

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result

Silvestru Sever Dragomir^{1,2}

Abstract

Let *H* be a Hilbert space. In this paper we show among others that, if the selfadjoint operators *A* and *B* satisfy the condition $0 < m \le A$, $B \le M$, for some constants *m*, *M*, then

$$0 \le \frac{m}{M^2} v (1 - v) \left(\frac{A^2 \otimes 1 + 1 \otimes B^2}{2} - A \otimes B \right)$$

$$\le (1 - v) A \otimes 1 + v 1 \otimes B - A^{1 - v} \otimes B^v$$

$$\le \frac{M}{m^2} v (1 - v) \left(\frac{A^2 \otimes 1 + 1 \otimes B^2}{2} - A \otimes B \right)$$

for all $v \in [0,1]$. We also have the inequalities for Hadamard product

$$0 \le \frac{m}{M^2} v (1-v) \left(\frac{A^2 + B^2}{2} \circ 1 - A \circ B \right)$$
$$\le \left[(1-v)A + vB \right] \circ 1 - A^{1-v} \circ B^v$$
$$\le \frac{M}{m^2} v (1-v) \left(\frac{A^2 + B^2}{2} \circ 1 - A \circ B \right)$$

for all $v \in [0, 1]$.

Keywords: Tensorial product, Hadamard product, Selfadjoint operators, Convex functions **2010 AMS:** Primary 47A63, Secondary 47A99

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

²DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa, ORCID: 0000-0003-2902-6805

sever.dragomir@vu.edu.au, http://rgmia.org/dragomir

Received: 19-09-2023, Accepted: 19-02-2024, Available online: 04-03-2024

How to cite this article: S. S. Dragomir, Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result, Commun. Adv. Math. Sci., 7(1) (2024) 56-70.

1. Introduction

The famous *Young inequality* for scalars says that if a, b > 0 and $v \in [0, 1]$, then

$$a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b \tag{1.1}$$

with equality if and only if a = b. The inequality (1.1) is also called *v*-weighted arithmetic-geometric mean inequality. We recall that *Specht's ratio* is defined by [1]

$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty) \\ 1 & \text{if } h = 1. \end{cases}$$
(1.2)

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0,1) and increasing on $(1,\infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's inequality

$$S\left(\left(\frac{a}{b}\right)^r\right)a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b \le S\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu},\tag{1.3}$$

where $a, b > 0, v \in [0, 1], r = \min\{1 - v, v\}.$

The second inequality in (1.3) is due to Tominaga [2] while the first one is due to Furuichi [3].

Kittaneh and Manasrah [4, 5] provided a refinement and an additive reverse for Young inequality as follows:

$$r\left(\sqrt{a}-\sqrt{b}\right)^2 \le (1-v)a+vb-a^{1-v}b^v \le R\left(\sqrt{a}-\sqrt{b}\right)^2 \tag{1.4}$$

where $a, b > 0, v \in [0, 1], r = \min\{1 - v, v\}$ and $R = \max\{1 - v, v\}$.

We also consider the Kantorovich's ratio defined by

$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0.$$
(1.5)

The function *K* is decreasing on (0,1) and increasing on $[1,\infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K(\frac{1}{h})$ for any h > 0.

$$K^{r}\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu} \leq (1-\nu)a + \nu b \leq K^{R}\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu}$$
(1.6)

where $a, b > 0, v \in [0, 1], r = \min\{1 - v, v\}$ and $R = \max\{1 - v, v\}$.

The first inequality in (1.6) was obtained by Zou et al. in [6] while the second by Liao et al. [7].

In [6] the authors also showed that $K^r(h) \ge S(h^r)$ for h > 0 and $r \in [0, \frac{1}{2}]$ implying that the lower bound in (1.6) is better than the lower bound from (1.3).

In the recent paper [8] we obtained the following reverses of Young's inequality as well:

$$0 \le (1 - \nu)a + \nu b - a^{1 - \nu}b^{\nu} \le \nu (1 - \nu)(a - b)(\ln a - \ln b)$$
(1.7)

and

$$1 \le \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}} \le \exp\left[4\nu\left(1-\nu\right)\left(K\left(\frac{a}{b}\right)-1\right)\right],\tag{1.8}$$

where $a, b > 0, v \in [0, 1]$.

In [9], we obtained the following Young related inequalities:

Theorem 1.1. For any a, b > 0 and $v \in [0, 1]$ we have

$$\frac{1}{2} \nu (1 - \nu) (\ln a - \ln b)^2 \min\{a, b\} \le (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu}$$

$$\le \frac{1}{2} \nu (1 - \nu) (\ln a - \ln b)^2 \max\{a, b\}$$
(1.9)

and

$$\exp\left[\frac{1}{2}\nu(1-\nu)\frac{(b-a)^{2}}{\max^{2}\{a,b\}}\right] \leq \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}}$$

$$\leq \exp\left[\frac{1}{2}\nu(1-\nu)\frac{(b-a)^{2}}{\min^{2}\{a,b\}}\right].$$
(1.10)

For an equivalent form and a different approach in proving the results (1.9) and (1.10) see [10].

The second inequalities in (1.9) and (1.10) are better than the corresponding results obtained by Furuichi and Minculete in [11] where instead of constant $\frac{1}{2}$ they had the constant 1. Let $I_1, ..., I_k$ be intervals from \mathbb{R} and let $f : I_1 \times ... \times I_k \to \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A = (A_1, ..., A_n)$ be a *k*-tuple of bounded selfadjoint operators on Hilbert spaces $H_1, ..., H_k$ such that the spectrum of A_i is contained in I_i for i = 1, ..., k. We say that such a *k*-tuple is in the domain of f. If

$$A_i = \int_{I_i} \lambda_i dE_i(\lambda_i)$$

is the spectral resolution of A_i for i = 1, ..., k; by following [12], we define

$$f(A_1,...,A_k) := \int_{I_1} \dots \int_{I_k} f(\lambda_1,...,\lambda_k) dE_1(\lambda_1) \otimes \dots \otimes dE_k(\lambda_k)$$

$$(1.11)$$

as a bounded selfadjoint operator on the tensorial product $H_1 \otimes ... \otimes H_k$.

