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Abstract:  Delignification  is  a  crucial  pretreatment  in  the  production  of  diverse  value-added  products  from
lignocellulosics. While modifying the surface functional groups, delignification also increases the specific surface
area by providing a porous structure to the lignocellulosic biomass. Hydrothermal pretreatment can be used prior
to  delignification,  to  recover  hemicellulose  and  boost  delignification.  By  removing  lignin  and  hemicellulose,
cellulose-rich pulp becomes more accessible for activation. In the present study, three different activated carbons
were prepared: activated carbon from tea stalk itself (ATS), activated carbon from tea stalk pulp obtained by using
glycerol  organosolv  pretreatment  (ATP),  activated  carbon  from  tea  stalk  hydrochar  pulp  obtained  by  using
sequential hydrothermal pretreatment-organosolv delignification (AHTP). Each precursor was carbonized (at 800 °C)
in the presence of KOH (KOH/precursor: 2/1). Activated carbons were characterized for their elemental content,
surface functional groups, thermal stability, crystallinity, surface morphology, surface area and porous structure
using  elemental  analysis  (C-H-N-S),  FTIR,  TGA,  XRD,  SEM  and,  BET  analysis,  respectively.  While  hydrothermal
pretreatment prior to organosolv pulping reduced the delignification yield, it also altered the pore structure of
activated carbon. Among the activated carbons, only ATS had microporous structure with an average pore radius of
1 nm. ATP had the highest surface area (2056.72 m2/g) and micropore volume (0.81 cm3/g). Having mesopores (with
an average pore radius of 5.74 nm) in its structure, AHTP had the least micropore volume (0.464 cm3/g) and surface
area (1179.71 m2/g). The presence of micro and mesopores broadens the potential applications of activated carbon
ranging from environmental applications to energy storage.
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1. INTRODUCTION

Activated  carbons  are  carbon-rich  porous  materials
which  are  prepared  from different  resources  such  as
coal, coke, peat and biomass. Having the highest share
of  lignocellulosic  biomass,  agricultural  wastes  and
residues  are  sustainable  raw  materials  to  produce
value-added  products  such  as  activated  carbon  (1-3).
Several lignocellulosic feedstocks have been preferred
as precursors such as pineapple leaf and coconut shell
(4),  kenaf  and  rapeseed  (5),  corn  straw  (6),  oil  palm

leaves (7), olive bagasse (8), cherry stones (9), almond
shell  wastes  (10).  Due  to  their  high  surface  area,
variable  porosity  and  surface  functional  groups,
activated  carbons  are  used  as  adsorbents  for  the
removal  of  water  pollutants  and  air  pollutants,  as
catalyst support for preparing catalyst, as electrodes in
supercapacitors  for  storing  ions,  and  as  carbon
nanotubes and carbon fiber.

The  volume  and  diameter  of  pores,  surface  area,
micropore  volume  and  surface  functional  groups  of
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activated carbon are affected from the activating agent,
activation  type  (physical  or  chemical),  activation
conditions,  carbonization  conditions,  and  the
lignocellulosic  precursor  (11-13).  The  structural
components  of  lignocellulose  (namely  cellulose,
hemicellulose  and  lignin)  have  great  impact  on  both
yield and porous structure of activated carbon mainly
due to  their  different  chemical  structure and thermal
stability (14-17). In the study of Guo and Rockstraw (18),
activated  carbons  of  xylan,  cellulose  and  lignin  had
different pore structures at same activation conditions.
Lignin is the major component that contributes to the
activated  carbon  yield,  while  cellulose,  lignin  and
hemicellulose  alter  the  porous  structure  (19,  20).
Specific  surface  area  and  porosity  of  the  activated
carbon are higher as the precursor has high cellulose
content  (4).  To  take  advantage  of  the  high  cellulose
content,  biomass  can  be  partially  delignified  prior  to
activation/carbonization  (6,  21-23).  Chen  et  al.  (6)
fractionated  cellulose,  hemicellulose  and  lignin  using
NaOH  and  urea  solution.  Then,  activated  carbon
samples were obtained by carbonizing those fractions
under  N2 atmosphere  at  800  ⁰C  in  the  presence  of
NaOH.  Their  study  showed  that  activated  carbon
obtained from cellulosic fraction has better properties
than activated carbon obtained from the lignocellulosic
biomass itself. Mittal et al. (24) separated the cellulosic
fraction by pretreating rice straw with an alkaline ionic
liquid  (choline  hydroxide).  The  cellulosic  fraction  was
carbonized  at  600  °C  for  3  hours  under  an  argon
atmosphere.  In  this  study,  adsorption  capacity  of
mesoporous cellulose-based activated carbon was high.
Han et al. (25) pre-treated poplar wood using CH3COOH
and NaClO2 solution at 80 °C for 18 hours. The cellulose-
rich fraction was carbonized at 1000 °C for 2 h (under
argon atmosphere). It was observed that the pore size
of the pretreated activated carbon was lower than the
activated carbon obtained from poplar wood. Sun and
Hong (26)  used different  cellulose-based polymers (-
cellulose,  methyl  cellulose,  hydroxyethyl  cellulose  and
cellulose acetate) as a precursor. First, the samples were
carbonized under Ar atmosphere (at 400 or 500 °C), and
then  under  CO2  atmosphere  for  2  h.  Based  on
experimental results, the difference in functional groups
in  the  cellulose  samples  not  only  affects  the  pore
structure, but also improves the adsorption properties.
As  can  be  seen from  the  studies  summarized  above,
activated  carbons  obtained  from  cellulose-rich
precursors are better  due to properties  such as pore
structure,  pore size,  surface area of activated carbon,
and versatile surface functional groups.

