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Highlights 

 
• The power draw (P) of grizzly feeders is investigated based on their common working conditions. 

• Soft computing analyses are performed to build predictive models by considering the collected data. 

• The most reliable predictive model is found to be based on the adaptive neuro-fuzzy inference system 

methodology. 
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ABSTRACT: In this study, the power draw (P) of several grizzly feeders used in the Turkish Mining 

Industry (TMI) is investigated by considering the classification and regression tree (CART), random 

forest (RF) and adaptive neuro-fuzzy inference system (ANFIS) algorithms. For this purpose, a 

comprehensive field survey is performed to collect quantitative data, including power draw (P) of some 

grizzly feeders and their working conditions such as feeder width (W), feeder length (L), feeder capacity 

(Q), and characteristic feed size (F80). Before applying the soft computing methodologies, correlation 

analyses are performed between the input parameters and the output (P). According to these analyses, it 

is found that W and L are highly associated with P. On the other hand, Q is moderately correlated with 

P. Consequently, numerous soft computing models were run to estimate the P of the grizzly feeders. Soft 

computing analysis results demonstrate no superiority between the performances of RF and CART 

models. The RF analysis results indicate that the W is necessary for evaluating P for grizzly feeders. On 

the other hand, the ANFIS-based predictive model is found to be the best tool to estimate varying P 

values, and it satisfies promising results with a correlation of determination value (R2) of 0.97. It is 

believed that the findings obtained from the present study can guide relevant engineers in selecting the 

proper motors propelling grizzly feeders. 
 

Keywords: Adaptive neuro-fuzzy inference system, Classification and regression tree, Grizzly feeder, Power draw, 

Random forest 

1. INTRODUCTION 

Conveyor belts and feeders are among the most critical components in handling a wide range of 

bulk materials from meter to millimeter scale. In this context, they should ensure accurate and uniform 

discharge from storage to the upcoming system. Regarding mining engineering applications such as 

crushing-screening and ore-dressing plants, feeders are of prime importance to maintaining plant 

sustainability [1]. In crushing–screening plants, grizzly and apron-type feeders are commonly used to 

increase the capacity and efficiency of primary crushing equipment [2−6]. 

Primary considerations in deciding which type of feeder to use are the properties of the bulk 

material being handled (e.g., cohesiveness, maximum particle size, particle friability, propensity for dust 

generation) [7]. Based on this approach, grizzly feeders may be an alternative to apron feeders when 

handling bulk materials with high amounts of dust. 

Grizzly feeders are typically located before primary crushing equipment in most crushing-screening 

plants [5, 8, 9]. The main advantage of using grizzly feeders in crushing–screening plants is that grizzly 

feeders can feed the crushing equipment and remove the undesired particles from the feeding material 

by sieving simultaneously. In addition, when considering engineering economics, grizzly feeders are 

cheaper than apron feeders. 

In most cases, the selection of proper grizzly feeders is based on the capacity of the primary crushing 

equipment [10]. For jaw crushers, the geometric properties (i.e., width and length) and the fill factor of 

grizzly feeders are also important parameters for the suitability and adaptation of these feeders [11]. It is 

worth reminding that to diminish the undesired effects of vibration arising from primary crushing 

equipment, Lyashenko et al. [12] proposed a novel design for the bars of grizzly feeders that improved 
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their efficiency. On the other hand, the power draw (P) of grizzly feeders is highly affected by the 

vibration of rock-crushing equipment. Since the vibration is associated with the geometric properties 

and engine power of grizzly feeders, a true determination of power draw propelling grizzly feeders is 

necessary. However, there is a lack of literature directly focusing on some predictive models that 

estimate varying P values based on different working conditions. 

In this study, the P of grizzly feeders is investigated in a detailed manner. For this purpose, a 

comprehensive field survey is conducted to collect quantitative data from several crushing−screening 

plants in Turkey. Soft computing analyses are performed using the collected data to obtain feasible 

predictive models for estimating the P for different grizzly feeders. 

2. MATERIAL AND METHODS 

A comprehensive field survey was conducted to collect quantitative data on grizzly feeders 

operating in several crushing−screening plants in Turkey. Based on the field survey including 44 mining 

companies, quantitative data were collected on the working conditions (e.g., conveyor speed (V), the 

height of the material being conveyed (H), capacity (Q), and characteristic feed size (F80)) geometric 

features (feeder width, (W) and feeder length (L)) and power draw (P) of some grizzly feeders. A 

working grizzly feeder is shown in Fig 1. 

 

 
Figure 1. Illustration of a working grizzly feeder. 

 

The Q of grizzly feeders was calculated using Eq 1 [11]. 

 

1 23600Q V W H t t=       (1) 

 

Where V is conveyor speed (m/s), W is feeder width (m), H is the average material height on feeder 

(m), t1 is the size factor (t1 = 1, for sands, t1 = 0.80 to 0.90 for crushed stones up to 152 mm and t1 = 0.60 for 

crushed stoned over 152 mm) and t2 is the moisture factor (t2= 1 for dry material, t2= 0.8 wet material and 

t2= 0.6 for adhesive material like clays). 