If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional calculus for arbitrary real functions. This construction [12] extends the definition of Korányi [13] for functions of two variables and have the property that

$$f(A_1,...,A_k) = f_1(A_1) \otimes ... \otimes f_k(A_k)$$

whenever *f* can be separated as a product $f(t_1,...,t_k) = f_1(t_1)...f_k(t_k)$ of *k* functions each depending on only one variable. It is know that, *if f is super-multiplicative (sub-multiplicative)* on $[0,\infty)$, namely

$$f(st) \ge (\le) f(s) f(t)$$
 for all $s, t \in [0, \infty)$

and if f is continuous on $[0,\infty)$, then [14, p. 173]

$$f(A \otimes B) \ge (\le) f(A) \otimes f(B) \text{ for all } A, B \ge 0.$$
(1.12)

This follows by observing that, if

$$A = \int_{[0,\infty)} t dE(t)$$
 and $B = \int_{[0,\infty)} s dF(s)$

are the spectral resolutions of A and B, then

$$f(A \otimes B) = \int_{[0,\infty)} \int_{[0,\infty)} f(st) dE(t) \otimes dF(s)$$
(1.13)

for the continuous function f on $[0,\infty)$.

Recall the geometric operator mean for the positive operators A, B > 0

$$A #_t B := A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2},$$

where $t \in [0, 1]$ and

$$A # B := A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$$

By the definitions of # and \otimes we have

$$A # B = B # A$$
 and $(A # B) \otimes (B # A) = (A \otimes B) # (B \otimes A)$.

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result — 59/70

In 2007, Wada [15] obtained the following Callebaut type inequalities for tensorial product

$$(A\#B) \otimes (A\#B) \leq \frac{1}{2} \left[(A\#_{\alpha}B) \otimes (A\#_{1-\alpha}B) + (A\#_{1-\alpha}B) \otimes (A\#_{\alpha}B) \right]$$

$$\leq \frac{1}{2} \left(A \otimes B + B \otimes A \right)$$
(1.14)

for A, B > 0 and $\alpha \in [0, 1]$.

Recall that the *Hadamard product* of A and B in B(H) is defined to be the operator $A \circ B \in B(H)$ satisfying

$$\langle (A \circ B) e_j, e_j \rangle = \langle A e_j, e_j \rangle \langle B e_j, e_j \rangle$$

for all $j \in \mathbb{N}$, where $\{e_j\}_{j \in \mathbb{N}}$ is an *orthonormal basis* for the separable Hilbert space *H*. It is known that, see [16], we have the representation

$$A \circ B = \mathscr{U}^* (A \otimes B) \mathscr{U}$$
(1.15)

where $\mathscr{U}: H \to H \otimes H$ is the isometry defined by $\mathscr{U}e_j = e_j \otimes e_j$ for all $j \in \mathbb{N}$.

If *f* is super-multiplicative (sub-multiplicative) on $[0,\infty)$, then also [14, p. 173]

 $f(A \circ B) \ge (\le) f(A) \circ f(B) \text{ for all } A, B \ge 0.$ (1.16)

We recall the following elementary inequalities for the Hadamard product

$$A^{1/2} \circ B^{1/2} \le \left(\frac{A+B}{2}\right) \circ 1 \text{ for } A, B \ge 0$$

and Fiedler inequality

$$A \circ A^{-1} \ge 1 \text{ for } A > 0.$$
 (1.17)

As extension of Kadison's Schwarz inequality on the Hadamard product, Ando [17] showed that

$$A \circ B \le (A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2}$$
 for $A, B \ge 0$

and Aujla and Vasudeva [18] gave an alternative upper bound

$$A \circ B \leq \left(A^2 \circ B^2\right)^{1/2}$$
 for $A, B \geq 0$.

It has been shown in [19] that $(A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2}$ and $(A^2 \circ B^2)^{1/2}$ are incomparable for 2-square positive definite matrices *A* and *B*.

Motivated by these results, in this paper we provide among others some upper and lower bounds for the Young differences

$$(1-\mathbf{v})A\otimes 1+\mathbf{v}1\otimes B-A^{1-\mathbf{v}}\otimes B^{\mathbf{v}}$$

and

$$[(1-\nu)A+\nu B]\circ 1-A^{1-\nu}\circ B^{\nu}$$

for $v \in [0, 1]$ and A, B > 0.

2. Main Results

The first main result is as follows:

Theorem 2.1. Assume that the selfadjoint operators A and B satisfy the condition $0 < m \le A$, $B \le M$, then

$$0 \leq \frac{1}{2} m \nu (1 - \nu) \left[\left(\ln^2 A \right) \otimes 1 + 1 \otimes \left(\ln^2 B \right) - 2 \ln A \otimes \ln B \right]$$

$$\leq (1 - \nu) A \otimes 1 + \nu 1 \otimes B - A^{1 - \nu} \otimes B^{\nu}$$

$$\leq \frac{1}{2} M \nu (1 - \nu) \left[\left(\ln^2 A \right) \otimes 1 + 1 \otimes \left(\ln^2 B \right) - 2 \ln A \otimes \ln B \right]$$

$$\leq \frac{1}{2} \nu (1 - \nu) M (\ln M - \ln m)^2$$
(2.1)

for all $v \in [0,1]$. In particular,

$$0 \leq \frac{1}{8}m\left[\left(\ln^{2}A\right) \otimes 1 + 1 \otimes \left(\ln^{2}B\right) - 2\ln A \otimes \ln B\right]$$

$$\leq \frac{A \otimes 1 + 1 \otimes B}{2} - A^{1/2} \otimes B^{1/2}$$

$$\leq \frac{1}{8}M\left[\left(\ln^{2}A\right) \otimes 1 + 1 \otimes \left(\ln^{2}B\right) - 2\ln A \otimes \ln B\right]$$

$$\leq \frac{1}{8}M\left(\ln M - \ln m\right)^{2}.$$
(2.2)