One  way  to  obtain  cellulose-rich  precursors  is  to
delignify  the  biomass.  There  are  various  physico-
chemical pretreatment methods for the delignification
of  lignocellulosic  biomass  such  as  acid  pretreatment,
NaOH  pretreatment,  ammonia  pretreatment,
organosolv  pretreatment,  ionic  liquid  pretreatment,
deep eutectic solvent pretreatment (27). Among them,
organosolv  pretreatment  has  the  advantage  of  lignin

recovery  while  enriching cellulose  in  the  pulp.  In  the
organosolv  treatment,  lignocellulosic  biomass  is
brought into contact with a solvent in the presence of a
catalyst  (28).  This  process  can  be  carried  out  under
pressure,  or  it  can  be  carried  out  at  atmospheric
pressure at relatively higher temperatures. The type of
solvent  and  biomass,  particle  size  of  the  biomass,
biomass/solvent  ratio,  pretreatment  conditions
(temperature, pressure, mixing speed, time) affect the
extent of delignification (29). The cellulose-rich fraction
is  separated  from  the  solution  by  filtration.  Lignin  is
precipitated  by  diluting  the  organosolv  solution  with
water.  Solvent  recovery  is  often  attempted  from  the
solution if the solvent has low boiling point temperature
(30). Sometimes hydrothermal pretreatment is applied
prior to organosolv pulping to recover the hemicellulose
sugars,  to  increase  the  accessibility  of  enzymes  to
cellulose  and  to  boost  delignification  (31-35).
Hydrothermal pretreatment, which is a simple and low-
cost method, uses water as a solvent and pretreatment
is carried out at temperatures between 160-230 °C (36).
In  this  method,  where  most  of  the  hemicellulose  is
degraded,  swelling  and  partial  hydrolysis  of  cellulose
and  partial  decomposition  and  repolymerization  of
lignin are observed depending on the conditions of the
hydrothermal  pretreatment  (37).  After  hydrothermal
pretreatment,  the  liquid  fraction  containing  a  high
percentage  of  sugar  can  be  converted  into  platform
chemicals using different conversion methods (38). The
solid  fraction,  which  is  named  as  hydrochar,  can  be
used as an adsorbent for environmental applications, a
solid  fuel  for  the  production  of  energy  or  energy
carriers  (such  as  syngas),  a  precursor  for  the
preparation  of  activated  carbon  or  can  be  further
processed to  produce high  value-added products  (39,
40).

There are many studies in the literature that focuses on
using cellulose, microcrystalline cellulose, or  cellulose-
rich  biomass  as  precursors  for  activated  carbon
preparation. Studies which use cellulose-rich pulp from
organosolv  treatment  as  a  precursor  are  very  rare.
Unlike  the  others,  in  this  study,  delignification  of
lignocellulosic  biomass  was  done  by  a  single-stage
glycerol-organosolv  treatment  and  a  sequential
hydrothermal  pretreatment-organosolv  treatment
separately.  Cellulose-rich  pulps  obtained  by  both
methods  and  the  tea  stalk  itself  were  used  as
precursors  to  produce  microporous-mesoporous
activated  carbon.  Activated  carbons  are  compared
based on their properties and potential end-uses were
discussed.

2. EXPERIMENTAL SECTION

2.1. Materials
Tea stalk samples were supplied from a tea processing
factory. All tea stalk samples were dried (105 °C for 24 h)
before analyses and pretreatments to prevent samples
from  rotting  and  to  provide  better  conditions  for
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storage. After grinding, samples were sieved by using
RESTCH  AS  200  vibrating  sieve  to  have  a  uniform
particle  size  (250  µm).  Dry  tea  stalk  samples  with
uniform particle size are named as TS.

Chemicals including glycerol, NaOH and H2SO4 were of
analytical grade and used without further purification.

2.2. Methods
2.2.1. Hydrothermal pretreatment
Hydrothermal pretreatment of TS was carried out in a
250  mL  non-stirred,  temperature-controlled,  stainless-
steel  batch  reactor.  Hydrothermal  pretreatment
conditions were selected based on our previous study
(pretreatment temperature: 220 °C, residence time: 90
min,  tea  stalk/water  ratio:  1  g/4  mL)  (41).  After
pretreatment,  the reactor was cooled rapidly by using
ice bath. Gases, which formed during the pretreatment
were not collected. The mixture was filtered to separate
hydrochar. The hydrochar of TS samples (named as HTS)
were washed with deionized water and then dried in an
oven at 105 °C for 24 h.

HTS samples were delignified by using alkaline glycerol
organosolv  treatment  as  explained  below.  The  pulp
obtained  after  sequential  hydrothermal  pretreatment
and organosolv treatment was named as HTP.

2.2.2. Alkaline-glycerol organosolv treatment
Alkaline-glycerol  organosolv  method,  which  we
previously used for delignification (42), was modified in
this study to increase the lignin yield. 20 g tea stalk, 50

mL of 0.4 M NaOH solution and 150 mL glycerol were
mixed in a three-necked glass reactor equipped with a
reflux condenser and a thermocouple. First, the mixture
was mixed for 30 min at 90 °C, then the temperature
was  raised  to  115  °C.  The  mixture  was  continuously
mixed for 90 min at this temperature. At the end of the
treatment,  pulp  was  separated  from  the  liquor,  and
washed with hot water (water at 55 °C) and then dried in
an  oven at  100  °C  for  24 h.  The  pulp  obtained after
organosolv pretreatment was named as TP.

To  precipitate  the  lignin,  filtrate  was  diluted  with
deionized  water  to  1L  (at  55  °C)  and  the  pH  was
decreased  to  2-2.5  by  using  0.1  M  H2SO4.  After
precipitation, lignin was separated, washed with water
and then dried. Characteristics of lignins are not given
as they are beyond the scope of this article.

