Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result

Silvestru Sever Dragomir ${ }^{1,2}$

Abstract

Let H be a Hilbert space. In this paper we show among others that, if the selfadjoint operators A and B satisfy the condition $0<m \leq A, B \leq M$, for some constants m, M, then

$$
\begin{aligned}
0 & \leq \frac{m}{M^{2}} v(1-v)\left(\frac{A^{2} \otimes 1+1 \otimes B^{2}}{2}-A \otimes B\right) \\
& \leq(1-v) A \otimes 1+v 1 \otimes B-A^{1-v} \otimes B^{v} \\
& \leq \frac{M}{m^{2}} v(1-v)\left(\frac{A^{2} \otimes 1+1 \otimes B^{2}}{2}-A \otimes B\right)
\end{aligned}
$$

for all $v \in[0,1]$. We also have the inequalities for Hadamard product

$$
\begin{aligned}
0 & \leq \frac{m}{M^{2}} v(1-v)\left(\frac{A^{2}+B^{2}}{2} \circ 1-A \circ B\right) \\
& \leq[(1-v) A+v B] \circ 1-A^{1-v} \circ B^{v} \\
& \leq \frac{M}{m^{2}} v(1-v)\left(\frac{A^{2}+B^{2}}{2} \circ 1-A \circ B\right)
\end{aligned}
$$

for all $v \in[0,1]$.
Keywords: Tensorial product, Hadamard product, Selfadjoint operators, Convex functions
2010 AMS: Primary 47A63, Secondary 47A99

[^0]
1. Introduction

The famous Young inequality for scalars says that if $a, b>0$ and $v \in[0,1]$, then

$$
\begin{equation*}
a^{1-v} b^{v} \leq(1-v) a+v b \tag{1.1}
\end{equation*}
$$

with equality if and only if $a=b$. The inequality (1.1) is also called v-weighted arithmetic-geometric mean inequality.
We recall that Specht's ratio is defined by [1]

$$
S(h):=\left\{\begin{array}{l}
\frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} \text { if } h \in(0,1) \cup(1, \infty) \tag{1.2}\\
1 \text { if } h=1 .
\end{array}\right.
$$

It is well known that $\lim _{h \rightarrow 1} S(h)=1, S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0, h \neq 1$. The function is decreasing on $(0,1)$ and increasing on $(1, \infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's inequality

$$
\begin{equation*}
S\left(\left(\frac{a}{b}\right)^{r}\right) a^{1-v} b^{v} \leq(1-v) a+v b \leq S\left(\frac{a}{b}\right) a^{1-v} b^{v} \tag{1.3}
\end{equation*}
$$

where $a, b>0, v \in[0,1], r=\min \{1-v, v\}$.
The second inequality in (1.3) is due to Tominaga [2] while the first one is due to Furuichi [3].
Kittaneh and Manasrah [4,5] provided a refinement and an additive reverse for Young inequality as follows:

$$
\begin{equation*}
r(\sqrt{a}-\sqrt{b})^{2} \leq(1-v) a+v b-a^{1-v} b^{v} \leq R(\sqrt{a}-\sqrt{b})^{2} \tag{1.4}
\end{equation*}
$$

where $a, b>0, v \in[0,1], r=\min \{1-v, v\}$ and $R=\max \{1-v, v\}$.
We also consider the Kantorovich's ratio defined by

$$
\begin{equation*}
K(h):=\frac{(h+1)^{2}}{4 h}, h>0 . \tag{1.5}
\end{equation*}
$$

The function K is decreasing on $(0,1)$ and increasing on $[1, \infty), K(h) \geq 1$ for any $h>0$ and $K(h)=K\left(\frac{1}{h}\right)$ for any $h>0$.
The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's ratio holds

$$
\begin{equation*}
K^{r}\left(\frac{a}{b}\right) a^{1-v} b^{v} \leq(1-v) a+v b \leq K^{R}\left(\frac{a}{b}\right) a^{1-v} b^{v} \tag{1.6}
\end{equation*}
$$

where $a, b>0, v \in[0,1], r=\min \{1-v, v\}$ and $R=\max \{1-v, v\}$.
The first inequality in (1.6) was obtained by Zou et al. in [6] while the second by Liao et al. [7].
In [6] the authors also showed that $K^{r}(h) \geq S\left(h^{r}\right)$ for $h>0$ and $r \in\left[0, \frac{1}{2}\right]$ implying that the lower bound in (1.6) is better than the lower bound from (1.3).

In the recent paper [8] we obtained the following reverses of Young's inequality as well:

$$
\begin{equation*}
0 \leq(1-v) a+v b-a^{1-v} b^{v} \leq v(1-v)(a-b)(\ln a-\ln b) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq \frac{(1-v) a+v b}{a^{1-v} b^{v}} \leq \exp \left[4 v(1-v)\left(K\left(\frac{a}{b}\right)-1\right)\right] \tag{1.8}
\end{equation*}
$$

where $a, b>0, v \in[0,1]$.
In [9], we obtained the following Young related inequalities:
Theorem 1.1. For any $a, b>0$ and $v \in[0,1]$ we have

$$
\begin{align*}
\frac{1}{2} v(1-v)(\ln a-\ln b)^{2} \min \{a, b\} & \leq(1-v) a+v b-a^{1-v} b^{v} \tag{1.9}\\
& \leq \frac{1}{2} v(1-v)(\ln a-\ln b)^{2} \max \{a, b\}
\end{align*}
$$

and

$$
\begin{align*}
\exp \left[\frac{1}{2} v(1-v) \frac{(b-a)^{2}}{\max ^{2}\{a, b\}}\right] & \leq \frac{(1-v) a+v b}{a^{1-v} b^{v}} \tag{1.10}\\
& \leq \exp \left[\frac{1}{2} v(1-v) \frac{(b-a)^{2}}{\min ^{2}\{a, b\}}\right]
\end{align*}
$$

