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Abstract

This paper discusses the linear fractional Fredholm-Volterra integro-differential equations
(IDEs) considered in the Caputo sense. For this purpose, Laguerre polynomials have been
used to construct an approximation method to obtain the solutions of the linear fractional
Fredholm-Volterra IDEs. By this approximation method, the IDE has been transformed into
a linear algebraic equation system using appropriate collocation points. In addition, a novel
and exact matrix expression for the Caputo fractional derivatives of Laguerre polynomials
and an associated explicit matrix formulation has been established for the first time in the
literature. Furthermore, a comparison between the results of the proposed method and those
of methods in the literature has been provided by implementing the method in numerous
examples.

1. Introduction

The integro-differential equations (IDEs) of the fractional order are used by mathematicians and other scientists to model different physical
and biological processes just as the heat conduction problem, radiative equilibrium, fracture mechanics, elasticity, signal processing, control
and robotics, population dynamics, and health issues [1]- [12]. Hence, solving these types of equations and investigating the exact and
approximate solutions has gained importance in recent years. When these investigations are reviewed it can be obviously seen that the
methods handled to solve the fractional Fredholm-Volterra integro-differential equations (FVIDEs) are presented as reliable modified Laplace
Adomian decomposition method [13], generalized hat functions [14], Nyström and Newton-Kantorovitch [15], Chebyshev wavelet [16]- [18],
wavelet-based methods [19], Chebyshev Neural Network [20], Taylor expansion [21], sinccollocation [22], Legendre wavelet [23], Lucas
wavelets with Legendre–Gauss quadrature [24], Bessel polynomials [25], fractional differential transform [26], Bernstein polynomials [27],
Genocchi polynomials [28], spectral Jacobi-collocation [29], Block pulse functions [30], fractional-order Bernoulli functions [31], hybrid
functions [32], Bernoulli wavelets [33], hybrid orthonormal Bernstein and block-pulse functions wavelet method [34].

Additionally, Laguerre polynomials have been used to solve the IDEs of integer order. Obviously, these integer-order equations can
be specialized as 2-evolution equation [35], Altarelli-Parisi equation [36], Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation [37], linear
Fredholm IDE [38], [39], Volterra IDE of pantograph-type [40], delay partial functional differential equation [41], Volterra partial IDE of
parabolic-type [42], [43], and nonlinear partial IDE [44]. In other respects, Laguerre polynomials have been applied to attain the solutions of
the fractional IDE of the Fredholm type [45].

Moreover, in our research articles, approximation methods based on Laguerre polynomials have been developed. Daşcıoğlu et
al. [46] have used a collocation method based upon the Laguerre polynomials to attain the solutions of the linear fractional FVIDEs in
conformable sense. The method described in [46] is an improvement of the method that used for the solutions of the linear fractional IDEs of
the Fredholm type in the Caputo sense [47] and Caputo fractional linear IDEs of the Volterra type [48].

However, for the linear fractional IDEs of the Fredholm-Volterra type in the Caputo sense with mixed conditions there is no method
in the sense of Laguerre polynomials. In this work, a method based on these polynomials is proposed to obtain the solutions of the fractional
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linear IDE of the Fredholm-Volterra type in the following general form:

m

∑
i=1

pi(x)Dαi y(x)+
l

∑
i=1

qi(x)yi(x) = g(x)+λ1

b∫
a

F(x, t)y(t) dt +λ2

x∫
a

V (x, t)y(t) dt, a≤ x≤ b, (1.1)

with the conditions

v−1

∑
k=0

B jky(k)(β jk) = µ j, vi−1 < αi < vi, j = 0,1, ...,v−1, (1.2)

where m, l ∈ N, vi ∈ Z+; µ j,β jk,B jk,λ1,λ2 ∈ R, v = max

((
max︸︷︷︸

0≤i≤m

vi

)
, l

)
. Here pi(x),qi(x),F(x, t),V (x, t), and g(x) are known functions,

y(x) is the unknown function that has to be determined, yi(x), shows the ordinary derivatives of the unknown function y(x), Dαi y(x) stands
for the Caputo fractional derivative of y(x) whose definition has been given below:

Definition 1.1. [49] The Caputo fractional differentiation operator Dα of order α is defined as:

Dα f (x) =
1

Γ(n−α)

∫ x

0

f (n)(t)
(x−n)α+1−n dt, α > 0,

where −1 < α < n,n ∈ Z+ and Γ is the well-known Gamma function.