Furthermore, it should be mentioned that F80 was calculated based on detailed sieve analyses using 

the particles directly flowing on grizzly feeders. The H was determined by measuring the average height 

of materials transported on grizzly feeders. The quantitative information on the geometric (W, L) and 

working conditions (e.g., V and P) of grizzly feeders was obtained by considering the catalogues of 

installed grizzly feeders.  
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2.1. Soft Computing Methods 

In this study, three well-established soft computing methods are adopted. These are based on 

adaptive neuro-fuzzy inference system (ANFIS), classification and regression tree (CART) and random 

forest (RF) methodologies. The CART is a machine-learning method for establishing classification and 

predictive models. Decision trees are represented by a set of questions which splits the learning sample 

into smaller and smaller parts [13]. A regression tree is similar to a classification tree, except that the 

dependent variable takes ordered values, and a regression model is fitted to each node, giving some 

outputs [14].  

For the last decades, the CART methodology has been used in different mining engineering 

disciplines. For example, Hasanipanah et al. [15] employed the CART method to estimate blast-induced 

ground vibration. Their findings demonstrated that the performance of the CART method is better than 

that of conventional regression models. By adopting the CART method, Salimi et al. [16] proposed a 

robust predictive model to evaluate the performance of tunnel boring machines (TBM). Last but not 

least, Bharti et al. [17] performed detailed slope stability analyses using the CART methodology. 

Random Forest (RF) is also a machine-learning method developed by Breiman [18]. Compared with 

conventional decision trees, RF is more accurate and runs efficiently on large datasets [19]. Based on 

modern mining engineering approaches, RF has been successfully employed to solve many problems. 

For example, Matin et al. [20] adopted RF to select exact variables for evaluating rock strength 

properties. Zhao and Wu [21] proposed a predictive model to estimate the height of the fractured water-

conduction zone of coal strata. Gu et al. [22] also used RF to monitor the deformations of a concrete dam 

in China. 

Considering many advantages, researchers have also used an adaptive neuro-fuzzy inference system 

(ANFIS) to build predictive models used in many engineering problems [23−26]. The main advantage of 

ANFIS is that it practices a hybrid learning process to estimate the premise and consequent parameters 

[27]. 

2.2. Data Documentation 

In this study, CART, RF and ANFIS methodologies were adopted to establish some predictive 

models to estimate the P of grizzly feeders. The CART and RF analyses were performed using Salford 

Predictive Modeler software. On the other hand, ANFIS analyses were performed in the MATLAB 

environment. Table 1 shows descriptive statistics of the variables considered in this study.  

 

Table 1. Descriptive statistics of the variables. 

Variable Mean Std. dev. Min Max 

F80 (mm) 426.6 128.7 135 731 

H (m) 0.295 0.087 0.09 0.48 

V (m/s) 0.294 0.076 0.12 0.47 

W (m) 1.21 0.33 0.6 2.1 

L (m) 4.40 1.33 1.8 6.0 

Q (t/h) 784.5 470.2 116.6 1827.4 

P (kW) 21.26 12.36 3.00 55.00 

*Note: the number of samples (n) is 44 for each parameter. 

 

Correlation analyses were also conducted before soft computing analyses to reveal the factors 

affecting the P of grizzly feeders. Accordingly, the W and L are highly associated with the P. The Q and 

F80 have moderate and minor effects on the P, respectively (Table 2). Although H has a more significant 

impact than F80 on the P, H was not considered an input parameter due to a close relationship between 

H and Q. 

 



Estimating the Power Draw of Grizzly Feeders Used in Crushing–Screening Plants Through Soft Computing Algorithms 103 

  

 

Table 2. Correlation analysis results. 

Parameter W L F80 Q H V P 

W 1       

L 0.710 1      

F80 −0.277 0.126 1     

Q 0.469 0.691 0.175 1    

H 0.242 0.353 0.066 0.858 1   

V −0.101 0.008 0.296 0.419 0.010 1  

P 0.822 0.819 −0.124 0.558 0.322 0.027 1 

Note: Bolded values (e.g., 0.822) indicate the parameters used in soft computing 

analyses.  

3. RESULTS AND DISCUSSION 

As a result of soft computing analyses, three robust predictive models were obtained. When 

considering the CART model, L, W, and F80 were input parameters. Average values in red boxes in 

Figure 2 were assumed to be estimated P values. The estimated P values were obtained based on the if-

then rules summarized in Figure 2. In the RF analyses, mean squared error (MSE) was assumed to be the 

fitness function. The number of trees in the RF analyses was 200. The database (n=44) was divided into 

training (70/100) (Figure 3a) and testing (30/100) parts (Figure 3b). As a result of the RF analyses, another 

robust predictive model was obtained. The W was found to have the most significant influence on the P 

(Figure 3c). 

 

 
Figure 2. CART decision tree. 
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Figure 3. RF outputs a) Training process b) Testing process c) Relative importance of the input 

parameters. 