2.2.3. Preparation of activated carbon
Dry TS, TP and HTP samples were mixed with KOH at a
ratio of 1:2 (wt:wt).  After  gently mixing KOH with the
sample, the mixture in a ceramic boat was placed in a
horizontal tubular furnace. The sample was heated at a
heating rate of 10 °C/min up to 800 °C and kept at this
temperature for 1h. During heating and cooling, tubular
furnace  was  continuously  flushed  with  nitrogen  gas.
After activation, samples were washed with 0.1 M HCl
and deionized water. Then, the samples were dried at
105 °C for 24 h. Activated carbons obtained from TS, TP
and  HTP  were  named  as  ATS,  ATP  and  AHTP
respectively. Block diagrams regarding the preparation
of ATS, ATP and AHTP are given in Figure 1.

Figure 1: Preparation procedure and naming of the activated carbons.

2.3. Analyses Proximate analyses of TS, HTS, TP and HTP were done
using thermogravimetry method as described in Garcia,
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Pizarro (43). The elemental analysis of TS, HTS, TP, HTP,
ATS,  ATP  and  AHTP  were  carried  by  an  elemental
analyzer (LECO, CHNS-932). Acid-insoluble lignin content
of TS, TP and HTP was determined by using gravimetric
method  as  described  in  NREL/TP-510-42618  (44).
Holocellulose  content  of  TS  was  determined  as
explained in Salim et al. (45).

Fourier Transform Infrared (FTIR) spectra of TS, HTS, TP,
HTP,  ATS,  ATP  and  AHTP  were  obtained  using  a
spectrometer (Perkin Elmer Spectrum 100) coupled with
a universal attenuated total reflectance (ATR) sampling
device  with  a  diamond  crystal.  The  spectra  were
recorded with a resolution of 4 1/cm, in the range from
400 to 4000 1/cm.

For thermal stability, thermogravimetric analyzer (Seiko,
TG/DTA  6300)  was  used.  Samples  were  heated  from
room temperature to 900 °C with a heating rate of 40
°C/min and maintained for 7 min.
Surface morphologies of HTS, ATS, ATP and AHTP were
investigated by FEI Inc., Inspect S50 SEM. Samples were
investigated  under  20  kV  in  the  high  vacuum  mode
using secondary electrons with different magnifications.

The surface area and pore structure characteristics of
ATS,  ATP  and  AHTP  were  determined  by  using
Quantachrome-Autosorb iQ BET analyzer at 77K in the
relative  pressure  range  of  0.001  and  0.99.  Before
analysis, samples were degassed at 180 °C for 24 h.

The XRD patterns of ATS, ATP and AHTP were collected
using Rigaku Smartlab X-Ray diffractometer, operating
at 40kVand 30 mA, with a scan range of 10 to 80 °, a
step width of 0.02° and a scan speed of 1.0039 °/min.

3. RESULTS AND DISCUSSION

3.1. Characterization
The  proximate  analysis  (volatile  matter,  fixed  carbon
and ash content) and ultimate analysis (C, H, N and S
content)  of  TS,  HTS,  TP,  HTP,  ATS,  ATP and AHTP are
presented  in  Table  1.  Tea  stalk  is  a  lignin-rich
lignocellulosic  biomass,  which  contains  33.9±1.1  %
lignin and 49.2±1.3 holocellulose in its structure.

During hydrothermal pretreatment, biomass undergoes
several  reactions  including  hydrolysis,  dehydration,
decarboxylation, condensation, and polymerization (40).
The  extent  of  the  reactions,  which  determines  the
hydrochar yield (mass ratio of hydrochar to biomass on
dry  weight  basis),  depend  on  the  hydrothermal
conditions  and  the type  of  biomass  (especially  lignin,
cellulose  and  hemicellulose  content).  After
hydrothermal pretreatment of TS,  the hydrochar yield
was  calculated  as  70.7±0.3  %.  Due to  the  high  lignin
content of TS and moderate pretreatment temperature
(220 °C), this hydrochar yield was expected as explained
briefly in Gulec et al. (46).

After  hydrothermal  pretreatment,  the  volatile  matter
content  of  the  tea  stalk  increased,  the  fixed  carbon
content  decreased,  and  consequently  the  carbon
content  increased  by  3%.  Hydrothermal  pretreatment
also reduced the ash content of the TS by 5.3%.

Alkaline-glycerol  organosolv  pretreatment  is  an
effective  delignification  method  (28).  When  alkaline-
glycerol  organosolv  treatment  was  applied directly  to
TS, 7.1±0.2 % lignin (acid-insoluble lignin) was detected
in TP, showing that some of the lignin retained in the
pulp.  In  the  case  of  sequential  hydrothermal
pretreatment  and  organosolv  treatment,  the  lignin
content in HTP was 11.6±0.7 %. Based on acid-soluble
lignin  content,  hydrothermal  pretreatment  prior  to
glycerol organosolv treatment reduced delignification.

The  application  of  hydrothermal  pretreatment  before
the organosolv treatment affected the pulp content. The
carbon content of TP and HTP was close to each other
(37.8% and 36.9%, respectively) and a small part of this
carbon is fixed carbon. Cellulose-rich TP and HTP were
found to have a lower carbon content than the average
carbon content  of  a  typical  cellulose (44.06 %),  and a
higher  fixed  carbon  content  than  a  typical  cellulose
(4.35 %) (47). Since delignification was not 100% in both
treatments,  there was still  lignin in both TP and HTP.
The high fixed carbon content of  TP and HTP can be
explained  by  the  high  fixed  carbon  content  of  the
residual lignin (23.09 %) (47).

Table 1: Proximate and ultimate analysis of TS, HTS, TP, HTP, ATS, ATP and AHTP.