For an equivalent form and a different approach in proving the results (1.9) and (1.10) see [10].
The second inequalities in (1.9) and (1.10) are better than the corresponding results obtained by Furuichi and Minculete in [11] where instead of constant $\frac{1}{2}$ they had the constant 1 . Let I_{1}, \ldots, I_{k} be intervals from \mathbb{R} and let $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A=\left(A_{1}, \ldots, A_{n}\right)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces H_{1}, \ldots, H_{k} such that the spectrum of A_{i} is contained in I_{i} for $i=1, \ldots, k$. We say that such a k-tuple is in the domain of f. If

$$
A_{i}=\int_{I_{i}} \lambda_{i} d E_{i}\left(\lambda_{i}\right)
$$

is the spectral resolution of A_{i} for $i=1, \ldots, k$; by following [12], we define

$$
\begin{equation*}
f\left(A_{1}, \ldots, A_{k}\right):=\int_{I_{1}} \ldots \int_{I_{k}} f\left(\lambda_{1}, \ldots, \lambda_{k}\right) d E_{1}\left(\lambda_{1}\right) \otimes \ldots \otimes d E_{k}\left(\lambda_{k}\right) \tag{1.11}
\end{equation*}
$$

as a bounded selfadjoint operator on the tensorial product $H_{1} \otimes \ldots \otimes H_{k}$.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional calculus for arbitrary real functions. This construction [12] extends the definition of Korányi [13] for functions of two variables and have the property that

$$
f\left(A_{1}, \ldots, A_{k}\right)=f_{1}\left(A_{1}\right) \otimes \ldots \otimes f_{k}\left(A_{k}\right)
$$

whenever f can be separated as a product $f\left(t_{1}, \ldots, t_{k}\right)=f_{1}\left(t_{1}\right) \ldots f_{k}\left(t_{k}\right)$ of k functions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on $[0, \infty$), namely

$$
f(s t) \geq(\leq) f(s) f(t) \text { for all } s, t \in[0, \infty)
$$

and if f is continuous on $[0, \infty)$, then [14, p. 173]

$$
\begin{equation*}
f(A \otimes B) \geq(\leq) f(A) \otimes f(B) \text { for all } A, B \geq 0 \tag{1.12}
\end{equation*}
$$

This follows by observing that, if

$$
A=\int_{[0, \infty)} t d E(t) \text { and } B=\int_{[0, \infty)} s d F(s)
$$

are the spectral resolutions of A and B, then

$$
\begin{equation*}
f(A \otimes B)=\int_{[0, \infty)} \int_{[0, \infty)} f(s t) d E(t) \otimes d F(s) \tag{1.13}
\end{equation*}
$$

for the continuous function f on $[0, \infty)$.
Recall the geometric operator mean for the positive operators $A, B>0$

$$
A \#_{t} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}
$$

where $t \in[0,1]$ and

$$
A \# B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

By the definitions of \# and \otimes we have

$$
A \# B=B \# A \text { and }(A \# B) \otimes(B \# A)=(A \otimes B) \#(B \otimes A) .
$$

In 2007, Wada [15] obtained the following Callebaut type inequalities for tensorial product

$$
\begin{align*}
(A \# B) \otimes(A \# B) & \leq \frac{1}{2}\left[\left(A \#_{\alpha} B\right) \otimes\left(A \#_{1-\alpha} B\right)+\left(A \#_{1-\alpha} B\right) \otimes\left(A \#_{\alpha} B\right)\right] \tag{1.14}\\
& \leq \frac{1}{2}(A \otimes B+B \otimes A)
\end{align*}
$$

for $A, B>0$ and $\alpha \in[0,1]$.
Recall that the Hadamard product of A and B in $B(H)$ is defined to be the operator $A \circ B \in B(H)$ satisfying

$$
\left\langle(A \circ B) e_{j}, e_{j}\right\rangle=\left\langle A e_{j}, e_{j}\right\rangle\left\langle B e_{j}, e_{j}\right\rangle
$$

for all $j \in \mathbb{N}$, where $\left\{e_{j}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis for the separable Hilbert space H.
It is known that, see [16], we have the representation

$$
\begin{equation*}
A \circ B=\mathscr{U}^{*}(A \otimes B) \mathscr{U} \tag{1.15}
\end{equation*}
$$

where $\mathscr{U}: H \rightarrow H \otimes H$ is the isometry defined by $\mathscr{U} e_{j}=e_{j} \otimes e_{j}$ for all $j \in \mathbb{N}$.
If f is super-multiplicative (sub-multiplicative) on $[0, \infty$), then also [14, p. 173]

$$
\begin{equation*}
f(A \circ B) \geq(\leq) f(A) \circ f(B) \text { for all } A, B \geq 0 \tag{1.16}
\end{equation*}
$$

We recall the following elementary inequalities for the Hadamard product

$$
A^{1 / 2} \circ B^{1 / 2} \leq\left(\frac{A+B}{2}\right) \circ 1 \text { for } A, B \geq 0
$$

and Fiedler inequality

$$
\begin{equation*}
A \circ A^{-1} \geq 1 \text { for } A>0 \tag{1.17}
\end{equation*}
$$

As extension of Kadison's Schwarz inequality on the Hadamard product, Ando [17] showed that

$$
A \circ B \leq\left(A^{2} \circ 1\right)^{1 / 2}\left(B^{2} \circ 1\right)^{1 / 2} \text { for } A, B \geq 0
$$

and Aujla and Vasudeva [18] gave an alternative upper bound

$$
A \circ B \leq\left(A^{2} \circ B^{2}\right)^{1 / 2} \text { for } A, B \geq 0
$$

It has been shown in [19] that $\left(A^{2} \circ 1\right)^{1 / 2}\left(B^{2} \circ 1\right)^{1 / 2}$ and $\left(A^{2} \circ B^{2}\right)^{1 / 2}$ are incomparable for 2-square positive definite matrices A and B.