The main purpose of this work is to obtain an approximate solution of given problem (1.1)-(1.2) in the form

y(x)∼= yN(x) =
N

∑
n=0

anLn(x), (1.3)

where N is any taken positive integer such that N ≥ v, the unknown coefficients an’s must be discovered,and Ln(x) stand for the Laguerre
polynomials of the order n stated by Bell [50] as:

Ln(x) =
n

∑
k=0

(−1)k n!
(n− k)!(k!)2 xk.

The rest of the paper is arranged as follows: In section 2, the fundamental matrix relations for each term in fractional IDE (1.1) are
constituted. In section 3, a functional collocation method based on the Laguerre polynomials is introduced. In section 4, numerical examples
are resolved, their results are presented, and these solutions are compared with the existing results in the literature to affirm the precision and
effectiveness of the proposed method. The last section of the paper presents the conclusions.

2. Elementary Matrix Formulas

In this section, we attempt to transform Eq. (1.1) by formulating the matrix forms of the unknown function and its fractional
derivatives in the Caputo sense.

First, we can formulate the approximate solution (1.3) as the product of L(x) which can be called as the Laguerre matrix and the
coefficient matrix A by

yN(x) = L(x)A, (2.1)

where the matrices are given as

A =
[
a0 a1 · · · aN

]T and L(x) =
[
L0(x) L1(x) · · · LN(x)

]
.

Then, the following theorem has been given which demonstrates the connection between the Laguerre polynomials and the fractional
derivative of Laguerre polynomials in the Caputo sense, which has been given and proved in our previous paper:

Theorem 2.1. [46] Let Ln(x) be the Laguerre polynomial of order n, then the Caputo fractional derivative of Ln(x) in terms of Laguerre
polynomials is found as follows:

Dα Ln(x) = 0,n < dαe,

and otherwise

Dα Ln(x) = x1−α
n

∑
k=dαe

k−1

∑
r=0

(−1)r+k (k−1)!
Γ(k+1−α)

(
n
k

)(
k−1

r

)
Lr(x),

where dαe indicates the smallest integer greater than or equal to α which is known as the ceiling function.
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Secondly, the matrix relations of the differential side of the Eq. (1.1) are formulated. The relation between the Laguerre matrix L(x)
and its integer order derivatives of the Laguerre matrix L(x) will be used in the form given in Eq. (2.2) which can be seen in Ref. [40] to
present the matrix relation for the derivatives of the integer order of the unknown function y(x),

L(i)(x) = L(x)Mi, i = 0,1, . . . ,N, (2.2)

where the matrix M is

M =



0 −1 −1 −1
0 0 −1 · · · −1
0 0 0 −1

...
. . .

...
0 0 0 . . . −1
0 0 0 0


.

Therefore, the derivatives of integer order of the unknown function y(x) in Eq. (1.1) can be represented as below by using Eq. (2.2),

y(i)(x)∼= L(x)MiA. (2.3)

Theorem 2.2. Let L(x) be the Laguerre matrix defined in (2.1) and Dα L(x) be the Caputo fractional derivative of L(x) of the α-th order,
then the Caputo fractional derivative of Laguerre matrix is given as

Dα L(x) = x1−α L(x)Sα , (2.4)

where Sα is an (N +1) dimensional square matrix specified as

Sα =



0
(0

0
)
S1,1

(0
0
)
S1,2 +

(1
0
)
S2,2 · · · ∑

N
k=1
(k−1

0
)
Sk,N

0 0 −
(1

1
)
S2,2 · · · −∑

N
k=2
(k−1

1
)
Sk,N

0 0 0 · · · ∑
N
k=3
(k−1

2
)
Sk,N

...
...

...
. . .

...
0 0 0 · · · (−1)N+1SN,N
0 0 0 · · · 0


or

Sα =
[
(−1)i

∑
j
k=i+1

(k−1
i
)
Sk, j

]
, i, j = 0,1, . . . ,N.

Here, the Sk, j terms in the entries of the matrix Sα are defined as

Sk, j =

{
(−1)k (k−1)!

Γ(k+1−α)

( j
k

)
, if dαe ≤ k ≤ j

0, otherwise
.

Proof. First, the Caputo fractional derivative of L(x) which is denoted by Dα L(x) has been defined by

Dα L(x) =
[
Dα L0(x) Dα L1(x) · · · Dα LN(x)

]
.

