α2B0B2kw + α4B2s2 = 0

10B2λk3w + 2B1k3w + α2B1B2kw = 0

and
6B2k3w + 1

2α2B2
2kw = 0

Case 7.

B0= − 12ηk2

α2
, B1= − 12k2λ

α2
, B2= − 12k2

α2
, and c= − k2 (α3 + kw

(
λ2 − 4η

))
+ α4s2

α1w

Set 7.

For λ2 − 4η > 0 , η ̸= 0,

v1(x, y, z, t) = − 48η2k2

α2
(
−
√

λ2 − 4η tanh
(

1
2
√

λ2 − 4η
(
G − tω(k2(α3+kw(λ2−4η))+α4s2)

α1wω

))
− λ

)
2

− 24ηk2λ

α2
(
−
√

λ2 − 4η tanh
(

1
2
√

λ2 − 4η
(
G − tω(k2(α3+kw(λ2−4η))+α4s2)

α1wω

))
− λ

) (6.4)

−12ηk2

α2

For λ2 − 4η < 0 and η ̸= 0,

v2(x, y, z, t) = − 48η2k2

α2
(√

4η − λ2 tan
(

1
2
√

4η − λ2
(
G − tω(k2(α3+kw(λ2−4η))+α4s2)

α1wω

))
− λ

)
2

− 24ηk2λ

α2
(√

4η − λ2 tan
(

1
2
√

4η − λ2
(
G − tω(k2(α3+kw(λ2−4η))+α4s2)

α1wω

))
− λ

)

−12ηk2

α2

For λ2 − 4η > 0, λ ̸= 0 and η = 0,

v3(x, y, t, z) = − 12k2λ2

α2

(
sinh

(
λ
(

G − tω(k2(α3+kλ2w)+α4s2)
α1wω

))
+ cosh

(
λ
(

G − tω(k2(α3+kλ2w)+α4s2)
α1wω

))
− 1
)

− 12k2λ2

α2

(
sinh

(
λ
(

G − tω(k2(α3+kλ2w)+α4s2)
α1wω

))
+ cosh

(
λ
(

G − tω(k2(α3+kλ2w)+α4s2)
α1wω

))
− 1
)

2

For λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

v4(x, y, z, t) = −
3k2λ4

(
G − tω(α3k2+α4s2)

α1wω

)
2

α2
(
λ
(
G − tω(α3k2+α4s2)

α1wω

)
+ 2

)
2

+
6k2λ3

(
G − tω(α3k2+α4s2)

α1wω

)
α2
(
λ
(
G − tω(α3k2+α4s2)

α1wω

)
+ 2

) − 12ηk2

α2
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For λ2 − 4η = 0, λ = 0 and η = 0,

v5(x, y, z, t) = − 12k2

α2
(
G − tω(k2(α3+4ηkw)+α4s2)

α1wω

)
2

Case 8.

B0= − 2k2 (2η + λ2)
α2

, B1= − 12k2λ

α2
, B2= − 12k2

α2
, and c=k3w

(
λ2 − 4η

)
− α3k2 − α4s2

α1w

Set 8.

For λ2 − 4η > 0 , η ̸= 0,

v6(x, y, z, t) = − 48η2k2

α2
(
−
√

λ2 − 4η tanh
(

1
2
√

λ2 − 4η
(
G + tω(k3w(λ2−4η)−α3k2−α4s2)

α1wω

))
− λ

)
2

− 24ηk2λ

α2
(
−
√

λ2 − 4η tanh
(

1
2
√

λ2 − 4η
(
G + tω(k3w(λ2−4η)−α3k2−α4s2)

α1wω

))
− λ

)
−2k2 (2η + λ2)

α2

For λ2 − 4η < 0 and η ̸= 0,

v7(x, y, z, t) = − 48η2k2

α2
(√

4η − λ2 tan
(

1
2
√

4η − λ2
(
G + tω(k3w(λ2−4η)−α3k2−α4s2)

α1wω

))
− λ

)
2

− 24ηλk2

α2
(√

4η − λ2 tan
(

1
2
√

4η − λ2
(
G + tω(k3w(λ2−4η)−α3k2−α4s2)

α1wω

))
− λ

)
−2k2 (2η + λ2)

α2

For λ2 − 4η > 0, λ ̸= 0 and η = 0,

v8(x, y, z, t) = − 12k2λ2

α2
(
sinh

(
λ
(
G + tω(λ2k3w−α3k2−α4s2)