Motivated by these results, in this paper we provide among others some upper and lower bounds for the Young differences

$$
(1-v) A \otimes 1+v 1 \otimes B-A^{1-v} \otimes B^{v}
$$

and

$$
[(1-v) A+v B] \circ 1-A^{1-v} \circ B^{v}
$$

for $v \in[0,1]$ and $A, B>0$.

2. Main Results

The first main result is as follows:
Theorem 2.1. Assume that the selfadjoint operators A and B satisfy the condition $0<m \leq A, B \leq M$, then

$$
\begin{align*}
0 & \leq \frac{1}{2} m v(1-v)\left[\left(\ln ^{2} A\right) \otimes 1+1 \otimes\left(\ln ^{2} B\right)-2 \ln A \otimes \ln B\right] \tag{2.1}\\
& \leq(1-v) A \otimes 1+v 1 \otimes B-A^{1-v} \otimes B^{v} \\
& \leq \frac{1}{2} M v(1-v)\left[\left(\ln ^{2} A\right) \otimes 1+1 \otimes\left(\ln ^{2} B\right)-2 \ln A \otimes \ln B\right] \\
& \leq \frac{1}{2} v(1-v) M(\ln M-\ln m)^{2}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
0 & \leq \frac{1}{8} m\left[\left(\ln ^{2} A\right) \otimes 1+1 \otimes\left(\ln ^{2} B\right)-2 \ln A \otimes \ln B\right] \tag{2.2}\\
& \leq \frac{A \otimes 1+1 \otimes B}{2}-A^{1 / 2} \otimes B^{1 / 2} \\
& \leq \frac{1}{8} M\left[\left(\ln ^{2} A\right) \otimes 1+1 \otimes\left(\ln ^{2} B\right)-2 \ln A \otimes \ln B\right] \\
& \leq \frac{1}{8} M(\ln M-\ln m)^{2} .
\end{align*}
$$

Proof. If $t, s \in[m, M] \subset(0, \infty)$, then by (1.9) we get

$$
\begin{align*}
0 & \leq \frac{1}{2} m v(1-v)(\ln t-\ln s)^{2} \leq(1-v) t+v s-t^{1-v} s^{v} \tag{2.3}\\
& \leq \frac{1}{2} M v(1-v)(\ln t-\ln s)^{2} \\
& \leq \frac{1}{2} M v(1-v)(\ln M-\ln m)^{2} .
\end{align*}
$$

If

$$
A=\int_{m}^{M} t d E(t) \text { and } B=\int_{m}^{M} s d F(s)
$$

are the spectral resolutions of A and B, then by taking in (2.3) the double integral $\int_{m}^{M} \int_{m}^{M}$ over $d E(t) \otimes d F(s)$, we get

$$
\begin{align*}
0 & \leq \frac{1}{2} m v(1-v) \int_{m}^{M} \int_{m}^{M}(\ln t-\ln s)^{2} d E(t) \otimes d F(s) \tag{2.4}\\
& \leq \int_{m}^{M} \int_{m}^{M}\left[(1-v) t+v s-t^{1-v} s^{v}\right] d E(t) \otimes d F(s) \\
& \leq \frac{1}{2} M v(1-v) \int_{m}^{M} \int_{m}^{M}(\ln t-\ln s)^{2} d E(t) \otimes d F(s) \\
& \leq \frac{1}{8} M(\ln M-\ln m)^{2} \int_{m}^{M} \int_{m}^{M} d E(t) \otimes d F(s) .
\end{align*}
$$

Now, observe that, by (1.11)

$$
\begin{aligned}
\int_{m}^{M} \int_{m}^{M}(\ln t-\ln s)^{2} d E(t) \otimes d F(s)= & \int_{m}^{M} \int_{m}^{M}\left(\ln ^{2} t-2 \ln t \ln s+\ln ^{2} s\right) d E(t) \otimes d F(s) \\
= & \int_{m}^{M} \int_{m}^{M} \ln ^{2} t d E(t) \otimes d F(s)+\int_{m}^{M} \int_{m}^{M} \ln ^{2} s d E(t) \otimes d F(s) \\
& -2 \int_{m}^{M} \int_{m}^{M} \ln t \ln s d E(t) \otimes d F(s) \\
= & \left(\ln ^{2} A\right) \otimes 1+1 \otimes\left(\ln ^{2} B\right)-2 \ln A \otimes \ln B
\end{aligned}
$$

$$
\begin{aligned}
\int_{m}^{M} \int_{m}^{M}\left[(1-v) t+v s-t^{1-v} s^{v}\right] d E(t) \otimes d F(s)= & (1-v) \int_{m}^{M} \int_{m}^{M} t d E(t) \otimes d F(s)+v \int_{m}^{M} \int_{m}^{M} s d E(t) \otimes d F(s) \\
& -\int_{m}^{M} \int_{m}^{M} t^{1-v} s^{v} d E(t) \otimes d F(s) \\
= & (1-v) A \otimes 1+v 1 \otimes B-A^{1-v} \otimes B^{v}
\end{aligned}
$$

and

$$
\int_{m}^{M} \int_{m}^{M} d E(t) \otimes d F(s)=1 \otimes 1=1
$$

By employing (2.4), we then get the desired result (2.1).