By using Theorem 1 above, for j < dαe,Dα L j(x) = 0, and for j ≥ dαe,k = 1,2, . . . , j

Dα L j(x) = x1−α

j

∑
k=dαe

k−1

∑
r=0

(−1)r+k (k−1)!
Γ(k+1−α)

(
j
k

)(
k−1

r

)
Lr(x).

At this point, since the term Sk, j,k = 1,2, . . . , j is defined as follows:

Sk, j =

{
(−1)k (k−1)!

Γ(k+1−α)

( j
k

)
, dαe ≤ k ≤ j

0, otherwise
.

Dα L0(x) = 0 and for j = 1,2, . . . ,N

Dα L j(x) = x1−α

j

∑
k=1

k−1

∑
r=0

(−1)r
(

k−1
r

)
Sk, jLr(x).

Here, for j = 0,Dα L0(x) = 0 and for j ∈ {1, . . . ,N}

Dα L j(x) = x1−α

j

∑
k=1

k−1

∑
r=0

(−1)r
(

k−1
r

)
Sk, jLr(x)

= x1−α

{
j

∑
k=1

(
k−1

0

)
Sk, jL0(x)−

j

∑
k=2

(
k−1

1

)
Sk, jL1(x)−·· ·(−1) j−1

(
j−1
j−1

)
S j, jL j−1(x)

}
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Therefore, all the entries in the 0-th column and all the entries in the N-th row of Dα L(x) is zero, and otherwise, the i, j-th element
of the matrix Dα L(x) is given as

x1−α

j

∑
k=i+1

(−1)i
(

k−1
i

)
Sk, jLi(x).

Thus, the relation between Dα L(x) and L(x) as expressed in Eq. (2.4) has been obtained.

This relation proves the theorem.
Then, using the result of Theorem 2 and using relations (2.1) and (2.4), the Caputo fractional derivative of the unknown function y(x)

which is the differential part of Eq. (1.1) can be represented by

Dα y(x)∼= Dα L(x)A = x1−α L(x)Sα A. (2.5)

Now, finally, the corresponding matrix formula for mixed conditions (1.1) could be given in the form

v−1

∑
k=0

B jkL(β jk)MkA = µ, j = 0,1, . . . ,v−1. (2.6)

by using Eq. (2.3).
Finally, when the matrix in the summation in the left-hand side of Eq. (2.6) is called as U j that is an 1× (N +1) vector matrix, Eq.

(2.6) transforms into

U jA = µ j, j = 0,1, . . . ,v−1.

3. Solution Method

In this part of the paper, we maintain the approximate solution method which can be specified as a collocation method, because we
use the collocation points at the end to solve the matrix equation. In other words, we determine the unknown coefficients ai’s in Eq. (1.3) to
obtain the solution of Equations (1.1)-(1.2) using a collocation method.

Theorem 3.1. Suppose that the fractional FVIDE defined by Eq. (1.1) is given. Utilizing the collocation points xs > 0 and xs ∈ [a,b], this
IDE can be abbreviated as the following matrix equation:{

m

∑
i=0

PiXαi LSαi +
l

∑
i=0

QiLMi−λ1F−λ2V

}
A = G.

Here, the matrices M and Sαi are in forms as in Eq. (2.2) and (2.4), respectively. In addition, G = [g(xs)] is an (N +1)×1 dimensional
matrix; Xαi = diag[x1−αi

s ], Pi = diag[pi(xs)], Qi = diag[qi(xs)], L = [L(xs)], F = [f(xs)], and V = [v(xs)] are (N+1)× (N+1) dimensional
square matrices. Moreover, L(x) corresponds for the Laguerre matrix, as described in Eq. (2.1), f(xs) and v(xs) represent the given integrals;
f(xs) =

∫ b
a F(xs, t)L(t)dt and v(xs) =

∫ xs
a V (xs, t)L(t)dt

Proof. Firstly, substituting matrix relations (2.1), (2.3) and (2.5) into the Eq. (1.1), the following matrix equation has been obtained

m

∑
i=0

pi(x)x1−αi L(x)Sαi A+
l

∑
i=0

qi(x)L(x)MiA = g(x)+λ1

b∫
a

F(x, t)L(t)Adt +λ2

x∫
0

V (x, t)L(t)Adt. (3.1)

By substituting the non-negative collocation points xs(s = 0,1, . . . ,N) into Eq. (3.1), the following system of linear matrix equations
has been gained

m

∑
i=0

pi(xs)xs
1−αi L(xs)Sαi A+

l

∑
i=0

qi(xs)L(xs)MiA = g(xs)+λ1f(xs)A+λ2v(xs)A, (3.2)

where f(xs) =
∫ b

a F(xs, t)L(t)dt and v(xs) =
∫ xs

a V (xs, t)L(t)dt.
The system given by Eq. (3.2) can be written in the compact forms in the form{

m

∑
i=0

PiXαi LSαi +
l

∑
i=0

QiLMi−λ1F−λ2V

}
A = G, (3.3)

where the matrices mentioned above are given as follows:

Xαi =


x0

1−αi 0 0
0 x1

1−αi · · · 0
...