Proof. If $t, s \in [m, M] \subset (0, \infty)$, then by (1.9) we get

$$0 \leq \frac{1}{2}mv(1-v)(\ln t - \ln s)^{2} \leq (1-v)t + vs - t^{1-v}s^{v}$$

$$\leq \frac{1}{2}Mv(1-v)(\ln t - \ln s)^{2}$$

$$\leq \frac{1}{2}Mv(1-v)(\ln M - \ln m)^{2}.$$
(2.3)

If

$$A = \int_{m}^{M} t dE(t)$$
 and $B = \int_{m}^{M} s dF(s)$

are the spectral resolutions of A and B, then by taking in (2.3) the double integral $\int_{m}^{M} \int_{m}^{M} \text{over } dE(t) \otimes dF(s)$, we get

$$0 \leq \frac{1}{2}mv(1-v)\int_{m}^{M}\int_{m}^{M}(\ln t - \ln s)^{2}dE(t)\otimes dF(s)$$

$$\leq \int_{m}^{M}\int_{m}^{M}\left[(1-v)t + vs - t^{1-v}s^{v}\right]dE(t)\otimes dF(s)$$

$$\leq \frac{1}{2}Mv(1-v)\int_{m}^{M}\int_{m}^{M}(\ln t - \ln s)^{2}dE(t)\otimes dF(s)$$

$$\leq \frac{1}{8}M(\ln M - \ln m)^{2}\int_{m}^{M}\int_{m}^{M}dE(t)\otimes dF(s).$$
(2.4)

Now, observe that, by (1.11)

$$\int_{m}^{M} \int_{m}^{M} (\ln t - \ln s)^{2} dE(t) \otimes dF(s) = \int_{m}^{M} \int_{m}^{M} (\ln^{2} t - 2\ln t \ln s + \ln^{2} s) dE(t) \otimes dF(s)$$

$$= \int_{m}^{M} \int_{m}^{M} \ln^{2} t dE(t) \otimes dF(s) + \int_{m}^{M} \int_{m}^{M} \ln^{2} s dE(t) \otimes dF(s)$$

$$- 2 \int_{m}^{M} \int_{m}^{M} \ln t \ln s dE(t) \otimes dF(s)$$

$$= (\ln^{2} A) \otimes 1 + 1 \otimes (\ln^{2} B) - 2\ln A \otimes \ln B,$$

$$\int_{m}^{M} \int_{m}^{M} \left[(1-v)t + vs - t^{1-v}s^{v} \right] dE(t) \otimes dF(s) = (1-v) \int_{m}^{M} \int_{m}^{M} t dE(t) \otimes dF(s) + v \int_{m}^{M} \int_{m}^{M} s dE(t) \otimes dF(s) - \int_{m}^{M} \int_{m}^{M} t^{1-v}s^{v} dE(t) \otimes dF(s) = (1-v)A \otimes 1 + v1 \otimes B - A^{1-v} \otimes B^{v}$$

and

$$\int_{m}^{M}\int_{m}^{M}dE\left(t\right)\otimes dF\left(s\right)=1\otimes1=1.$$

By employing (2.4), we then get the desired result (2.1).

Corollary 2.2. With the assumptions of Theorem 2.1,

$$0 \leq \frac{1}{2}mv(1-v) \left[\left(\ln^2 A + \ln^2 B \right) \circ 1 - 2\ln A \circ \ln B \right]$$

$$\leq \left[(1-v)A + vB \right] \circ 1 - A^{1-v} \circ B^{v}$$

$$\leq \frac{1}{2}Mv(1-v) \left[\left(\ln^2 A + \ln^2 B \right) \circ 1 - 2\ln A \circ \ln B \right]$$

$$\leq \frac{1}{2}v(1-v)M(\ln M - \ln m)^2$$
(2.5)

for all $v \in [0,1]$. In particular,

$$0 \leq \frac{1}{8}m \left[\left(\ln^2 A + \ln^2 B \right) \circ 1 - 2\ln A \circ \ln B \right]$$

$$\leq \frac{A+B}{2} \circ 1 - A^{1/2} \circ B^{1/2}$$

$$\leq \frac{1}{8}M \left[\left(\ln^2 A + \ln^2 B \right) \circ 1 - 2\ln A \circ \ln B \right]$$

$$\leq \frac{1}{8}M \left(\ln M - \ln m \right)^2.$$
(2.6)

Proof. The proof follows from Theorem 2.1 by taking to the left \mathscr{U}^* , to the right \mathscr{U} , where $\mathscr{U}: H \to H \otimes H$ is the isometry defined by $\mathscr{U}e_j = e_j \otimes e_j$ for all $j \in \mathbb{N}$ and utilizing the representation (1.15).

Remark 2.3. If we take B = A in Corollary 2.2, then we get

$$0 \le mv (1-v) \left[\left(\ln^2 A \right) \circ 1 - \ln A \circ \ln A \right] \le A \circ 1 - A^{1-v} \circ A^{v}$$

$$\le Mv (1-v) \left[\left(\ln^2 A \right) \circ 1 - \ln A \circ \ln A \right]$$

$$\le \frac{1}{2} v (1-v) M (\ln M - \ln m)^2$$

$$(2.7)$$

for all $v \in [0,1]$. In particular,

$$0 \leq \frac{1}{4}m\left[\left(\ln^{2}A\right) \circ 1 - \ln A \circ \ln A\right] \leq A \circ 1 - A^{1/2} \circ A^{1/2}$$

$$\leq \frac{1}{4}M\left[\left(\ln^{2}A\right) \circ 1 - \ln A \circ \ln A\right] \leq \frac{1}{8}M\left(\ln M - \ln m\right)^{2}.$$
(2.8)