Corollary 2.2. With the assumptions of Theorem 2.1,

$$
\begin{align*}
0 & \leq \frac{1}{2} m v(1-v)\left[\left(\ln ^{2} A+\ln ^{2} B\right) \circ 1-2 \ln A \circ \ln B\right] \tag{2.5}\\
& \leq[(1-v) A+v B] \circ 1-A^{1-v} \circ B^{v} \\
& \leq \frac{1}{2} M v(1-v)\left[\left(\ln ^{2} A+\ln ^{2} B\right) \circ 1-2 \ln A \circ \ln B\right] \\
& \leq \frac{1}{2} v(1-v) M(\ln M-\ln m)^{2}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
0 & \leq \frac{1}{8} m\left[\left(\ln ^{2} A+\ln ^{2} B\right) \circ 1-2 \ln A \circ \ln B\right] \tag{2.6}\\
& \leq \frac{A+B}{2} \circ 1-A^{1 / 2} \circ B^{1 / 2} \\
& \leq \frac{1}{8} M\left[\left(\ln ^{2} A+\ln ^{2} B\right) \circ 1-2 \ln A \circ \ln B\right] \\
& \leq \frac{1}{8} M(\ln M-\ln m)^{2}
\end{align*}
$$

Proof. The proof follows from Theorem 2.1 by taking to the left \mathscr{U}^{*}, to the right \mathscr{U}, where $\mathscr{U}: H \rightarrow H \otimes H$ is the isometry defined by $\mathscr{U} e_{j}=e_{j} \otimes e_{j}$ for all $j \in \mathbb{N}$ and utilizing the representation (1.15).

Remark 2.3. If we take $B=A$ in Corollary 2.2, then we get

$$
\begin{align*}
0 & \leq m v(1-v)\left[\left(\ln ^{2} A\right) \circ 1-\ln A \circ \ln A\right] \leq A \circ 1-A^{1-v} \circ A^{v} \tag{2.7}\\
& \leq M v(1-v)\left[\left(\ln ^{2} A\right) \circ 1-\ln A \circ \ln A\right] \\
& \leq \frac{1}{2} v(1-v) M(\ln M-\ln m)^{2}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
0 & \leq \frac{1}{4} m\left[\left(\ln ^{2} A\right) \circ 1-\ln A \circ \ln A\right] \leq A \circ 1-A^{1 / 2} \circ A^{1 / 2} \tag{2.8}\\
& \leq \frac{1}{4} M\left[\left(\ln ^{2} A\right) \circ 1-\ln A \circ \ln A\right] \leq \frac{1}{8} M(\ln M-\ln m)^{2}
\end{align*}
$$

Theorem 2.4. With the assumptions of Theorem 2.1, we have

$$
\begin{align*}
0 & \leq \frac{m}{2 M^{2}} v(1-v)\left(A^{2} \otimes 1+1 \otimes B^{2}-2 A \otimes B\right) \tag{2.9}\\
& \leq(1-v) A \otimes 1+v 1 \otimes B-A^{1-v} \otimes B^{v} \\
& \leq \frac{M}{2 m^{2}} v(1-v)\left(A^{2} \otimes 1+1 \otimes B^{2}-2 A \otimes B\right) \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
0 & \leq \frac{m}{8 M^{2}}\left(A^{2} \otimes 1+1 \otimes B^{2}-2 A \otimes B\right) \tag{2.10}\\
& \leq \frac{A \otimes 1+1 \otimes B}{2}-A^{1 / 2} \otimes B^{1 / 2} \\
& \leq \frac{M}{8 m^{2}}\left(A^{2} \otimes 1+1 \otimes B^{2}-2 A \otimes B\right) \leq \frac{M}{8 m^{2}}(M-m)^{2}
\end{align*}
$$

Proof. We observe that

$$
0<\frac{1}{\max \{a, b\}} \leq \frac{\ln a-\ln b}{a-b} \leq \frac{1}{\min \{a, b\}}
$$

which implies that

$$
0<\frac{1}{\max ^{2}\{a, b\}} \leq\left(\frac{\ln a-\ln b}{a-b}\right)^{2} \leq \frac{1}{\min ^{2}\{a, b\}}
$$

for all $a, b>0$.
By making use of (1.9), we derive

$$
\begin{align*}
& \frac{1}{2} v(1-v)(b-a)^{2} \frac{\min \{a, b\}}{\max ^{2}\{a, b\}} \tag{2.11}\\
& \leq \frac{1}{2} v(1-v)(\ln a-\ln b)^{2} \min \{a, b\} \leq(1-v) a+v b-a^{1-v} b^{v} \\
& \leq \frac{1}{2} v(1-v)(b-a)^{2} \frac{\max \{a, b\}}{\min ^{2}\{a, b\}}
\end{align*}
$$

If $t, s \in[m, M] \subset(0, \infty)$, then by (2.11) we get

$$
\begin{align*}
0 & \leq \frac{m}{2 M^{2}} v(1-v)(t-s)^{2} \leq(1-v) t+v s-t^{1-v} s^{v} \tag{2.12}\\
& \leq \frac{M}{2 m^{2}} v(1-v)(t-s)^{2}
\end{align*}
$$

If

$$
A=\int_{m}^{M} t d E(t) \text { and } B=\int_{m}^{M} s d F(s)
$$

are the spectral resolutions of A and B, then by taking in (2.12) the double integral $\int_{m}^{M} \int_{m}^{M}$ over $d E(t) \otimes d F(s)$, we get

$$
\begin{align*}
0 & \leq \frac{m}{2 M^{2}} v(1-v) \int_{m}^{M} \int_{m}^{M}(t-s)^{2} E(t) \otimes d F(s) \tag{2.13}\\
& \leq \int_{m}^{M} \int_{m}^{M}\left[(1-v) t+v s-t^{1-v} s^{v}\right] E(t) \otimes d F(s) \\
& \leq \frac{M}{2 m^{2}} v(1-v) \int_{m}^{M} \int_{m}^{M}(t-s)^{2} E(t) \otimes d F(s) .
\end{align*}
$$

Since, by (1.11)

$$
\begin{aligned}
\int_{m}^{M} \int_{m}^{M}(t-s)^{2} E(t) \otimes d F(s) & =\int_{m}^{M} \int_{m}^{M}\left(t^{2}-2 t s+s^{2}\right) E(t) \otimes d F(s) \\
& =\int_{m}^{M} \int_{m}^{M} t^{2} E(t) \otimes d F(s)+\int_{m}^{M} \int_{m}^{M} s^{2} E(t) \otimes d F(s)-\int_{m}^{M} \int_{m}^{M} 2 t s E(t) \otimes d F(s) \\
& =A^{2} \otimes 1+1 \otimes B^{2}-2 A \otimes B
\end{aligned}
$$

then by (2.13) we derive the first part of (2.9).
The last part follows by the fact that

$$
(t-s)^{2} \leq(M-m)^{2}
$$

for all $t, s \in[m, M]$.