. . .
...

0 0 · · · xN
1−αi

 ,L =


L(x0)

L(x1)
...

L(xN)

 ,Pi =


pi(x0) 0 0

0 pi(x0) · · · 0
...

. . .
...

0 0 · · · pi(xN)

 ,
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Qi =


qi(x0) 0 0

0 qi(x0) · · · 0
...

. . .
...

0 0 · · · qi(xN)

 ,F =


f(x0)

f(x1)
...

f(xN)

 ,V =


v(x0)

v(x1)
...

v(xN)

 ,G =


g(x0)

g(x1)
...

g(xN)

 .

For simplicity, symbolizing the expression in the parenthesis of Eq. (3.3) by W, the fundamental matrix equation associated with Eq.
(1.1) can be abbreviated to WA = G. Apparently, this equation substitutes for a (N +1) dimensional linear algebraic equations system with
the unknown coefficients ai’s for i = 0,1, . . . ,N hich we can call as Laguerre coefficients.

Consequently, to find the solution of Eq. (1.1) with given conditions (1.2), the n rows of the obtained augmented matrix [W;G] are
stacked or replaced by the n rows of the augmented matrix [U j; µ j]. Therefore, because the unknown Laguerre coefficients are discovered by
resolving this system, we obtain the solution of Eq. (1.1) under Conditions (1.2).

4. Numerical Examples

In this section, four examples have been tried to solve by the proposed method. All the numerical calculations were executed with
the aid of Mathcad 15.

Example 4.1. Consider the given fractional Fredholm IDE

y′′(x)+D
1
2 y(x)+ y(x) =

9
4
− 1

3
x− 2

Γ( 5
2 )

x
3
2 + x2 +

1∫
0

(x− t)y(t)dt

with the conditions y(0) = y′(0) = 0. This problem has the exact solution y(x) = x2.

Implementing the methodology explained in Section 3, the expected fundamental matrix equation of the given problem and its
conditions can be presented as{

X 1
2
LS 1

2
+L+LM2−V

}
A = G

and

U0A = L(0)A = 0, U1A = L(0)MA = 0.

Here, the collocation points for N = 2 such as x0 = 0.25, x1 = 0.75, x2 = 1 were used. Then the matrices mentioned above are

X 1
2
=

 1
2 0 0
0

√
3

2 0
0 0 1

 , L =

1 3
4

17
32

1 1
4

−7
32

1 0 −1
2

 , S 1
2
=

0 −2√
Π

−8
3
√

Π

0 0 −4
3
√

Π

0 0 0

 ,

F =

−1
4

−1
24

1
12

1
4

5
24

1
6

1
2

1
3

5
24

 , G =


1

3
√

Π
+ 107

48√
3√
Π
+ 41

16
8

3
√

Π
+ 35

12

 , U0 =
[
1 1 1

]
, U1 =

[
0 −1 2

]

By solving this system, we obtain a0 = 2, a1 =−4, a2 = 2. In the final step, we substitute these coefficients into the approximate Eq. (1.3)
and obtain the exact solution. This problem was solved by Ordokhani et al. [25] by using the Bessel collocation method. They found an
approximate solution with absolute maximum errors 3.70×10−3 for N = 2, 3.28×10−4 for N = 4 and 8.58×10−5 for N = 6. We found
the exact solution for N = 2 with symbolic evaluation in Mathcad 15 using the proposed method. Clearly, the proposed method is more
accurate than the other method.

Example 4.2. Let us consider the fractional FVIDE having the exact solution y(x) = x2 + x3,

D1.7y(x) = g(x)+
x∫

0

(x− t)y(t)dt +
1∫

0

(x+ t)y(t)dt

with the given initial conditions y(0) = y′(0) = 0 where

g(x) =
6

Γ(2.3)
x1.3 +

2
Γ(1.3)

x0.3− x5

20
− x4

12
− 7x

12
− 9

20
.
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Implementing the methodology explained in Section 3, the expected fundamental matrix equation of the given problem and its
conditions can be presented as

{X1.7LS1.7−F−V}A = G

and

U0A = 0, U1A = 0.