TS HTS TP HTP ATS ATP AHTP
Proximate analysis (wt.%, db.)
VM 71.1 72.6 91.4 92.3 n.d. n.d. n.d.
FC 25.1 23.8 6.9 6 n.d. n.d. n.d.
Ash 3.8 3.6 1.7 1.7 n.d. n.d. n.d.
Ultimate analysis (wt.%, db.)
C 46.6 48 37.8 36.9 61.3 56.3 52.3
H 5.5 5.4 8.3 8 0.5 0.2 0.2
N 2.6 2.3 0.5 0.6 1.1 0.5 0.4
S 0.1 0 0 0 0 0 0

VM: Volatile matter, FC: Fixed carbon, A: Ash, db: dried basis
* Proximate and ultimate analyses were done twice. Mean values were given in Table 1.
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After activation-carbonization, the carbon content of TS,
TP  and  HTP  increased  by  31.5%,  49%  and  41.7%,
respectively.  Based  on  elemental  analysis  results,  the
oxygen content  of  ATP and AHTP was high.  This  was
mainly due to high oxygen content of TP (51.7%) and
HTP  (52.8%).  Not  hydrothermal  pretreatment  but
delignification definitely increased the oxygen content
of the pulps. The oxygen-rich functional groups of TP,
HTP,  ATP and AHTP were also supported by the FTIR
spectra.

3.2. Thermal Stability of TS, HTS, TP and HTP
Thermal  stability  is  an  important  property  of  all  bio-
based materials. Figure 2 shows the TG and DTG curves
of TS, HTS, TP and HTP. The thermogravimetric curve of
TS  showed  a  thermal  degradation  curve  of  a  typical
biomass.  Moisture  removal  was  observed  in  the  first
stage at temperatures between 25 °C and 110 °C. The
thermal  degradation  of  structural  components
(hemicellulose,  cellulose  and  lignin)  was  seen  at
temperatures between 120 °C and 600 °C.

Like TS, the thermal degradation of HTS occurred in two
stages at a wide temperature range. Hydrochar has a
more  stable  structure  compared  to  biomass  since
hemicellulose  is  partially  degraded  and  light  volatiles
leave the structure during hydrothermal treatment. HTS
was also more thermally stable than TS. Better thermal
stability  of  the  structure  was  also  supported  by  the
shifting of Tmax (the temperature at which the mass loss

rate  is  maximum)  from  337  °C  to  344  °C  after
hydrothermal treatment.

While the thermal degradation of pure cellulose takes
place in two stages (the first step is moisture removal),
the thermal degradation of TP and HTP differs slightly
from  the  typical  thermogram  of  cellulose.  This  is
because although it  is  rich in cellulose, there is some
lignin  in  the  pulp  and  chemical  treatment  of  the
cellulose  disrupts  the  structure  (48).  Studies
investigating  the  effects  of  chemical  treatment  on
cellulose  structure  have  shown  that  the  thermal
degradation of cellulose occurs in three stages, and the
thermal degradation after moisture removal is between
110 °C – 285 °C and 288 °C –  600 °C (49,  50).  In the
present study, thermal degradation of both TP and HTP
occurred in three steps. The mass loss in the first stage
in both samples was due to the removal of moisture.
The degradation of TP in the second stage was between
180 °C and 235 °C, with a Tmax of 220 °C. The mass loss
of TP in the third stage was between 280 °C and 344 °C,
and the highest mass loss rate in this stage was seen at
322 °C.

The  thermal  degradation  of  HTP  started  with  the
removal  of  moisture.  The  second  degradation  was
between 172 °C and 236 °C, with a Tmax of 221 °C. The
third  stage  of  thermal  degradation  was  observed  at
temperatures between 290 °C and 344 °C. At this stage,
the temperature with the highest mass loss rate  was
determined  as  327  °C.  Application  of  hydrothermal
pretreatment before the organosolv treatment slightly
increased the thermal stability of the pulp.

Figure 2: TG curves of TS, HTS, TP and HTP.

3.3. FTIR Analysis
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The FTIR spectra of TS, HTS, TP and HTP are shown in
Figure 3. Tea stalk has a broad peak at 3000-3800 1/cm
(centered at 3338 1/cm) due to -OH stretching vibration
in the hydroxyl functional groups (in compounds such
as  phenolics,  aliphatic  alcohols,  carboxylic  acids  etc.)
(51). The peaks at 2917 1/cm and 2849 1/cm correspond
to  stretching  vibration  of  aliphatic  C-H  bond in  -CH2-
structures  (52).  The  peaks  appearing  between  2009-
2160  1/cm  originate  from  the  stretching  vibration  of
allene (C=C=C) and ketamine (C=C=N) groups in tea stalk
(51,  53,  54).  Stretching  vibration  of  C=C  bond  in
aromatic rings and C-H stretching appear at 1515 1/cm
and 1362 1/cm. HTS has a similar FTIR spectra with that
of TS. Only difference between them was the intensity of
the  bands  of  HTS  at  1200-3600  1/cm  region,  which
confirms  that  a  degradation  was  observed  but
functional group was not changed. Compared to TS, the
stretching vibration of -OH (at 3000-3600 1/cm), -CH (at
2800-3000 1/cm) and C=C=C (at 2000-2200 1/cm) in HTS
structure  were  much  lower.  After  hydrothermal
pretreatment,  the characteristic bands of lignin (1660-
1638 1/cm) and (1400-1500 1/cm) were retained, with a
slight  decrease  in  intensities.  Yu  et  al.  (55)  made  a
similar observation and concluded that the structure of

lignin was slightly changed with temperature due to the
cleavage of C-C, C=C and C-H bands. The characteristic
stretching  vibrations  of  cellulose  at  1000-1400  1/cm
region were slightly less due to partial degradation of
cellulose under hydrothermal conditions.