Corollary 2.5. With the assumptions of Theorem 2.1, we have the following inequalities for the Hadamard product

$$
\begin{align*}
0 & \leq \frac{m}{M^{2}} v(1-v)\left(\frac{A^{2}+B^{2}}{2} \circ 1-A \circ B\right) \tag{2.14}\\
& \leq[(1-v) A+v B] \circ 1-A^{1-v} \circ B^{v} \\
& \leq \frac{M}{m^{2}} v(1-v)\left(\frac{A^{2}+B^{2}}{2} \circ 1-A \circ B\right) \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
0 & \leq \frac{m}{4 M^{2}}\left(\frac{A^{2}+B^{2}}{2} \circ 1-A \circ B\right) \leq \frac{A+B}{2} \circ 1-A^{1 / 2} \circ B^{1 / 2} \tag{2.15}\\
& \leq \frac{M}{4 m^{2}}\left(\frac{A^{2}+B^{2}}{2} \circ 1-A \circ B\right) \leq \frac{M}{8 m^{2}}(M-m)^{2}
\end{align*}
$$

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.4 and we omit the details.
Remark 2.6. If we take $B=A$ in Corollary 2.5, then we get

$$
\begin{align*}
0 & \leq \frac{m}{M^{2}} v(1-v)\left(A^{2} \circ 1-A \circ A\right) \leq A-A^{1-v} \circ A^{v} \tag{2.16}\\
& \leq \frac{M}{m^{2}} v(1-v)\left(A^{2} \circ 1-A \circ A\right) \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
0 & \leq \frac{m}{4 M^{2}}\left(A^{2} \circ 1-A \circ A\right) \leq A \circ 1-A^{1 / 2} \circ A^{1 / 2} \tag{2.17}\\
& \leq \frac{M}{4 m^{2}}\left(A^{2} \circ 1-A \circ A\right) \leq \frac{M}{8 m^{2}}(M-m)^{2}
\end{align*}
$$

Further, we also have:
Theorem 2.7. Assume that the selfadjoint operators A and B satisfy the condition $0<A, B \leq M$, then

$$
\begin{align*}
0 & \leq(1-v) A \otimes 1+v 1 \otimes B-A^{1-v} \otimes B^{v} \tag{2.18}\\
& \leq M v(1-v)\left(\frac{A^{-1} \otimes B+A \otimes B^{-1}}{2}-1\right)
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{equation*}
0 \leq \frac{A \otimes 1+1 \otimes B}{2}-A^{1 / 2} \otimes B^{1 / 2} \leq \frac{1}{4} M\left(\frac{A^{-1} \otimes B+A \otimes B^{-1}}{2}-1\right) \tag{2.19}
\end{equation*}
$$

Proof. Recall that if $a, b>0$ and

$$
L(a, b):=\left\{\begin{array}{l}
\frac{b-a}{\ln b-\ln a} \text { if } a \neq b \\
b \text { if } a=b
\end{array}\right.
$$

is the logarithmic mean and $G(a, b):=\sqrt{a b}$ is the geometric mean, then $L(a, b) \geq G(a, b)$ for all $a, b>0$.
Then from (1.9) we have for $a \neq b$ that

$$
\begin{aligned}
(1-v) a+v b-a^{1-v} b^{v} & \leq \frac{1}{2} v(1-v)(\ln a-\ln b)^{2} \max \{a, b\} \\
& =\frac{1}{2} v(1-v)(b-a)^{2}\left(\frac{\ln a-\ln b}{b-a}\right)^{2} \max \{a, b\} \\
& \leq \frac{1}{2} v(1-v) \frac{(b-a)^{2}}{a b} \max \{a, b\} \\
& =\frac{1}{2} v(1-v)\left(\frac{b}{a}+\frac{a}{b}-2\right) \max \{a, b\}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
(1-v) a+v b-a^{1-v} b^{v} \leq \frac{1}{2} v(1-v)\left(\frac{b}{a}+\frac{a}{b}-2\right) \max \{a, b\} \tag{2.20}
\end{equation*}
$$

for all $a, b>0$.
If $t, s \in[m, M] \subset(0, \infty)$, then by (2.20) we get

$$
\begin{align*}
(1-v) t+v s-t^{1-v} s^{v} & \leq \frac{1}{2} v(1-v)\left(\frac{s}{t}+\frac{t}{s}-2\right) \max \{t, s\} \tag{2.21}\\
& \leq \frac{1}{2} M v(1-v)\left(\frac{s}{t}+\frac{t}{s}-2\right)
\end{align*}
$$

By taking in (2.21) the double integral $\int_{m}^{M} \int_{m}^{M}$ over $d E(t) \otimes d F(s)$, we get

$$
\begin{equation*}
\int_{m}^{M} \int_{m}^{M}\left[(1-v) t+v s-t^{1-v} s^{v}\right] d E(t) \otimes d F(s) \leq \frac{1}{2} M v(1-v) \int_{m}^{M} \int_{m}^{M}\left(\frac{s}{t}+\frac{t}{s}-2\right) d E(t) \otimes d F(s) \tag{2.22}
\end{equation*}
$$