Theorem 2.4. With the assumptions of Theorem 2.1, we have

$$0 \leq \frac{m}{2M^2} v (1-v) \left(A^2 \otimes 1 + 1 \otimes B^2 - 2A \otimes B \right)$$

$$\leq (1-v)A \otimes 1 + v1 \otimes B - A^{1-v} \otimes B^v$$

$$\leq \frac{M}{2m^2} v (1-v) \left(A^2 \otimes 1 + 1 \otimes B^2 - 2A \otimes B \right) \leq \frac{M}{2m^2} v (1-v) (M-m)^2$$
(2.9)

for all $v \in [0,1]$. In particular,

$$0 \leq \frac{m}{8M^2} \left(A^2 \otimes 1 + 1 \otimes B^2 - 2A \otimes B \right)$$

$$\leq \frac{A \otimes 1 + 1 \otimes B}{2} - A^{1/2} \otimes B^{1/2}$$

$$\leq \frac{M}{8m^2} \left(A^2 \otimes 1 + 1 \otimes B^2 - 2A \otimes B \right) \leq \frac{M}{8m^2} \left(M - m \right)^2.$$
(2.10)

Proof. We observe that

$$0<\frac{1}{\max\left\{a,b\right\}}\leq\frac{\ln a-\ln b}{a-b}\leq\frac{1}{\min\left\{a,b\right\}},$$

which implies that

$$0 < \frac{1}{\max^2 \{a, b\}} \le \left(\frac{\ln a - \ln b}{a - b}\right)^2 \le \frac{1}{\min^2 \{a, b\}}$$

for all a, b > 0.

By making use of (1.9), we derive

$$\frac{1}{2}\nu(1-\nu)(b-a)^{2}\frac{\min\{a,b\}}{\max^{2}\{a,b\}}$$

$$\leq \frac{1}{2}\nu(1-\nu)(\ln a - \ln b)^{2}\min\{a,b\} \leq (1-\nu)a + \nu b - a^{1-\nu}b^{\nu}$$

$$\leq \frac{1}{2}\nu(1-\nu)(b-a)^{2}\frac{\max\{a,b\}}{\min^{2}\{a,b\}}.$$
(2.11)

If $t, s \in [m, M] \subset (0, \infty)$, then by (2.11) we get

$$0 \le \frac{m}{2M^2} v (1-v) (t-s)^2 \le (1-v) t + vs - t^{1-v} s^v$$

$$\le \frac{M}{2m^2} v (1-v) (t-s)^2.$$
(2.12)

If

$$A = \int_{m}^{M} t dE(t) \text{ and } B = \int_{m}^{M} s dF(s)$$

are the spectral resolutions of A and B, then by taking in (2.12) the double integral $\int_{m}^{M} \int_{m}^{M} \operatorname{over} dE(t) \otimes dF(s)$, we get

$$0 \leq \frac{m}{2M^{2}} v (1-v) \int_{m}^{M} \int_{m}^{M} (t-s)^{2} E(t) \otimes dF(s)$$

$$\leq \int_{m}^{M} \int_{m}^{M} \left[(1-v)t + vs - t^{1-v}s^{v} \right] E(t) \otimes dF(s)$$

$$\leq \frac{M}{2m^{2}} v (1-v) \int_{m}^{M} \int_{m}^{M} (t-s)^{2} E(t) \otimes dF(s) .$$
(2.13)

Since, by (1.11)

$$\begin{split} \int_{m}^{M} \int_{m}^{M} (t-s)^{2} E(t) \otimes dF(s) &= \int_{m}^{M} \int_{m}^{M} \left(t^{2} - 2ts + s^{2}\right) E(t) \otimes dF(s) \\ &= \int_{m}^{M} \int_{m}^{M} t^{2} E(t) \otimes dF(s) + \int_{m}^{M} \int_{m}^{M} s^{2} E(t) \otimes dF(s) - \int_{m}^{M} \int_{m}^{M} 2ts E(t) \otimes dF(s) \\ &= A^{2} \otimes 1 + 1 \otimes B^{2} - 2A \otimes B, \end{split}$$

then by (2.13) we derive the first part of (2.9).

The last part follows by the fact that

$$(t-s)^2 \le (M-m)^2$$

for all $t, s \in [m, M]$.

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result — 63/70

Corollary 2.5. With the assumptions of Theorem 2.1, we have the following inequalities for the Hadamard product

$$0 \le \frac{m}{M^2} v (1 - v) \left(\frac{A^2 + B^2}{2} \circ 1 - A \circ B \right)$$

$$\le [(1 - v)A + vB] \circ 1 - A^{1 - v} \circ B^v$$

$$\le \frac{M}{m^2} v (1 - v) \left(\frac{A^2 + B^2}{2} \circ 1 - A \circ B \right) \le \frac{M}{2m^2} v (1 - v) (M - m)^2$$
(2.14)

for all $v \in [0,1]$.

In particular,

$$0 \le \frac{m}{4M^2} \left(\frac{A^2 + B^2}{2} \circ 1 - A \circ B \right) \le \frac{A + B}{2} \circ 1 - A^{1/2} \circ B^{1/2}$$

$$\le \frac{M}{4m^2} \left(\frac{A^2 + B^2}{2} \circ 1 - A \circ B \right) \le \frac{M}{8m^2} (M - m)^2.$$
(2.15)

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.4 and we omit the details.

Remark 2.6. If we take B = A in Corollary 2.5, then we get

$$0 \le \frac{m}{M^2} v (1 - v) \left(A^2 \circ 1 - A \circ A \right) \le A - A^{1 - v} \circ A^v$$

$$\le \frac{M}{m^2} v (1 - v) \left(A^2 \circ 1 - A \circ A \right) \le \frac{M}{2m^2} v (1 - v) \left(M - m \right)^2$$
(2.16)

for all $v \in [0,1]$.

In particular,

$$0 \le \frac{m}{4M^2} \left(A^2 \circ 1 - A \circ A \right) \le A \circ 1 - A^{1/2} \circ A^{1/2}$$

$$\le \frac{M}{4m^2} \left(A^2 \circ 1 - A \circ A \right) \le \frac{M}{8m^2} \left(M - m \right)^2.$$
(2.17)

Further, we also have:

Theorem 2.7. Assume that the selfadjoint operators A and B satisfy the condition $0 < A, B \le M$, then

$$0 \le (1-\nu)A \otimes 1 + \nu 1 \otimes B - A^{1-\nu} \otimes B^{\nu}$$

$$\le M\nu (1-\nu) \left(\frac{A^{-1} \otimes B + A \otimes B^{-1}}{2} - 1\right)$$

$$(2.18)$$

for all $v \in [0,1]$.