The  effect  of  delignification  was  observable  from the
FTIR spectra of TP and HTP. The wide peak appearing
between  3000-3600  1/cm  for  all  samples  reflect  the
stretching vibration of -OH group.  The bands at  2880
1/cm and 2920 1/cm were assigned to -CH stretching
vibration of -CH2 and -CH3 groups. The peaks at  2160
1/cm,  2040  1/cm  and  2000  1/cm  were  attributed  to
C=C=C and C=C=N stretchings. While FTIR spectra of TS
reflects  the  conjugated  carbonyl  stretching  (at  1660-
1638 1/cm) and aromatic skeleton vibration in lignin (at
1600  1/cm,  1500  1/cm  and  1440  1/cm)  (56,  57);  the
intensity of the same peaks in the FTIR spectra of both
TP  and  HTP  were  comparatively  very  low  due  to
delignification. In all spectra, in-plane C-H deformation
(at  1360  1/cm),  in-plane  O-H  bending  in  cellulose
structure (at 1320 1/cm) and C-C, C-O, C=O stretch (at
1240 1/cm) were observed.

Figure 3: FTIR spectra of TS, HTS, TP and HTP.

Figure 4 shows the FTIR spectra of ATP, AHTP and ATS.
The spectra of the activated carbons were similar, only
the intensities of the vibrations altered. The stretching
vibration  of  -OH  in  phenol  and  carboxyl  groups
centered  at  3073  1/cm  (58)  was  more  intense  in  the
spectra of ATS than that of ATP and AHTP. Similarly, C=O
stretching  vibration  (in  ketene  groups)  at  2420-2430
1/cm (59) was more intense in the spectra of ATS than
that  of  ATP  and  AHTP.  The  spectra  of  all  activated
carbons showed the stretching vibration of  C=C=C (in
allene  group)  at  2160  1/cm  (60,  61).  C=O  stretching

vibration of carbonyl and carboxylate groups (such as
ketones, aldehydes) was observed in the spectra of all
activated  carbons  at  1600-1700  1/cm  with  same
intensity (62). C=C stretching vibration of aromatic rings
at 1560 1/cm (51) was also detected in all spectra. C-O
stretching vibration (in ethers, alcohols, acids, esters) at
1017 1/cm (63) was much more intense in the spectra of
ATP. AHTP and ATS showed stronger stretching at 1200
(C-C, C-O, C=O stretching vibration). Bending vibration
of C-H in the aromatic rings at 820-840 1/cm (64) was
observed in the spectra of AHTP and ATS.
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Figure 4: FTIR spectra of ATS, ATP and AHTP.

3.4. X-ray Diffraction Analysis
Depending on the type of biomass, cellulose is present
in the structure as crystalline and amorphous form (65).
Any pretreatment using chemicals such as acids, bases
and solvents might affect the amorphous structure (66-
70). In order to observe what extent the pretreatments
changed the cellulose  in  the  biomass  structure,  x-ray
diffraction  analysis  was  also performed on hydrochar
and pulps.

XRD  patterns  of  TP,  HTP  and  HTS  are  presented  in
Figure  5.  The  XRD patterns  of  HTS  exhibit  diffraction
peaks  at  15° (101),  22°  (002)  and  34.5°  (040),  which
indicates that both amorphous and crystalline cellulose
structure  was  preserved  during  hydrothermal
pretreatment (64). A similar result was observed by Fan
et al. (71), who studied the hydrothermal carbonization

of Chinese fan palm leaves at different temperatures. In
the study of Fan et al. (72), a broad peak between 15°
and  16°,  which  indicated  amorphous  structure,  was
observed in the XRD of hydrochars obtained at 180 and
220 °C, while this structure was not seen above 260 °C.
In  the  x-ray  diffractions  of  TP  and  HTP  obtained  by
organosolv pretreatment and sequential hydrothermal-
organosolv pretreatments, only broad peaks at 22° (002
plane)  and  34.5°  were  observed.  Alkaline-glycerol
organosolv  pretreatment  completely  removed  the
amorphous  structure.  Sun  et  al.  (72),  who  applied
glycerol organosolv treatment to wheat straw, showed
that  the  amorphous  structure  (amorphous  cellulose,
lignin and hemicellulose) decreased (hence the crystal
index  increased)  and  the  average  crystal  size  of
cellulose decreased.

Figure 5: X-ray diffraction patterns of TP, HTP and HTS.

After  carbonization  and  activation,  a  broad  hump
(indicating  the  amorphous  graphitic  carbon)  between
17°  and  35°  was  observed  in  the  x-ray  diffraction
pattern  of  ATP,  ATS  and  AHTP  (73).  A  weaker  and

broader  hump  at  41-47°  was  also  observable  in  all
patterns,  which  is  also  a  characteristic  diffraction  of
amorphous graphite structure (74). Unlike ATP and ATS,
AHTP shows sharp diffraction peaks of graphitic carbon
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at 2=20°, 26°, 36°, 41°, 44°, 47.5°, 52°, 53.5°, 55.5°, 63° (55,  75).  Obviously,  AHTP  has  higher  crystallinity
compared to ATP and ATS.

Figure 6: X-ray diffraction pattern of AHTP, ATP and ATS.

3.5. SEM Analysis
SEM  provides  micrographs  that  show  surface
morphology.  The  surface  morphologies  of  HTS,  ATS,
ATP and AHTP can be seen in Figure 7. HTS shows an
irregular  and  rough  surface.  The  formation  of
microspheres or pores was not observed on the surface
of  HTS,  showing  that  hydrothermal  treatment
temperature  (220  °C)  was  not  able  to  destruct
lignocellulosic  structure  (76).  The  SEM  image  of  ATS
shows  a  dense  porous  structure  with  many  three-
dimensional channels. Activation of tea stalk with KOH
resulted in well-developed micropores on the surface of

the ATS. Although the SEM image of ATP was densely
microporous  like  that  of  ATS,  the  presence  of
mesopores was noteworthy. Removal of lignin from the
lignocellulosic  structure  leads  pore  formation.
Therefore,  mesopores  in  ATP  were  due  to  severe
destruction  of  lignocellulosic  structure  by  organosolv
delignification, which was done prior to activation. AHTP
images  also  show  the  porous  structure  with  a  wider
range  of  pores  compared  to  that  of  ATP.  Both
hydrothermal  pretreatment  and  organosolv
delignification  corroded  the  lignocellulosic  structure,
which resulted in mesopore formation.
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Figure 7: SEM images of (a) HTS (magnification of 2000x), (b) ATS, (c) ATP and (d) AHTP (magnification of 10000x).