Since

$$
\begin{aligned}
\int_{m}^{M} \int_{m}^{M}\left(\frac{s}{t}+\frac{t}{s}-2\right) d E(t) \otimes d F(s)= & \int_{m}^{M} \int_{m}^{M} t^{-1} s E(t) \otimes d F(s)+\int_{m}^{M} \int_{m}^{M} t s^{-1} d E(t) \otimes d F(s) \\
& -\int_{m}^{M} \int_{m}^{M} d E(t) \otimes d F(s) \\
= & A^{-1} \otimes B+A \otimes B^{-1}-2
\end{aligned}
$$

hence by (2.22) we derive (2.18).
Corollary 2.8. With the assumptions of Theorem 2.7, we have the inequalities for the Hadamard product

$$
\begin{align*}
0 & \leq[(1-v) A+v B] \circ 1-A^{1-v} \circ B^{v} \tag{2.23}\\
& \leq M v(1-v)\left(\frac{A^{-1} \circ B+A \circ B^{-1}}{2}-1\right)
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{equation*}
0 \leq \frac{A+B}{2} \circ 1-A^{1 / 2} \circ B^{1 / 2} \leq \frac{1}{4} M\left(\frac{A^{-1} \circ B+A \circ B^{-1}}{2}-1\right) \tag{2.24}
\end{equation*}
$$

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.7.
We observe that, if we take $B=A$ in Corollary 2.8, then we get

$$
\begin{equation*}
0 \leq A \circ 1-A^{1-v} \circ A^{v} \leq M v(1-v)\left(A^{-1} \circ A-1\right) \tag{2.25}
\end{equation*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{equation*}
0 \leq A \circ 1-A^{1 / 2} \circ A^{1 / 2} \leq \frac{1}{8} M\left(A^{-1} \circ A-1\right) \tag{2.26}
\end{equation*}
$$

We also have the following multiplicative results:
Theorem 2.9. Assume that the selfadjoint operators A and B satisfy the condition $0<m \leq A, B \leq M$, then

$$
\begin{align*}
A^{1-v} \otimes B^{v} & \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{M}\right)^{2}\right] A^{1-v} \otimes B^{v} \tag{2.27}\\
& \leq(1-v) A \otimes 1+v 1 \otimes B \\
& \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{m}\right)^{2}\right] A^{1-v} \otimes B^{v}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
A^{1-v} \otimes B^{v} & \leq \exp \left[\frac{1}{8}\left(\frac{M-m}{M}\right)^{2}\right] A^{1 / 2} \otimes B^{1 / 2} \tag{2.28}\\
& \leq \frac{A \otimes 1+1 \otimes B}{2} \\
& \leq \exp \left[\frac{1}{8}\left(\frac{M-m}{m}\right)^{2}\right] A^{1 / 2} \otimes B^{1 / 2}
\end{align*}
$$

Proof. Since

$$
\frac{(b-a)^{2}}{\max ^{2}\{a, b\}}=\left(\frac{\max \{a, b\}-\min \{a, b\}}{\max \{a, b\}}\right)^{2}=\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right)^{2}
$$

and

$$
\frac{(b-a)^{2}}{\min ^{2}\{a, b\}}=\left(\frac{\max \{a, b\}-\min \{a, b\}}{\min \{a, b\}}\right)^{2}=\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2}
$$

hence by (1.10) we derive

$$
\begin{align*}
\exp \left[\frac{1}{2} v(1-v)\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right)^{2}\right] & \leq \frac{(1-v) a+v b}{a^{1-v} b^{v}} \tag{2.29}\\
& \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2}\right]
\end{align*}
$$

If $t, s \in[m, M] \subset(0, \infty)$, then by (2.29) we get

$$
\begin{equation*}
\exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{M}\right)^{2}\right] t^{1-v} s^{v} \leq(1-v) t+v s \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{m}\right)^{2}\right] t^{1-v} s^{v} \tag{2.30}
\end{equation*}
$$

Now, if we take the double integral $\int_{m}^{M} \int_{m}^{M}$ over $d E(t) \otimes d F(s)$ in (2.30), we derive the desired result (2.27).
Corollary 2.10. With the assumptions of Theorem 2.9, we have the inequalities for Hadamard product

$$
\begin{align*}
A^{1-v} \circ B^{v} & \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{M}\right)^{2}\right] A^{1-v} \circ B^{v} \tag{2.31}\\
& \leq(1-v) A+v B \\
& \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{m}\right)^{2}\right] A^{1-v} \circ B^{v}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
A^{1 / 2} \circ B^{1 / 2} & \leq \exp \left[\frac{1}{8}\left(\frac{M-m}{M}\right)^{2}\right] A^{1 / 2} \circ B^{1 / 2} \tag{2.32}\\
& \leq \frac{A+B}{2} \circ 1 \\
& \leq \exp \left[\frac{1}{8}\left(\frac{M-m}{m}\right)^{2}\right] A^{1 / 2} \circ B^{1 / 2}
\end{align*}
$$

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.9.
If we take $B=A$ in Corollary 2.10, then we get the following inequalities for one operator A satisfying the condition $0<m \leq A \leq M$,

$$
\begin{align*}
A^{1-v} \circ A^{v} & \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{M}\right)^{2}\right] A^{1-v} \circ A^{v} \tag{2.33}\\
& \leq A \circ 1 \\
& \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{m}\right)^{2}\right] A^{1-v} \circ A^{v}
\end{align*}
$$

for all $v \in[0,1]$.
In particular,

$$
\begin{align*}
A^{1 / 2} \circ A^{1 / 2} & \leq \exp \left[\frac{1}{8}\left(\frac{M-m}{M}\right)^{2}\right] A^{1 / 2} \circ A^{1 / 2} \tag{2.34}\\
& \leq A \circ 1 \\
& \leq \exp \left[\frac{1}{8}\left(\frac{M-m}{m}\right)^{2}\right] A^{1 / 2} \circ A^{1 / 2}
\end{align*}
$$