α1wω

))
+ cosh

(
λ
(
G + tω(λ2k3w−α3k2−α4s2)

α1wω

))
− 1

)
− 12k2λ2

α2
(
sinh

(
λ
(
G + tω(λ2k3w−α3k2−α4s2)

α1wω

))
+ cosh

(
λ
(
G + tω(λ2k3w−α3k2−α4s2)

α1wω

))
− 1

)
2

−2k2λ2

α2

For λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

v9(x, y, z, t) = −
3k2λ4

(
G + tω(α3(−k2)−α4s2)

α1wω

)
2

α2
(
λ
(
G + tω(α3(−k2)−α4s2)

α1wω

)
+ 2

)
2

+
6k2λ3

(
G + tω(α3(−k2)−α4s2)

α1wω

)
α2
(
λ
(
G + tω(α3(−k2)−α4s2)

α1wω

)
+ 2

) − 12ηk2

α2

For λ2 − 4η = 0, λ = 0, and η = 0,

v10(x, y, z, t) = − 12k2

α2
(
G + tω(4ηk3w−α3k2−α4s2)

α1wω

)
2

− 8ηk2

α2

where, G = h + kx + sz + wy.
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Figure 1. Tanh-function method solution u1(x, y, z, t) of (6.2) in three dimensions(a), contour(b),
and two dimensions(c)
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Figure 2. (a) 3D,(b) contour and (c) 2D plots of exp(−ϕ(ξ))-expansion method solution v1(x, y, z, t)
of (6.4)

6.3. RPSM Solutions

First, consider an initial condition for t = 0, using any of the previously obtained exact solutions. If
(6.3) is taken as the exact solution, the initial condition is becomes

u7(x, y, z, 0) =
12k2σ tanh2

(√
−σ

(
− tω(k2(α3−4kσw)+α4s2)

α1wω + kx + sz + wy

))
α2

− 12k2σ

α2

The RPSM solution takes the form of (5.3) for the approximate solutions to the (3 + 1)-dimensional
P-type evolution (6.1), where u = u(x, y, z, t) and t ≥ 0, 0 < ω ≤ 1 the generic form of the k − th

residual function of the time-fractional equation may be shown using (5.4) as follows:

Resuk(x, y, z, t) = uxxxy + Dω
t α1uy + α2(uux)y + α3uxx + α4uzz = 0

It is required to determine f1(x, y, z) for a known f(x, y, z) function in order to establish Resu1(x, y, z, t).
In considering it, Resu1(x, y, z, t) is obtained as

Resu1(x, y, z, t) = α1 (f1)y + α2

((
(f1)x tω

ω
+ (f)x

)(
(f1)y tω

ω
+ (f)y

)
+
(

(f1) tω

ω
+ f

)(
(f1)xy tω

ω
+ (f)xy

))
+α3

(
(f1)xx tω

ω
+ (f)xx

)
+
(

(f1)xxxy tω

ω

)
+ α4

(
(f1)zz tω

ω
+ (f)zz

)
+ (f)xxxy

when f1 = f1(x, y, z) and f = f(x, y, z) occur. Thus, the first unknown coefficient is calculated when
t = 0.

f1 = −24k2σ2 (4k3σw − α3k2 − α4s2) tanh
(√

−σ(kx + sz + wy)
)

sech2 (√−σ(kx + sz + wy)
)

α1α2
√

−σw
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Hence, the first approximate RPSM solution u1 = u1(x, y, z, t) is subsequently obtained as

u1 = −12k2σ

α2
+ 12k2σ tanh2 (√−σ(kx + sz + wy)

)
α2

−24k2σ2tω
(
4k3σw − α3k2 − α4s2) tanh

(√
−σ(kx + sz + wy)

)
sech2 (√−σ(kx + sz + wy)

)
α1α2

√
−σwω

Likewise, to get the second unknown parameter, the second residual function is established as

Resu2 =
(f2)xxxy t2ω

2ω2 + α1t1−ω

(
(f1)y tω−1 +

(f2)y t2ω−1

ω

)
+

(f1)xxxy tω

ω

+α2

((
(f2)x t2ω

2ω2 + (f1)x tω

ω
+ (f)x

)(
(f2)y t2ω

2ω2 +
(f1)y tω

ω
+ (f)y

))