3.6. BET Analysis
To  have  high  adsorption  capacity,  activated  carbons
should  possess  morphological  properties  including
amorphous  structure,  high  surface  area  and  high
porosity  (1).  Obtaining  N2 adsorption-desorption
isotherms  is  the  most  common  method  used  to
determine the surface area and pore characteristics of
activated carbons. Pores can be classified as micropores
(pore  diameter  <2  nm),  mesopores  (pore  diameter
between 2-50 nm), and macropores (pore diameter > 50
nm) (77).

Isothermal  plots  of  ATP,  AHTP and ATS are shown in
Figure 8.  N2 adsorption-desorption isotherm of ATS is
Type I isotherm (based on IUPAC classification), showing
microporous characteristics. N2 isotherm of ATS shows a
steep N2 uptake at very low relative pressures (P/P0<0.1)

due  to  N2-ATS  interactions  in  narrow  micropores  by
micropore filling (78).

Both ATP and AHTP show Type IV isotherm, with a steep
uptake of N2 at very low relative pressures and a sharp
increase of N2 adsorption at relative pressures higher
than  0.9.  ATP  and  AHTP  are  mesoporous  activated
carbons.  Adsorption  of  N2 in  mesopores  is  due  to
physical interaction between N2 molecules and activated
carbon, and the interaction between N2 molecules in the
condensed  state.  Since  AHTP  has  larger  pores,  N2

adsorption  due  to  condensation  is  higher.  For  both
AHTP and ATP, hysteresis due to capillary condensation
is  not  observed  in  the  isotherm,  showing  that
mesopores  are  either  smaller  in  width  or  in
conical/cylindrical form (78).

Figure 8: Nitrogen adsorption/desorption isotherms of ATS, ATP and AHTP.

The surface area and pore structure characteristics of
ATS, ATP and AHTP are listed in Table 2. ATP has the
highest  surface  area  (2056.72  m2/g),  where  86% of  it
comes  from  micropores.  This  is  mainly  due  to  the
porosity  enhancement  by  delignification  (35,  79)  and
better  accessibility  of  KOH to  the  active  sites.  Similar
results  were  observed  in  studies  that  produced
activated carbon from cellulose-rich precursors. Tsubota

et al.  (21) first delignified bamboo powder with acetic
acid-hydrogen  peroxide  solvent  mixture  and  then
carbonized the pulp in the presence of CO2 at 800 °C.
Regardless of the lignin content of the pulp, the surface
areas  of  activated  carbons  varied  between  1062.88
m2/g-1413  m2/g,  and  the  average  pore  sizes  varied
between 1.7-2 nm.

Table 2: Comparison of surface area and pore characteristics.

Sample SBET

(m2/g)
Smicropore

(m2/g)
Smicropore/

SBET

Average
pore radius

(nm)

Vmicro

(cm3/g)
Vtotal

(cm3/g)

ATS 1643 1479.14 0.90 1.01 0.65 0.833
ATP 2056.72 1768.66 0.86 2.16 0.81 2.227

AHTP 1179.71 1055.53 0.89 5.74 0.46 3.386
SBET: Surface area based on multi-point BET analysis
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Smicropore: micropore area based on V-t method
Vmicro: micropore volume

AHTP, with the largest average pore radius (5.74 nm),
has  the  least  micropore  volume  (0.464  cm3/g)  and
surface  area  (1179.71  m2/g).  Sequential  hydrothermal
pretreatment  and  organosolv  treatment  destruct  the
lignocellulosic  structure  more  resulting  in  a  more
porous  precursor,  which  ended  with  mesoporous
structure. ATS, having the lowest average pore radius, is
microporous.  Activated  carbons  of  different
lignocellulosic biomass (which are activated by KOH and
carbonized at 800 °C) have similar pore diameter and
surface area with ATS (80-84).

3.7.  Possible  Applications  of  the  Microporous  and
Mesoporous  Activated  Carbons  Prepared  from  Tea
Stalk and Tea Stalk Pulp
This  study  showed that  although the same activation
and  carbonization  conditions  are  applied,
pretreatments  namely  organosolv  delignification  and
two-step hydrothermal-organosolv treatment affect the
pore diameters, surface functional groups and specific
surface areas of activated carbons. Nonetheless, those
characteristics  of  activated  carbons  are  important  in
determining  the  end  use  or  application.  Since  the
specific  surface  areas  and  pore  structures  of  the
prepared  ATS,  ATP  and  AHTP are  different,  the  most
appropriate end-use purpose of those activated carbons
should  differ.  Possible  uses  are  discussed  below,
considering the specific surface area and pore structure.