 

The input parameters in the developed ANFIS model were W, L, F80, and Q (Figure 4a). During the 

training process, ANFIS analyses continued until the minimum relative error was achieved (Figure 4b). 

Similar to what has been done previously, the dataset was divided into training (70/100) and testing 

(30/100) datasets. The ANFIS model structure is given in Figure 4c. For each input parameter, four 

Gaussian membership functions were defined (Figure 4d), and based on four if-then rules, P values were 

estimated. 

 

 
Figure 4. ANFIS outputs a) Input parameters, b) Training process c) ANFIS model structure  

d) Rule viewer. 

 

The performance of the proposed models was visualized through scatter plots (Figure 5). 
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Accordingly, the ANFIS model was found to be the best predictive tool with a correlation of 

determination value (R2) of 0.97. When compared to the performance of the CART and RF models, there 

is no superiority in estimating varying P values. Nevertheless, these models (CART and RF) gave 

undulating results when considering grizzly feeders with higher capacity (P > 37 kW). This phenomenon 

was not observed in the ANFIS model. 

Moreover, the performance of the proposed predictive models was also revealed by a 

comprehensive performance evaluation table (Table 3) based on some performance indicators such as R2 

and root means square error (RMSE). Accordingly, for the training data (n=31), the R2 and RMSE values 

were found to be between 0.887 – 0.966 and 2.136 – 4.223 kW, respectively. Based on the testing data 

(n=13), these values were better than the ones found in the training data. Based on this performance 

evaluation table, different statistical indicators suggest that the best predictive model in this study is 

based on the ANFIS methodology. 

 

 
Figure 5. Scatter plots of the proposed models (a) CART (b) RF (c) ANFIS 

 

Table 3. Statistical indicators of the proposed models. 

Statistical 

indicator 
Methodology 

Training Data 

(70/100, n = 31) 

Testing Data  

(30/100, n = 13) 

All data  

(n=44) 

R2 

CART 0.887 0.960 0.908 

RF 0.897 0.937 0.905 

ANFIS 0.966 0.972 0.968 

RMSE 

(kW) 

Methodology 
Training Data 

(70/100, n = 31) 

Testing Data 

(30/100, n = 13) 

All data 

(n=44) 

CART 4.223 2.245 3.749 

RF 4.148 3.429 3.949 

ANFIS 2.316 1.949 2.214 

 

It was also found that the proposed ANFIS method acts differently based on varying P classes. In 

this study, four different P classes were defined based on a k-means clustering algorithm.  
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For example, the average relative error (ARE) decreases with increasing the capacity of the grizzly 

feeders (e.g., 37kW ≤ P < 55kW). The ARE values for these classes were found to be as follows: 

 

• Class I (3 to < 7.5 kW), ARE = 22.65% 

• Class II (7.5 to < 22 kW), ARE = 15.30% 

• Class III (22 to < 37 kW), ARE = 6.39% 

• Class IV (37 to < 55 kW), ARE = 0.88% 

 

To the best of the corresponding author’s knowledge, there is no investigation in the literature on 

the P of grizzly feeders. In this context, the findings obtained from the present study can guide one 

willing to design a proper grizzly feeder in a crushing-screening plant. Nonetheless, the number of case 

studies should be increased to improve the CART and RF models.  

For this purpose, additional input parameters, such as the flow characteristics of the materials being 

conveyed, might also be necessary. In addition, a continuous material flow on grizzly feeders, which 

means a fixed H value, should also be required to sustain and select proper engines in material 

transportation. 

Finally, in order to implement the ANFIS methodology, a design chart was also developed based on 

the typical working conditions of grizzly feeders. In this design chart (Figure 6), different P values can be 

easily estimated by considering the parameters of W, L, and Q. It is worth remembering that this design 

table is based on some assumptions, such as H ≤ 0.5W and F80 = 250 mm. These assumptions are typical 

for most grizzly feeders operating in crushing–screening plants from the database specified. 

 

 
Figure 6. Proposed design chart to estimate the P based on different design parameters. 

4. CONCLUSIONS 

The present study introduces robust predictive models to estimate the P of different grizzly feeders. 

For this purpose, a comprehensive field survey is conducted to collect quantitative data on the grizzly 

feeders used in several crushing−screening plants in Turkey (Table 1).  

Several soft computing analyses were performed based on the collected data. As a result of these 

analyses, three predictive models were obtained to evaluate varying P values. The R2 values for the 

models are between 0.90 and 0.97, showing their relative success (Figure 5). The best predictive model to 

estimate the P values is based on the ANFIS methodology. Nevertheless, there is no significant 

difference between the performance of the CART and RF models.  
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In order to implement the proposed ANFIS methodology, a design chart is also provided in this 

study (Figure 6). Different P values can be easily estimated by using this design chart based on various 

parameters of W, L and Q. In this manner, the present study is believed to be beneficial to those who 

want to design proper grizzly feeders applicable for crushing – screening plants.  
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