Here, we use the collocation points for N = 3 such as x0 = 0.25, x1 = 0.5, x2 = 0.75, x3 = 1. We obtain the Laguerre coefficients as a0 = 8,
a1 =−22, a2 = 20, a3 =−6 by solving this system. In the final step, we substitute these coefficients into the approximate Eq. (1.3), then we
obtain the exact solution.

The approximate solutions to this problem using the Legendre wavelet method were given by Meng et al. [23]. Therefore, the
maximum absolute errors of their method were calculated as 5.3×10−2 for 16 terms, 2.7×10−2 for 32 terms, 1.2×10−2 for 64 terms and
9.0×10−4 for 128 terms. In addition, Genocchi polynomials were used by Loh et al. [28] to obtain the numerical solution of the above
problem with the maximum absolute error 7.0×10−2 for N = 8. Since we obtain the exact solution for N = 3,the proposed method is faster,
more efficient, and more accurate compared than the other methods.

Example 4.3. Consider the given fractional FVIDE with the exact solution y(x) = x
7
2 which is nonpolynomial:

D2.3y(x) = g(x)+
1
4

x∫
0

(x− t)y(t)dt +
1
2

1∫
0

xty(t)dt

with following three conditions y(0) = y′(0) = y′′(0) = 0 where the non-homogenous function given as g(x) = Γ(4.5)
Γ(2.2)x1.2− x5.5

99 −
x

11 .

Implementing the methodology explained in Section 3, the expected fundamental matrix equation of the given fractional equation
and its conditions can be presented as{

X2.3LS2.3−
1
2

F− 1
4

V
}

A = G

and

U0A = 0, U1A = 0, U2A = 0

This problem was solved using the collocation points with the formula xs =
[
1− cos

(
(s+1)Π

N+1

)]
/2 and the numerical results are given in

Table 1 for N = 8 and N = 9. Besides, the illustration of the results for N = 9 is given in Figure 4.1.

LWM ADM FBF GHF GP Present method
x k=2,M=5 n=5 m=8 n=32 N=9 N=8 N=9
1
8 6.6×10−6 1.0 6.9×10−7 4.2×10−6 1.5×10−4 1.3×10−10 1.6×10−8

2
8 4.5×10−5 4.2 3.5×10−7 5.6×10−5 6.3×10−4 9.7×10−10 6.3×10−9

3
8 3.1×10−5 9.2 2.4×10−7 6.2×10−5 1.3×10−3 7.0×10−9 4.0×10−9

4
8 7.4×10−5 4.2 2.3×10−7 6.9×10−5 2.0×10−3 3.3×10−8 9.1×10−11

5
8 2.4×10−4 8.1 8.3×10−7 3.2×10−4 2.8×10−3 1.0×10−7 3.9×10−8

6
8 3.8×10−4 2.3 2.3×10−7 4.5×10−4 3.7×10−3 2.5×10−7 1.2×10−7

7
8 6.0×10−4 8.1 4.6×10−7 6.2×10−4 4.6×10−3 5.0×10−7 2.4×10−7

Table 1: Comparison of absolute maximum errors of Example 4.3.

Figure 4.1: Graphical analysis of Example 4.3 for N=9

The results of the Legendre wavelet method (LWM) and the Adomian decomposition method(ADM) were provided by Meng et
al. [23]. In addition, the fractional order Bernoulli functions (FBF) were used by Rahimkhani et al. [31], Genocchi polynomials (GP) wwere
used by Loh et al. [28] and generalized hat functions (GHF) were used by Li [14] to obtain the approximate solution of this problem. The
numerical results are presented in Table 1. It is obviously seen from the table that the proposed method is more effective and more accurate
than the other methods compared.
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Example 4.4. Let us consider the following fractional IDE

y′′(x)+
1
x

D
1
2 y(x)+

1
x2 y(x) = g(x)+

1∫
0

cos(x− t)y(t)dt +
x∫

0

sin(x− t)y(t)dt

with the boundary conditions y(0) = y(1) = 0. The exact solution of this problem is y(x) = x2− x3.

This problem was also solved by sinc-collocation method proposed by Alkan et al. [22]. They found an approximate solution with
the maximum absolute errors 4.6×10−2 for N = 4, 2.7×10−2 for N = 8, 1.8×10−3 for N = 16, 2.6×10−5 for N = 32 and 3.9×10−7

for N = 64. However, we found the exact solution using the proposed method with N = 3. Therefore, it is evident that the proposed method
is more efficient than the other methods.