In particular,

$$0 \le \frac{A \otimes 1 + 1 \otimes B}{2} - A^{1/2} \otimes B^{1/2} \le \frac{1}{4} M \left(\frac{A^{-1} \otimes B + A \otimes B^{-1}}{2} - 1 \right).$$
(2.19)

Proof. Recall that if a, b > 0 and

$$L(a,b) := \begin{cases} \frac{b-a}{\ln b - \ln a} \text{ if } a \neq b, \\ b \text{ if } a = b \end{cases}$$

is the *logarithmic mean* and $G(a,b) := \sqrt{ab}$ is the *geometric mean*, then $L(a,b) \ge G(a,b)$ for all a, b > 0. Then from (1.9) we have for $a \ne b$ that

$$(1-v)a+vb-a^{1-v}b^{v} \leq \frac{1}{2}v(1-v)(\ln a - \ln b)^{2}\max\{a,b\}$$

= $\frac{1}{2}v(1-v)(b-a)^{2}\left(\frac{\ln a - \ln b}{b-a}\right)^{2}\max\{a,b\}$
 $\leq \frac{1}{2}v(1-v)\frac{(b-a)^{2}}{ab}\max\{a,b\}$
= $\frac{1}{2}v(1-v)\left(\frac{b}{a}+\frac{a}{b}-2\right)\max\{a,b\},$

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result — 64/70

which implies that

$$(1-v)a + vb - a^{1-v}b^{v} \le \frac{1}{2}v(1-v)\left(\frac{b}{a} + \frac{a}{b} - 2\right)\max\{a, b\}$$
(2.20)

for all a, b > 0.

If $t, s \in [m, M] \subset (0, \infty)$, then by (2.20) we get

$$(1-v)t + vs - t^{1-v}s^{v} \le \frac{1}{2}v(1-v)\left(\frac{s}{t} + \frac{t}{s} - 2\right)\max\{t,s\}$$

$$\le \frac{1}{2}Mv(1-v)\left(\frac{s}{t} + \frac{t}{s} - 2\right).$$
(2.21)

By taking in (2.21) the double integral $\int_{m}^{M} \int_{m}^{M} \operatorname{over} dE(t) \otimes dF(s)$, we get

$$\int_{m}^{M} \int_{m}^{M} \left[(1-v)t + vs - t^{1-v}s^{v} \right] dE(t) \otimes dF(s) \le \frac{1}{2} Mv(1-v) \int_{m}^{M} \int_{m}^{M} \left(\frac{s}{t} + \frac{t}{s} - 2 \right) dE(t) \otimes dF(s).$$
(2.22)

Since

$$\int_{m}^{M} \int_{m}^{M} \left(\frac{s}{t} + \frac{t}{s} - 2\right) dE\left(t\right) \otimes dF\left(s\right) = \int_{m}^{M} \int_{m}^{M} t^{-1} sE\left(t\right) \otimes dF\left(s\right) + \int_{m}^{M} \int_{m}^{M} ts^{-1} dE\left(t\right) \otimes dF\left(s\right) \\ - \int_{m}^{M} \int_{m}^{M} dE\left(t\right) \otimes dF\left(s\right) \\ = A^{-1} \otimes B + A \otimes B^{-1} - 2,$$

hence by (2.22) we derive (2.18).

Corollary 2.8. With the assumptions of Theorem 2.7, we have the inequalities for the Hadamard product

$$0 \le [(1 - v)A + vB] \circ 1 - A^{1 - v} \circ B^{v}$$

$$\le Mv (1 - v) \left(\frac{A^{-1} \circ B + A \circ B^{-1}}{2} - 1\right)$$
(2.23)

for all $v \in [0, 1]$.

In particular,

$$0 \le \frac{A+B}{2} \circ 1 - A^{1/2} \circ B^{1/2} \le \frac{1}{4} M\left(\frac{A^{-1} \circ B + A \circ B^{-1}}{2} - 1\right).$$
(2.24)

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.7.

We observe that, if we take B = A in Corollary 2.8, then we get

$$0 \le A \circ 1 - A^{1-\nu} \circ A^{\nu} \le M\nu (1-\nu) \left(A^{-1} \circ A - 1 \right)$$
(2.25)

for all $v \in [0,1]$.

In particular,

$$0 \le A \circ 1 - A^{1/2} \circ A^{1/2} \le \frac{1}{8} M \left(A^{-1} \circ A - 1 \right).$$
(2.26)

We also have the following multiplicative results:

Theorem 2.9. Assume that the selfadjoint operators A and B satisfy the condition $0 < m \le A$, $B \le M$, then

$$A^{1-\nu} \otimes B^{\nu} \leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{M}\right)^{2}\right]A^{1-\nu} \otimes B^{\nu}$$

$$\leq (1-\nu)A \otimes 1+\nu 1 \otimes B$$

$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{m}\right)^{2}\right]A^{1-\nu} \otimes B^{\nu}$$
(2.27)

for all $v \in [0,1]$. In particular,

$$A^{1-\nu} \otimes B^{\nu} \leq \exp\left[\frac{1}{8}\left(\frac{M-m}{M}\right)^{2}\right] A^{1/2} \otimes B^{1/2}$$

$$\leq \frac{A \otimes 1 + 1 \otimes B}{2}$$

$$\leq \exp\left[\frac{1}{8}\left(\frac{M-m}{m}\right)^{2}\right] A^{1/2} \otimes B^{1/2}.$$
(2.28)