3. Inequalities for Sums

We also have the following inequalities for sums of operators:
Proposition 3.1. Assume that $0<m \leq A_{i}, B_{j} \leq M$ and $p_{i}, q_{j} \geq 0$ for $i \in\{1, \ldots, n\}, j \in\{1, \ldots, k\}$, and put $P_{n}:=\sum_{i=1}^{n} p_{i}$, $Q_{k}:=\sum_{j=1}^{k} q_{j}$. Then

$$
\begin{aligned}
0 & \leq \frac{m}{2 M^{2}} v(1-v)\left[Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}^{2}\right) \otimes 1+P_{n} 1 \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{2}\right)-2\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}\right)\right] \\
& \leq(1-v) Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \otimes 1+v P_{n} 1 \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}\right)-\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) \\
& \leq \frac{M}{2 m^{2}} v(1-v)\left[Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}^{2}\right) \otimes 1+P_{n} 1 \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{2}\right)-2\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}\right)\right] \\
& \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2} P_{n} Q_{k}
\end{aligned}
$$

and

$$
\begin{align*}
0 & \leq(1-v) Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \otimes 1+v P_{n} 1 \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}\right)-\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) \tag{3.2}\\
& \leq M v(1-v) \times\left[\frac{\left(\sum_{i=1}^{n} p_{i} A^{-1}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B\right)+\left(\sum_{i=1}^{n} p_{i} A\right) \otimes\left(\sum_{j=1}^{k} q_{j} B^{-1}\right)}{2}-P_{n} Q_{k}\right] .
\end{align*}
$$

Proof. From (2.9) we get

$$
\begin{aligned}
0 & \leq \frac{m}{2 M^{2}} v(1-v)\left(A_{i}^{2} \otimes 1+1 \otimes B_{j}^{2}-2 A_{i} \otimes B_{j}\right) \\
& \leq(1-v) A_{i} \otimes 1+v 1 \otimes B_{j}-A_{i}^{1-v} \otimes B_{j}^{v} \\
& \leq \frac{M}{2 m^{2}} v(1-v)\left(A_{i}^{2} \otimes 1+1 \otimes B_{j}^{2}-2 A_{i} \otimes B_{j}\right) \\
& \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2}
\end{aligned}
$$

for all for $i \in\{1, \ldots, n\}, j \in\{1, \ldots, k\}$ and $v \in[0,1]$.
If we multiply by $p_{i} q_{j} \geq 0$ and sum, then we get

$$
\begin{align*}
0 & \leq \frac{m}{2 M^{2}} v(1-v) \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i}\left(A_{i}^{2} \otimes 1+1 \otimes B_{j}^{2}-2 A_{i} \otimes B_{j}\right) \tag{3.3}\\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i}\left[(1-v) A_{i} \otimes 1+v 1 \otimes B_{j}-A_{i}^{1-v} \otimes B_{j}^{v}\right] \\
& \leq \frac{M}{2 m^{2}} v(1-v) \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i}\left(A_{i}^{2} \otimes 1+1 \otimes B_{j}^{2}-2 A_{i} \otimes B_{j}\right) \\
& \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} .
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i}\left(A_{i}^{2} \otimes 1+1 \otimes B_{j}^{2}-2 A_{i} \otimes B_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i}^{2} \otimes 1+\sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} 1 \otimes B_{j}^{2}-2 \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i} \otimes B_{j} \\
& =Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}^{2}\right) \otimes 1+P_{n} 1 \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{2}\right)-2\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i}\left[(1-v) A_{i} \otimes 1+v 1 \otimes B_{j}-A_{i}^{1-v} \otimes B_{j}^{v}\right]= & (1-v) \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i} \otimes 1+v \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} 1 \otimes B_{j} \\
& -\sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i}^{1-v} \otimes B_{j}^{v} \\
= & (1-v) Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \otimes 1+v P_{n} 1 \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}\right) \\
& -\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right)
\end{aligned}
$$

By (3.3) we then get the desired result (3.1).
The inequality (3.2) follows in a similar way from (2.18).

Corollary 3.2. With the assumptions of Proposition 3.1, we have the Hadamard product inequalities

$$
\begin{align*}
0 & \leq \frac{m}{2 M^{2}} v(1-v)\left[\left(Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}^{2}\right)+P_{n}\left(\sum_{j=1}^{k} q_{j} B_{j}^{2}\right)\right) \circ 1-2\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}\right)\right] \tag{3.4}\\
& \leq\left[(1-v) Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}\right)+v P_{n}\left(\sum_{j=1}^{k} q_{j} B_{j}\right)\right] \circ 1-\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) \\
& \leq \frac{M}{2 m^{2}} v(1-v)\left[\left(Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}^{2}\right)+P_{n}\left(\sum_{j=1}^{k} q_{j} B_{j}^{2}\right)\right) \circ 1-2\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}\right)\right] \\
& \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2} P_{n} Q_{k}
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq\left[(1-v) Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}\right)+v P_{n}\left(\sum_{j=1}^{k} q_{j} B_{j}\right)\right] \circ 1-\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) \tag{3.5}\\
& \leq M v(1-v) \times\left[\frac{\left(\sum_{i=1}^{n} p_{i} A^{-1}\right) \circ\left(\sum_{j=1}^{k} q_{j} B\right)+\left(\sum_{i=1}^{n} p_{i} A\right) \circ\left(\sum_{j=1}^{k} q_{j} B^{-1}\right)}{2}-P_{n} Q_{k}\right] .
\end{align*}
$$