+α3

(
(f2)xx t2ω

2ω2 + (f1)xx tω

ω
+ (f)xx

)

+α2

(
(f2) t2ω

2ω2 + (f1) tω

ω
+ f

)(
(f2)xy t2ω

2ω2 +
(f1)xy tω

ω
+ (f)xy

)

+α4

(
(f2)zz t2ω

2ω2 + (f1)zz tω

ω
+ (f)zz

)
+ (f)xxxy

where f2(x, y, z) = f2. Taking the first order derivative, we can get the second unknown parameter
for t = 0 as follows:

f2 =
24σ2 (−4k4σw + α3k3 + α4ks2) 2 (cosh

(
2
√

−σ(kx + sz + wy)
)

− 2
)

sech4 (√−σ(kx + sz + wy)
)

α2
1α2w2

As a result, the second approximation of u2 = u2(x, y, z, t) becomes

u2 = −12k2σ

α2
+

12k2σ tanh2 (√−σ(kx + sz + wy)
)

α2

+
12σ2t2ω

(
−4k4σw + α3k3 + α4ks2) 2 (cosh

(
2
√

−σ(kx + sz + wy)
)

− 2
)

sech4 (√−σ(kx + sz + wy)
)

α2
1α2w2ω2

−
24k2σ2tω

(
4k3σw − α3k2 − α4s2) tanh

(√
−σ(kx + sz + wy)

)
sech2 (√−σ(kx + sz + wy)

)
α1α2

√
−σwω

Likewise, the following approximate solutions appear

u3 = −12k2σ

α2
+ 12k2σ tanh2 ((A))

α2

+12σ2t2ω
(
−4k4σw + α3k3 + α4ks2) 2 (cosh (2(A)) − 2) sech4 ((A))

α2
1α2w2ω2

−8k2σ3t3ω
(
−4k3σw + α3k2 + α4s2) 3 (cosh (2(A)) − 5) tanh ((A)) sech4 ((A))

α3
1α2

√
−σw3ω3

−24k2σ2tω
(
4k3σw − α3k2 − α4s2) tanh ((A)) sech2 ((A))

α1α2
√

−σwω
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u4 = 12k2σ tanh2(A)
α2

+
12σ2(cosh(2A) − 2)sech4(A)t2ω

(
−4k4σw + α3k3 + α4ks2) 2

α2
1α2w2ω2

+
k2σ3(−26 cosh(2A) + cosh(4A) + 33)sech6(A)t4ω

(
4k3σw − α3k2 − 2α4s2) (−4k3σw + α3k2 + α4s2) 3

2α4
1α2w4ω4

−
8k2σ3(cosh(2A) − 5) tanh(A)sech4(A)t3ω

(
−4k3σw + α3k2 + α4s2) 3

α3
1α2

√
−σw3ω3

−
24k2σ2 tanh(A)sech2(A)tω

(
4k3σw − α3k2 − α4s2)

α1α2
√

−σwω
− 12k2σ

α2
(6.5)

where, A =
√

−σ(kx + sz + wy).

Table 1. Comparison of specific numerical values of RPSM approximate solution u4 of (6.5) and
Modified Extended tanh-function Method exact solution u7 of (6.3)
ω = 0.55 ω = 0.85 ω = 0.95

t RP SM Exact Abs. Error RP SM Exact Abs. Error RP SM Exact Abs. Error

0.0 −0.418977 −0.418977 0.00000 −0.418977 −0.418977 0.00000 −0.418977 −0.418977 0.00000

0.1 −0.421380 −0.421380 4.4640 × 10−11 −0.419759 −0.419759 4.5158 × 10−13 −0.419533 −0.419533 1.1368 × 10−13

0.2 −0.422485 −0.422485 2.1718 × 10−10 −0.420385 −0.420385 4.9379 × 10−12 −0.420050 −0.420050 1.6314 × 10−12

0.3 −0.423351 −0.423351 5.5319 × 10−10 −0.420961 −0.420961 2.0229 × 10−11 −0.420553 −0.420553 7.8329 × 10−12

0.4 −0.424090 −0.424090 1.0792 × 10−9 −0.421508 −0.421508 5.5392 × 10−11 −0.421045 −0.421045 2.4008 × 10−11

0.5 −0.424747 −0.424747 1.8182 × 10−9 −0.422032 −0.422032 1.2156 × 10−10 −0.421531 −0.421531 5.7522 × 10−11