Proof. Since

$$\frac{(b-a)^2}{\max^2\{a,b\}} = \left(\frac{\max\{a,b\} - \min\{a,b\}}{\max\{a,b\}}\right)^2 = \left(1 - \frac{\min\{a,b\}}{\max\{a,b\}}\right)^2$$

and

$$\frac{(b-a)^2}{\min^2\{a,b\}} = \left(\frac{\max\{a,b\} - \min\{a,b\}}{\min\{a,b\}}\right)^2 = \left(\frac{\max\{a,b\}}{\min\{a,b\}} - 1\right)^2,$$

hence by (1.10) we derive

$$\exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{a,b\}}{\max\{a,b\}}\right)^{2}\right] \le \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}} \le \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{a,b\}}{\min\{a,b\}}-1\right)^{2}\right].$$
(2.29)

If $t, s \in [m, M] \subset (0, \infty)$, then by (2.29) we get

$$\exp\left[\frac{1}{2}v(1-v)\left(\frac{M-m}{M}\right)^{2}\right]t^{1-v}s^{v} \le (1-v)t + vs \le \exp\left[\frac{1}{2}v(1-v)\left(\frac{M-m}{m}\right)^{2}\right]t^{1-v}s^{v}.$$
(2.30)

Now, if we take the double integral $\int_m^M \int_m^M$ over $dE(t) \otimes dF(s)$ in (2.30), we derive the desired result (2.27).

Corollary 2.10. With the assumptions of Theorem 2.9, we have the inequalities for Hadamard product

$$A^{1-\nu} \circ B^{\nu} \leq \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{M-m}{M}\right)^{2}\right]A^{1-\nu} \circ B^{\nu}$$

$$\leq (1-\nu)A + \nu B$$

$$\leq \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{M-m}{m}\right)^{2}\right]A^{1-\nu} \circ B^{\nu}$$
(2.31)

for all $v \in [0,1]$. In particular,

$$A^{1/2} \circ B^{1/2} \leq \exp\left[\frac{1}{8}\left(\frac{M-m}{M}\right)^2\right] A^{1/2} \circ B^{1/2}$$

$$\leq \frac{A+B}{2} \circ 1$$

$$\leq \exp\left[\frac{1}{8}\left(\frac{M-m}{m}\right)^2\right] A^{1/2} \circ B^{1/2}.$$
(2.32)

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result — 66/70

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.9.

If we take B = A in Corollary 2.10, then we get the following inequalities for one operator A satisfying the condition $0 < m \le A \le M$,

$$A^{1-\nu} \circ A^{\nu} \leq \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{M-m}{M}\right)^{2}\right]A^{1-\nu} \circ A^{\nu}$$

$$\leq A \circ 1$$

$$\leq \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{M-m}{m}\right)^{2}\right]A^{1-\nu} \circ A^{\nu}$$
(2.33)

for all $v \in [0,1]$.

In particular,

$$A^{1/2} \circ A^{1/2} \le \exp\left[\frac{1}{8}\left(\frac{M-m}{M}\right)^2\right] A^{1/2} \circ A^{1/2}$$

$$\le A \circ 1$$

$$\le \exp\left[\frac{1}{8}\left(\frac{M-m}{m}\right)^2\right] A^{1/2} \circ A^{1/2}.$$
(2.34)

3. Inequalities for Sums

We also have the following inequalities for sums of operators:

Proposition 3.1. Assume that $0 < m \le A_i$, $B_j \le M$ and p_i , $q_j \ge 0$ for $i \in \{1, ..., n\}$, $j \in \{1, ..., k\}$, and put $P_n := \sum_{i=1}^n p_i$, $Q_k := \sum_{j=1}^k q_j$. Then

$$0 \leq \frac{m}{2M^{2}} \mathbf{v} (1-\mathbf{v}) \left[Q_{k} \left(\sum_{i=1}^{n} p_{i} A_{i}^{2} \right) \otimes 1 + P_{n} 1 \otimes \left(\sum_{j=1}^{k} q_{j} B_{j}^{2} \right) - 2 \left(\sum_{i=1}^{n} p_{i} A_{i} \right) \otimes \left(\sum_{j=1}^{k} q_{j} B_{j} \right) \right]$$

$$\leq (1-\mathbf{v}) Q_{k} \left(\sum_{i=1}^{n} p_{i} A_{i} \right) \otimes 1 + \mathbf{v} P_{n} 1 \otimes \left(\sum_{j=1}^{k} q_{j} B_{j} \right) - \left(\sum_{i=1}^{n} p_{i} A_{i}^{1-\mathbf{v}} \right) \otimes \left(\sum_{j=1}^{k} q_{j} B_{j}^{\mathbf{v}} \right)$$

$$\leq \frac{M}{2m^{2}} \mathbf{v} (1-\mathbf{v}) \left[Q_{k} \left(\sum_{i=1}^{n} p_{i} A_{i}^{2} \right) \otimes 1 + P_{n} 1 \otimes \left(\sum_{j=1}^{k} q_{j} B_{j}^{2} \right) - 2 \left(\sum_{i=1}^{n} p_{i} A_{i} \right) \otimes \left(\sum_{j=1}^{k} q_{j} B_{j} \right) \right]$$

$$\leq \frac{M}{2m^{2}} \mathbf{v} (1-\mathbf{v}) \left(M - m \right)^{2} P_{n} Q_{k}$$

$$(3.1)$$

and

$$0 \leq (1-\mathbf{v}) Q_k \left(\sum_{i=1}^n p_i A_i\right) \otimes 1 + \mathbf{v} P_n 1 \otimes \left(\sum_{j=1}^k q_j B_j\right) - \left(\sum_{i=1}^n p_i A_i^{1-\mathbf{v}}\right) \otimes \left(\sum_{j=1}^k q_j B_j^{\mathbf{v}}\right)$$

$$\leq M \mathbf{v} (1-\mathbf{v}) \times \left[\frac{\left(\sum_{i=1}^n p_i A^{-1}\right) \otimes \left(\sum_{j=1}^k q_j B\right) + \left(\sum_{i=1}^n p_i A\right) \otimes \left(\sum_{j=1}^k q_j B^{-1}\right)}{2} - P_n Q_k\right].$$
(3.2)