5. Conclusion

In this paper, Laguerre polynomials were applied to construct a numerical approximation method to obtain the solutions of the fractional
linear IDEs of the Fredholm-Volterra type. Using this approximation method a great variety of differential and integral (or both) equations has
been covered since the equation in (1) has been presented in a general manner including not only the fractional IDEs of the Fredholm-Volterra
type but also the fractional IDEs of the Fredholm or Volterra type and the fractional differential equations. Specifically, the given general
fractional IDE of the Fredholm-Volterra type is converted into the fractional IDE of the Volterra type for λ1 = 0, λ2 6= 0; the fractional IDE of
the Fredholm type for λ1 6= 0, λ2 = 0 and the fractional differential equation for both λ1 = λ2 = 0. For this reason, the relation for the matrix
of the Caputo fractional derivative of the Laguerre polynomials and the related exact matrix relation have been obtained for the first time in
the fractional calculus literature. Utilizing suitable collocation points and the obtained matrix relations, the fractional IDE was transformed
into an algebraic equations system. This method is more efficient, faster, and easier to apply than the other methods in the literature.
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[8] S. Kumar, A. Kumar, B. Samet, J. F. Gómez-Aguilar, M. S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune model for

cancer treatment, Chaos Solitons Fractals 141 (2020), 110321.
[9] S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host–parasitoid population dynamical model to describe insect species, Numer. Methods

Partial Differ. Equ., 37(2) (2021), 1673-1692.
[10] S. Kumar, S. Ghosh, B. Samet, E. F. D. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional

operator, Math. Method Appl. Sci., 43(9) (2020), 6062-6080.
[11] S. Kumar, R. Kumar, R. P. Agarwal, B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton

methods, Math. Method Appl. Sci., 43(8), (2020) 5564-5578.
[12] B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional

derivative, Chaos Solitons Fractals, 133 (2020), 109619.
[13] A. A. Hamoud, K. H. Hussain, K. P. Ghadle, The reliable modified Laplace Adomian decomposition method to solve fractional Volterra-Fredholm

integro differential equations, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications Algorithms, 26 (2019), 171-184.
[14] B. Li, Numerical solution of fractional Fredholm-Volterra integro-differential equations by means of generalized hat functions method, CMES Comput.

Model. Eng. Sci., 99(2) (2014), 105-122.
[15] D. Nazari Susahab, M. Jahanshahi, Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary

conditions, Int. J. Ind. Math., 7(1) (2015), 00563.
[16] S. T. Mohyud-Din, H. Khan, M. Arif, M. Rafiq, Chebyshev wavelet method to nonlinear fractional Volterra–Fredholm integro-differential equations

with mixed boundary conditions, Adv. Mech. Eng., 9(3) (2017), 1-8.



Universal Journal of Mathematics and Applications 45

[17] A. Setia, Y. Liu, A. S. Vatsala, Numerical solution of Fredholm-Volterra fractional integro-differential equations with nonlocal boundary conditions, J.
Fract. Calc. Appl., 5(2) (2014), 155-165.

[18] Y. Wang, L. Zhu, SCW method for solving the fractional integro-differential equations with a weakly singular kernel, Appl. Math. Comput., 275 (2016),
72-80.

[19] F. Mohammadi, A. Ciancio, Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel, Wavelets
Linear Algebr., 4(1) (2017), 53-73.

[20] S. S. Chaharborj, S. S. Chaharborj, Y. Mahmoudi, Study of fractional order integrodifferential equations by using Chebyshev neural network, J. Math.
Stat., 13(1) (2017), 1-13.

[21] L. Huang, X. F. Li, Y. Zhao, X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput. Math.
Appl., 62 (2011), 1127–1134.
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[43] B. Gürbüz, M. Sezer, A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method, Int. J. Appl.

Phys. Math., 7(1) (2017a), 49-58.
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[48] D. Varol Bayram, A. Daşcıoğlu, A method for fractional Volterra integro-differential equations by Laguerre polynomials, Adv. Differ. Equ., 2018 (2018),

466.
[49] I. Podlubny, Fractional Differential Equations, Academic Press, USA, 1999.
[50] W. W. Bell, Special Functions for Scientists and Engineers, D. Van Nostrand Company, London, 1968.


	Introduction
	Elementary Matrix Formulas
	Solution Method
	Numerical Examples
	Conclusion