If we take $k=n, p_{i}=q_{i}$ and $B_{i}=A_{i}$, then we get the simpler inequalities

$$
\begin{align*}
0 & \leq \frac{m}{M^{2}} v(1-v) \times\left[P_{n}\left(\sum_{i=1}^{n} p_{i} A_{i}^{2}\right) \circ 1-\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right] \tag{3.6}\\
& \leq P_{n}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ 1-\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{i=1}^{n} p_{i} A_{i}^{v}\right) \\
& \leq \frac{M}{2 m^{2}} v(1-v) \times\left[P_{n}\left(\sum_{i=1}^{n} p_{i} A_{i}^{2}\right) \circ 1-\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ\left(\sum_{i=1}^{n} p_{i} A_{i}\right)\right] \\
& \leq \frac{M}{2 m^{2}} v(1-v)(M-m)^{2} P_{n}^{2}
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq P_{n}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ 1-\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{i=1}^{n} p_{i} A_{i}^{v}\right) \tag{3.7}\\
& \leq M v(1-v)\left[\left(\sum_{i=1}^{n} p_{i} A^{-1}\right) \circ\left(\sum_{i=1}^{n} p_{i} A\right)-P_{n}^{2}\right],
\end{align*}
$$

for all $v \in[0,1]$, provided that $0<m \leq A_{i} \leq M$ and $p_{i} \geq 0$ for $i \in\{1, \ldots, n\}$.
We also have the multiplicative inequalities:
Proposition 3.3. With the assumptions of Proposition 3.3,

$$
\begin{align*}
\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) & \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{M}\right)^{2}\right]\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) \tag{3.8}\\
& \leq(1-v) Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \otimes 1+v P_{n} 1 \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}\right) \\
& \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{m}\right)^{2}\right]\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \otimes\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right)
\end{align*}
$$

and

$$
\begin{align*}
\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) & \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{M}\right)^{2}\right]\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) \tag{3.9}\\
& \leq(1-v) Q_{k}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ 1+v P_{n} 1 \circ\left(\sum_{j=1}^{k} q_{j} B_{j}\right) \\
& \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{m}\right)^{2}\right]\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right)
\end{align*}
$$

for all $v \in[0,1]$.

If we take $k=n, p_{i}=q_{i}$ and $B_{i}=A_{i}$ in (3.9), then we get the simpler inequalities

$$
\begin{align*}
\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{i=1}^{n} p_{i} A_{i}^{v}\right) & \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{M}\right)^{2}\right]\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{j=1}^{k} q_{j} B_{j}^{v}\right) \tag{3.10}\\
& \leq P_{n}\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \circ 1 \\
& \leq \exp \left[\frac{1}{2} v(1-v)\left(\frac{M-m}{m}\right)^{2}\right]\left(\sum_{i=1}^{n} p_{i} A_{i}^{1-v}\right) \circ\left(\sum_{i=1}^{n} p_{i} A_{i}^{v}\right)
\end{align*}
$$

for all $v \in[0,1]$, provided that $0<m \leq A_{i} \leq M$ and $p_{i} \geq 0$ for $i \in\{1, \ldots, n\}$.

4. Conclusion

In this paper, by utilizing some recent refinements and reverses of scalar Young's inequality, we provided some upper and lower bounds for the Young differences

$$
(1-v) A \otimes 1+v 1 \otimes B-A^{1-v} \otimes B^{v}
$$

and

$$
[(1-v) A+v B] \circ 1-A^{1-v} \circ B^{v}
$$

for $v \in[0,1]$ and $A, B>0$. The case of weighted sums for sequences of operators were also investigated.

Article Information

Acknowledgements: The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: The article has a single author. The author has read and approved the final manuscript.
Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Author own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

References

${ }^{[1]}$ W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
${ }^{[2]}$ M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
${ }^{[3]}$ S. Furuichi, Refined Young inequalities with Specht's ratio, Journal of the Egyptian Mathematical Society, 20(2012), 46-49.
${ }^{[4]}$ F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361 (2010), 262-269.
${ }^{\text {[5] F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., } 59 \text { (2011), }}$ 1031-1037.
${ }^{[6]}$ G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.
[7] W. Liao, J. Wu, J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19(2) (2015), 467-479.
${ }^{\text {[8] }}$ S. S. Dragomir, A note on Young's inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(2) (2017), 349-354. Preprint RGMIA Res. Rep. Coll., 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
${ }^{[9]}$ S. S. Dragomir, A note on new refinements and reverses of Young's inequality, Transyl. J. Math. Mec. 8(1) (2016), 45-49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. [https://rgmia.org/papers/v18/v18a131.pdf].
${ }^{[10]}$ H. Alzer, C. M. da Fonseca, A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63(3) (2015), 622-635.
${ }^{[11]}$ S. Furuichi, N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal., 5(4) (2011), 595-600.
${ }^{[12]}$ H. Araki, F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128(7) (2000), 2075-2084.
${ }^{[13]}$ A. Korányi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101 (1961), 520-554.
${ }^{[14]}$ T. Furuta, J. Mićić Hot, J. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
${ }^{[15]}$ S. Wada, On some refinement of the Cauchy-Schwarz inequality, Lin. Alg. \& Appl., 420 (2007), 433-440.
${ }^{[16]}$ J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators, Math. Jpn., 41(1995), 531-535.
${ }^{[17]}$ T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. \& Appl., 26 (1979), 203-241.
${ }^{[18]}$ J. S. Aujila, H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon., 42 (1995), 265-272.
${ }^{[19]}$ K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, Scient. Math., 1(2) (1998), 237-241.

[^0]: ${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.
 ${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa, ORCID: 0000-0003-2902-6805
 sever.dragomir@vu.edu.au, http://rgmia.org/dragomir
 Received: 19-09-2023, Accepted: 19-02-2024, Available online: 04-03-2024
 How to cite this article: S. S. Dragomir, Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result, Commun. Adv. Math. Sci., 7(1) (2024) 56-70.