Proof. From (2.9) we get

$$0 \leq \frac{m}{2M^2} v (1-v) \left(A_i^2 \otimes 1 + 1 \otimes B_j^2 - 2A_i \otimes B_j \right)$$

$$\leq (1-v) A_i \otimes 1 + v 1 \otimes B_j - A_i^{1-v} \otimes B_j^v$$

$$\leq \frac{M}{2m^2} v (1-v) \left(A_i^2 \otimes 1 + 1 \otimes B_j^2 - 2A_i \otimes B_j \right)$$

$$\leq \frac{M}{2m^2} v (1-v) (M-m)^2$$

for all for $i \in \{1, ..., n\}$, $j \in \{1, ..., k\}$ and $v \in [0, 1]$. If we multiply by $p_i q_j \ge 0$ and sum, then we get

$$0 \leq \frac{m}{2M^{2}} \nu (1-\nu) \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} \left(A_{i}^{2} \otimes 1 + 1 \otimes B_{j}^{2} - 2A_{i} \otimes B_{j} \right)$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} \left[(1-\nu)A_{i} \otimes 1 + \nu 1 \otimes B_{j} - A_{i}^{1-\nu} \otimes B_{j}^{\nu} \right]$$

$$\leq \frac{M}{2m^{2}} \nu (1-\nu) \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} \left(A_{i}^{2} \otimes 1 + 1 \otimes B_{j}^{2} - 2A_{i} \otimes B_{j} \right)$$

$$\leq \frac{M}{2m^{2}} \nu (1-\nu) (M-m)^{2} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i}.$$
(3.3)

Observe that

$$\sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} \left(A_{i}^{2} \otimes 1 + 1 \otimes B_{j}^{2} - 2A_{i} \otimes B_{j} \right)$$

=
$$\sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i}^{2} \otimes 1 + \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} 1 \otimes B_{j}^{2} - 2 \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i} \otimes B_{j}$$

=
$$Q_{k} \left(\sum_{i=1}^{n} p_{i} A_{i}^{2} \right) \otimes 1 + P_{n} 1 \otimes \left(\sum_{j=1}^{k} q_{j} B_{j}^{2} \right) - 2 \left(\sum_{i=1}^{n} p_{i} A_{i} \right) \otimes \left(\sum_{j=1}^{k} q_{j} B_{j} \right)$$

and

$$\begin{split} \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} \left[(1-\nu)A_{i} \otimes 1 + \nu 1 \otimes B_{j} - A_{i}^{1-\nu} \otimes B_{j}^{\nu} \right] &= (1-\nu) \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i} \otimes 1 + \nu \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} 1 \otimes B_{j} \\ &- \sum_{i=1}^{n} \sum_{j=1}^{k} q_{j} p_{i} A_{i}^{1-\nu} \otimes B_{j}^{\nu} \\ &= (1-\nu) Q_{k} \left(\sum_{i=1}^{n} p_{i} A_{i} \right) \otimes 1 + \nu P_{n} 1 \otimes \left(\sum_{j=1}^{k} q_{j} B_{j} \right) \\ &- \left(\sum_{i=1}^{n} p_{i} A_{i}^{1-\nu} \right) \otimes \left(\sum_{j=1}^{k} q_{j} B_{j}^{\nu} \right). \end{split}$$

By (3.3) we then get the desired result (3.1).

The inequality (3.2) follows in a similar way from (2.18).

Corollary 3.2. With the assumptions of Proposition 3.1, we have the Hadamard product inequalities

$$0 \leq \frac{m}{2M^2} v(1-v) \left[\left(Q_k \left(\sum_{i=1}^n p_i A_i^2 \right) + P_n \left(\sum_{j=1}^k q_j B_j^2 \right) \right) \circ 1 - 2 \left(\sum_{i=1}^n p_i A_i \right) \circ \left(\sum_{j=1}^k q_j B_j \right) \right]$$

$$\leq \left[(1-v) Q_k \left(\sum_{i=1}^n p_i A_i \right) + v P_n \left(\sum_{j=1}^k q_j B_j \right) \right] \circ 1 - \left(\sum_{i=1}^n p_i A_i^{1-v} \right) \circ \left(\sum_{j=1}^k q_j B_j^v \right)$$

$$\leq \frac{M}{2m^2} v(1-v) \left[\left(Q_k \left(\sum_{i=1}^n p_i A_i^2 \right) + P_n \left(\sum_{j=1}^k q_j B_j^2 \right) \right) \circ 1 - 2 \left(\sum_{i=1}^n p_i A_i \right) \circ \left(\sum_{j=1}^k q_j B_j \right) \right]$$

$$\leq \frac{M}{2m^2} v(1-v) \left(M-m \right)^2 P_n Q_k$$
(3.4)

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result — 68/70

and

$$0 \leq \left[(1-\nu) Q_k \left(\sum_{i=1}^n p_i A_i \right) + \nu P_n \left(\sum_{j=1}^k q_j B_j \right) \right] \circ 1 - \left(\sum_{i=1}^n p_i A_i^{1-\nu} \right) \circ \left(\sum_{j=1}^k q_j B_j^{\nu} \right)$$

$$\leq M \nu (1-\nu) \times \left[\frac{\left(\sum_{i=1}^n p_i A^{-1} \right) \circ \left(\sum_{j=1}^k q_j B \right) + \left(\sum_{i=1}^n p_i A \right) \circ \left(\sum_{j=1}^k q_j B^{-1} \right)}{2} - P_n Q_k \right].$$

$$(3.5)$$

If we take k = n, $p_i = q_i$ and $B_i = A_i$, then we get the simpler inequalities

$$0 \leq \frac{m}{M^2} \mathbf{v} (1 - \mathbf{v}) \times \left[P_n \left(\sum_{i=1}^n p_i A_i^2 \right) \circ 1 - \left(\sum_{i=1}^n p_i A_i \right) \circ \left(\sum_{i=1}^n p_i A_i \right) \right]$$

$$\leq P_n \left(\sum_{i=1}^n p_i A_i \right) \circ 1 - \left(\sum_{i=1}^n p_i A_i^{1 - \mathbf{v}} \right) \circ \left(\sum_{i=1}^n p_i A_i^{\mathbf{v}} \right)$$