One of the processes in which activated carbon is used
the most is adsorption.  While micropores provide the
main  adsorption  sites,  mesopores  provide  diffusion
channels for the absorbate (85). In liquid and gaseous
adsorption processes,  the  pore  size  of  the  adsorbent
and  the  molecular  size  of  the  adsorbate  must  be
compatible  (85).  Due  to  the  reason  that  gaseous
adsorbate molecules are generally found in the range of
0.5–1.5 nm, the microporous activated carbons (average
pore  size  <2  nm)  are  suitable  for  the  adsorption  of
gases  (86).  Microporous  activated carbons  are  mainly
used for the adsorption of volatile organic compounds
(VOCs),  CH4,  N2,  and  CO2 (87).  Since  the  presence  of
oxygen-containing  functional  groups  lowers  the
adsorption capacity  (88,  89),  oxygen-rich microporous
ATS might not be suitable to be used for the adsorption
of VOCs. In the case of CH4 and N2 adsorption, it  has
been  shown  in  studies  that  the  pore  size  should  be
quite  low  (between  0.7  nm  and  1.3  nm)  for  high
adsorption  capacity  (86,  90,  91).  Many  experimental
studies related to CO2 adsorption show that both the
preparation  method  and  structural  properties  of  the
activated carbons are similar to ATS. The high specific
surface  area,  micropore  structure  and  presence  of
highly oxygenated functional groups of ATS make ATS a
suitable  candidate for  CO2 adsorption.  Table  3  shows
the structural properties of activated carbons and their
CO2 adsorption  capacities  that  were  obtained  under
similar conditions to our study.

Table 3: Structural properties of activated carbons and their CO2 adsorption capacities reported in similar studies.

Precursor Carbonization and activation 
conditions 

Surface 
area 
(m2/g)

Pore 
size 
(nm)

Micropore 
volume 
(cm3/g)

CO2 adsorption Ref. 

Pine nut 
shell

KOH/precursor: 2(wt ratio)
T: 800 °C 1372 2.1532 0.6842 5.8 mmol/g (0 °C)

3.5 mmol/g (25 °C) (92)

Walnut 
shell

KOH/precursor: 1(wt ratio)
T: 800 °C 1868 < 4 0.55

9.56 mmol/g (0 °C)
5.17 mmol/g (25 °C)
4.34 mmol/g (40 °C)

(93)

Cucumber 
peels

KOH/precursor: 1(wt ratio)
T: 800 °C 1769 2.334 0.692

6.095 mmol/g (0 °C)
4.37 mmol/g (10 °C)
3.52 mmol/g (25 °C)

(94)

Starch KOH/precursor: 4 (wt ratio)
T: 700 °C 2190 1.2 0.92

5.6 mmol/g (0 °C)
3.5 mmol/g (25 °C)
5.6 mmol/g (50 °C)

(95)

Cellulose KOH/precursor: 4 (wt ratio)
T: 700 °C 2370 1.2 0.96

5.8 mmol/g (0 °C)
3.5 mmol/g (25 °C)
1.8 mmol/g (50 °C)

Sawdust KOH/precursor: 4 (wt ratio)
T: 700 °C 2250 1.2 0.91

5.5 mmol/g ( 0 °C)
2.9 mmol/g (25 °C)
1.8 mmol/g (50 °C)

Sawdust KOH/precursor: 2 (wt ratio)
T: 800 °C 1940 0.9 0.82

5.8 mmol/g (0 °C)
3.9 mmol/g (25 °C)
3.1 mmol/g (50 °C)

Olive mill 
waste 
hydrochar

KOH/precursor: 2 (wt ratio)
T: 700 °C 888 < 1 0.294

1.350 mmol/g (0 °C, 1 bar)
2.984 mmol/g (0 °C, 101.3 
kPa)

(96)
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Camphor 
leaves

KOH/precursor: 2 (wt ratio)
T: 800 °C 1736 < 1 0.357

4.8 mmol/g (0 °C)
2.42 mmol/g (25 °C)
1.45 mmol/g (50 °C)

(97)

Pristine 
wheat 
flour

KOH/precursor: 2 (wt ratio)
T: 700 °C 1057 < 2 0.474

4.41 mmol/g (0 °C)
2.77 mmol/g (25 °C)
1.60 mmol/g (50 °C)

(98)

Peanut 
shell

KOH/precursor: 1 (wt ratio)
T: 700 °C 956 <11 Not available 1.54 mmol/g (25 °C, 0.15 

bar) (99)Sunflower 
seed shell

KOH/precursor: 1.25 (wt ratio)
T: 700 °C 1790 < 1 Not available 1.46 mmol/g (25 °C, 0.15 

bar)

Pine nut 
shell

KOH/precursor: 2 (wt ratio)
T: 700 °C

Not 
available <1.1 Not available

7.7 mmol/g (0 °C, 1 bar)
5 mmol/g (25 °C, 1 bar)
3.3 mmol/g (0 °C, 0.15 bar)
2 mmol/g (25 °C, 0.15 bar)

(100)

Paulownia 
sawdust

KOH/precursor: 2 (wt ratio)
T: 700 °C 831 <1 0.297 6.83 mmol/g (0 °C)

(101)Paulownia 
sawdust

KOH/precursor: 4 (wt ratio)
T: 800 °C 1555 <1 0.598 7.14 mmol/g (0 °C)

Spent 
coffee 
grounds

KOH/precursor: 3 (wt ratio)
T: 700 °C 1082 3 0.44 3.2 mmol/g (0 °C, 101 kPa)

2.7 mmol/g (25°C, 101 kPa) (102)

Mesoporous  activated carbons  (2  nm <  average  pore
size <50 nm) are more preferred in the adsorption of
large  molecules  including  dyes,  pharmaceuticals,

cyanobacterial  toxins,  pollutants  and  enzymes  (103-
105).
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Table 4: Structural properties of mesoporous activated carbons and their reported adsorbates and adsorption
capacities reported in similar studies.

Precursor Carbonization and 
activation conditions 

Surface 
area 
(m2/g)

Pore size 
(nm)

Micropore 
volume 
(cm3/g)

Adsorbate and 
adsorption 
capacity

Ref. 