0.6 −0.425345 −0.425345 2.7903 × 10−9 −0.422539 −0.422539 2.3187 × 10−10 −0.42201 −0.42201 1.1791 × 10−10

0.7 −0.425898 −0.425898 4.0145 × 10−9 −0.423033 −0.423033 4.0137 × 10−10 −0.422484 −0.422484 2.1700 × 10−10

0.8 −0.426415 −0.426415 5.5082 × 10−9 −0.423514 −0.423514 6.4705 × 10−10 −0.422953 −0.422953 3.6900 × 10−10

0.9 −0.426901 −0.426901 7.2881 × 10−9 −0.423986 −0.423986 9.8777 × 10−10 −0.423418 −0.423418 5.9063 × 10−10

1.0 −0.427363 −0.427363 9.3700 × 10−9 −0.424448 −0.424448 1.4443 × 10−9 −0.423880 −0.423880 9.0121 × 10−10

(a) RPSM solution (b) Exact solution
Figure 3. Comparison of surface plots of RPSM approximate solution u4 of (6.5) and Modified
Extended tanh-function Method exact solution u7 of (6.3)

The surface plots show some novel solutions to the present equation that might be useful for other types
of differential equations of arbitrary order. Figures 1 and 2 display some of the physical characteristics
of the acquired analytical solutions in 3D, 2D, and contour representations. Besides, Figure 3 compares
the surface graphics of the approximate and exact solutions obtained in 3D. Concurrently, for the
given Table 1 and the mentioned figures, the following values and ranges are used for the exact and
approximate solutions.

i. Figure 1: k = 0.01, s = 0.01, α1 = 0.9, α2 = −0.8, α3 = 0.7, α4 = 0.4, σ = −0.04, y = 0.3, z = 0.2,
w = 0.95, and ω = 0.95, −50 ≤ x ≤ 5, for (a) and (b); t = 0.99, for (c).
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ii. Figure 2: k = 0.2, w = 1, s = 0.01, y = 0.1, z = 0.5, h = 0.1, η = 0.05, λ = 0.5, α1 = 0.1, α2 = 0.5,
α3 = 0.1, α4 = 0.1, ω = 0.95, −50 ≤ x ≤ 50, for (a) and (b); t = 0.99, for (c).

iii. Table 1: α1 = 0.3, α2 = −0.2, α3 = 0.01, α4 = 0.4, k = 0.3, s = 0.1, σ = −0.09, w = 0.9, x = 1,
ω = 0.95, y = 1, z = 1, and 0 ≤ t ≤ 1.

iv. Figure 3: α1 = 0.3, α2 = −0.2, α3 = 0.01, α4 = 0.4, k = 0.3, s = 0.1, σ = −0.09, w = 0.9, x = 1,
ω = 0.95, y = 1, z = 1 and ω = 0.95, −25 ≤ x ≤ 25, for (a) and (b); 0 ≤ t ≤ 1.

7. Conclusion

In the main study [21], the authors presented the Painlevé integrability analysis of the model.
Additionally, they can acquire the rogue waves up to the third order by using symbolic computation
and the Cole-Hopf transformation. Dispersive-soliton solutions to this equation are finally introduced.
Next, very recently, multi-wave, breather, and other localized wave solutions via the Hirota bilinear
method have been presented in [33]. In this paper, using modified extended tanh-function and the
exp(–ϕ(ξ))-expansion methods, solutions to the (3 + 1)-dimensional P-type evolution equation with
conformable derivative were explored in this study. The residual power series method(RPSM) was also
employed to get approximate solutions. Modified extended tanh-function and exp(–ϕ(ξ))-expansion
methods produced several accurate exact solutions with low processing complexity. Furthermore,
there is no requirement for discretization, translation, or perturbation when applying the RPSM to
the governing equation. 3D, 2D, and contour plots were illustrated to visually present the solutions
discovered. Besides, a comparison table is presented to compare the approximate solutions with the
exact solutions. These solutions have important physical characteristics that have not been previously
reported in the literature and are unique. According to some interpretations of the figures, the
exact solutions’ physical behavior appears for particular values. Comprehending these applications
is essential for their possible practical uses. Thus, analytical and numerical solutions are essential to
understanding real-world scenarios. As a result, further fractional order differential equations may be
handled and solved using the suggested methods in later research.
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