$$\leq \frac{M}{2m^2} \mathbf{v} (1 - \mathbf{v}) \times \left[P_n \left(\sum_{i=1}^n p_i A_i^2 \right) \circ 1 - \left(\sum_{i=1}^n p_i A_i \right) \circ \left(\sum_{i=1}^n p_i A_i \right) \right]$$

$$\leq \frac{M}{2m^2} \mathbf{v} (1 - \mathbf{v}) (M - m)^2 P_n^2$$
(3.6)

and

$$0 \leq P_n\left(\sum_{i=1}^n p_i A_i\right) \circ 1 - \left(\sum_{i=1}^n p_i A_i^{1-\nu}\right) \circ \left(\sum_{i=1}^n p_i A_i^{\nu}\right)$$

$$\leq M\nu \left(1-\nu\right) \left[\left(\sum_{i=1}^n p_i A^{-1}\right) \circ \left(\sum_{i=1}^n p_i A\right) - P_n^2\right],$$
(3.7)

for all $v \in [0,1]$, provided that $0 < m \le A_i \le M$ and $p_i \ge 0$ for $i \in \{1,...,n\}$. We also have the multiplicative inequalities:

Proposition 3.3. With the assumptions of Proposition 3.3,

$$\left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \otimes \left(\sum_{j=1}^{k} q_{j}B_{j}^{\nu}\right) \leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{M}\right)^{2}\right] \left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \otimes \left(\sum_{j=1}^{k} q_{j}B_{j}^{\nu}\right)$$

$$\leq (1-\nu)Q_{k}\left(\sum_{i=1}^{n} p_{i}A_{i}\right) \otimes 1 + \nu P_{n}1 \otimes \left(\sum_{j=1}^{k} q_{j}B_{j}\right)$$

$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{m}\right)^{2}\right] \left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \otimes \left(\sum_{j=1}^{k} q_{j}B_{j}^{\nu}\right)$$
(3.8)

and

$$\left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \circ \left(\sum_{j=1}^{k} q_{j}B_{j}^{\nu}\right) \leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{M}\right)^{2}\right] \left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \circ \left(\sum_{j=1}^{k} q_{j}B_{j}^{\nu}\right)$$

$$\leq (1-\nu)Q_{k}\left(\sum_{i=1}^{n} p_{i}A_{i}\right) \circ 1 + \nu P_{n}1 \circ \left(\sum_{j=1}^{k} q_{j}B_{j}\right)$$

$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{m}\right)^{2}\right] \left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \circ \left(\sum_{j=1}^{k} q_{j}B_{j}^{\nu}\right),$$
(3.9)

for all $v \in [0,1]$.

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result — 69/70

If we take k = n, $p_i = q_i$ and $B_i = A_i$ in (3.9), then we get the simpler inequalities

$$\left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \circ \left(\sum_{i=1}^{n} p_{i}A_{i}^{\nu}\right) \leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{M}\right)^{2}\right] \left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \circ \left(\sum_{j=1}^{k} q_{j}B_{j}^{\nu}\right) \qquad (3.10)$$

$$\leq P_{n}\left(\sum_{i=1}^{n} p_{i}A_{i}\right) \circ 1$$

$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M-m}{m}\right)^{2}\right] \left(\sum_{i=1}^{n} p_{i}A_{i}^{1-\nu}\right) \circ \left(\sum_{i=1}^{n} p_{i}A_{i}^{\nu}\right),$$

for all $v \in [0,1]$, provided that $0 < m \le A_i \le M$ and $p_i \ge 0$ for $i \in \{1,...,n\}$.

4. Conclusion

In this paper, by utilizing some recent refinements and reverses of scalar Young's inequality, we provided some upper and lower bounds for the Young differences

$$(1-\nu)A\otimes 1+\nu 1\otimes B-A^{1-\nu}\otimes B^{\nu}$$

and

$$[(1-\nu)A+\nu B]\circ 1-A^{1-\nu}\circ B^{\nu}$$

for $v \in [0,1]$ and A, B > 0. The case of weighted sums for sequences of operators were also investigated.

Article Information

Acknowledgements: The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: The article has a single author. The author has read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Author own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

References

- [1] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.
- ^[2] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583–588.
- ^[3] S. Furuichi, *Refined Young inequalities with Specht's ratio*, Journal of the Egyptian Mathematical Society, **20**(2012), 46–49.
- ^[4] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361 (2010), 262–269.
- [5] F. Kittaneh, Y. Manasrah, *Reverse Young and Heinz inequalities for matrices*, Linear Multilinear Algebra., 59 (2011), 1031–1037.
- [6] G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551–556.
- W. Liao, J. Wu, J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19(2) (2015), 467–479.

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result — 70/70

- [8] S. S. Dragomir, A note on Young's inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(2) (2017), 349-354. Preprint RGMIA Res. Rep. Coll., 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [9] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, Transyl. J. Math. Mec. 8(1) (2016), 45–49.
 Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. [https://rgmia.org/papers/v18/v18a131.pdf].
- [10] H. Alzer, C. M. da Fonseca, A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63(3) (2015), 622–635.
- ^[11] S. Furuichi, N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal., 5(4) (2011), 595–600.
- [12] H. Araki, F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128(7) (2000), 2075–2084.
- ^[13] A. Korányi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., **101** (1961), 520–554.
- [14] T. Furuta, J. Mićić Hot, J. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- ^[15] S. Wada, On some refinement of the Cauchy-Schwarz inequality, Lin. Alg. & Appl., 420 (2007), 433–440.
- ^[16] J. I. Fujii, *The Marcus-Khan theorem for Hilbert space operators*, Math. Jpn., **41**(1995), 531–535.
- [17] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl., 26 (1979), 203–241.
- ^[18] J. S. Aujila, H. L. Vasudeva, *Inequalities involving Hadamard product and operator means*, Math. Japon., **42** (1995), 265–272.
- [19] K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, Scient. Math., 1(2) (1998), 237–241.