Dragon 
fruit peels

KOH/precursor: 2 (wt ratio)
T: 700 °C 756.3 11.3 0.376

Adsorbate: 
methylene blue dye
Maximum 
adsorption capacity:
195.2 mg/g 

(106)

Yellow 
mombin 
fruit stones 

KOH/precursor: 1 (wt ratio)
T: 500 °C 167 4.82 0.027

Adsorbate: Dianix ®
royal blue dye
Maximum 
adsorption capacity:
82.28 mg/g

(107)

Rice straw

Precursor was soaked in 85 wt
% KOH solution
T: 400 °C for 1 h and then 700 
°C for 1 h. 

165.9 5.941 0.032

Adsorbate: 
Methylene blue dye
Maximum 
adsorption capacity:
392.4 mg/g

(108)

Adsorbate: Congo 
red dye
Maximum 
adsorption capacity:
178.4 mg/g

Rice straw

Precursor was first pre-
carbonized at 400 °C for 1 h, 
then soaked in 85 wt% KOH 
solution, then carbonized at 
700 °C for 1 h.

1973 2.292 0.769

Adsorbate: 
Methylene blue dye
Maximum 
adsorption capacity:
527.6 mg/g
Adsorbate: Congo 
red dye
Maximum 
adsorption capacity:
531.4 mg/g

Sugarcane 
bagasse 

KOH/precursor: 1 (wt ratio)
T: 700 °C 1204 1.79 0.57

Adsorbate: Phenol
Maximum 
adsorption capacity:
88 mg/g (109)

Sawdust KOH/precursor: 1 (wt ratio)
T: 700 °C 1544 1.82 0.69

Adsorbate: Phenol
Maximum 
adsorption capacity:
96.8 mg/g

Potato peel KOH/precursor: 4 (wt ratio)
T: 600 °C 2394

<10 
Average 
between: 2-4
nm

-

Adsorbate: 
Methylene Blue
Maximum 
adsorption capacity:
2521 mg/g

(110)

Crab shell KOH/precursor: 3 (wt ratio)
T: 800 °C 1095.14 2.18 -

Adsorbate: 
Tetracycline
Maximum 
adsorption capacity:
380.92 mg/g

(111)

Mesoporous  activated  carbons  are  also  preferred  as
electrode materials in supercapacitors due to their high
specific surface area, high pore volume, good thermal
stability, and enhanced specific capacitance (112, 113).
Apart from mesoporous structure, presence of oxygen-
containing  functional  groups  on  the  surface  of  the
activated carbon also enhances electrochemical active
sites (111). Table 5 shows the studies in which activated
carbon was prepared under conditions similar to those

we  applied  in  the  present  study  and  used  in
supercapacitors.  According  to  the  studies  in  Table  5,
having pores with a diameter of 2-5 nm enhances the
transport of electrolytes. The large specific surface area,
the presence of macropores alongside micropores, and
the abundance of oxygenated functional groups make
ATP  and  AHTP  a  suitable  candidate  for  use  in
supercapacitors.
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Table 5: Structural properties of activated carbons and their maximum specific capacitance reported in similar
studies.

Precursor Carbonization and 
activation conditions

Surface 
area 
(m2/g)

Pore size (nm)
Pore 
volume 
(cm3/g)

Maximum 
specific 
capacitance 
(F/g)

Ref.

Corncob

Carbonization at 400 °C 
for 4 h, then activation 
with KOH 
(KOH/precursor: 3 (wt 
ratio) ) at 600 °C

800

Micropores in the 
range of 1.4-1.8 nm, 
mesopores in the 
range of 2.2-5 nm

0.337 390 (114)

Wastewater from 
vitamin C 
production, 
template: melamine 
foam

KOH/precursor: 5 (wt 
ratio)
T: 700 °C

3837 2.32 2.22 217 (113)

Olive tree branches

Carbonization: 500 °C for
2 h
Activation: 
KOH/precursor: 4 (wt 
ratio)
800 °C for 82 min

2980 0.8nm<pore size<5 nm 1.59 410 (115)

Biogas slurry

First drying, then 
carbonization at 650 °C 
for 1 h. Activation: 
KOH/precursor: 3 (wt 
ratio)
700 °C for 30 min

326.7 4.7 0.24 163

(116)First drying, then 
carbonization at 650 °C 
for 1 h. Activation: 
KOH/precursor: 3 (wt 
ratio)
700 °C for 60 min

514.7 4.7 0.38 182

Coconut silk

Carbonization at 400 °C 
for 1 h. Activation: 
KOH/precursor: 4 (wt 
ratio)
900 °C for 1 h

2318 0.5- 5 (average 1.42) 0.87 631 (111)

Corn silk

Carbonization at 300 °C 
for 2 h. Activation: 
KOH/precursor: 3 (wt 
ratio)
850 °C for 4 h

2441

3.097 (average)
(large pores (>30nm) 
were also seen in the 
structure)

1.890 174 (117)

4. CONCLUSION

In the present study, three different activated carbons
were  prepared:  activated carbon from tea stalk  itself,
activated carbon from tea stalk pulp obtained by using
glycerol organosolv pretreatment, and activated carbon
from  tea  stalk  hydrochar  pulp  obtained  by  using
sequential  hydrothermal  pretreatment-organosolv
delignification. The tea stalk itself and the cellulose-rich
precursors  were  carbonized  at  800  °C  for  1  h  in  the
presence of KOH.

The study showed that partial removal of lignin yielded
activated carbons with more specific surface area and
mesopores.  Additionally,  because  delignification
modified  the  functional  groups  of  the  biomass,  the
surface of activated carbon contained more oxygen-rich
functional groups. While decreasing the lignin removal,
hydrothermal  pretreatment  prior  to  delignification

ended  up  with  mesoporous  activated  carbon  with  a
larger pore diameter. Activated carbons (ATS, ATP and
AHTP)  obtained  from  tea  stalk  can  be  used  in  many
applications from environmental applications to energy
storage due to their different surface areas, micropore
volumes and pore structures. 
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