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Abstract
Let H be a Hilbert space. In this paper we show among others that, if the selfadjoint operators A and B satisfy
the condition 0 < m≤ A, B≤M, for some constants m, M, then

0≤ m
M2 ν (1−ν)

(
A2⊗1+1⊗B2

2
−A⊗B

)
≤ (1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

≤ M
m2 ν (1−ν)

(
A2⊗1+1⊗B2

2
−A⊗B

)
for all ν ∈ [0,1] . We also have the inequalities for Hadamard product

0≤ m
M2 ν (1−ν)

(
A2 +B2

2
◦1−A◦B

)
≤ [(1−ν)A+νB]◦1−A1−ν ◦Bν

≤ M
m2 ν (1−ν)

(
A2 +B2

2
◦1−A◦B

)
for all ν ∈ [0,1] .
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1. Introduction
The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0,1], then

a1−ν bν ≤ (1−ν)a+νb (1.1)

with equality if and only if a = b. The inequality (1.1) is also called ν-weighted arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [1]

S (h) :=


h

1
h−1

e ln
(

h
1

h−1

) if h ∈ (0,1)∪ (1,∞)

1 if h = 1.

(1.2)

It is well known that limh→1 S (h) = 1, S (h) = S
( 1

h

)
> 1 for h > 0, h 6= 1. The function is decreasing on (0,1) and increasing

on (1,∞) .
The following inequality provides a refinement and a multiplicative reverse for Young’s inequality

S
((a

b

)r)
a1−ν bν ≤ (1−ν)a+νb≤ S

(a
b

)
a1−ν bν , (1.3)

where a, b > 0, ν ∈ [0,1], r = min{1−ν ,ν}.
The second inequality in (1.3) is due to Tominaga [2] while the first one is due to Furuichi [3].
Kittaneh and Manasrah [4, 5] provided a refinement and an additive reverse for Young inequality as follows:

r
(√

a−
√

b
)2
≤ (1−ν)a+νb−a1−ν bν ≤ R

(√
a−
√

b
)2

(1.4)

where a, b > 0, ν ∈ [0,1], r = min{1−ν ,ν} and R = max{1−ν ,ν} .
We also consider the Kantorovich’s ratio defined by

K (h) :=
(h+1)2

4h
, h > 0. (1.5)

The function K is decreasing on (0,1) and increasing on [1,∞) , K (h)≥ 1 for any h > 0 and K (h) = K
( 1

h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich’s ratio holds

Kr
(a

b

)
a1−ν bν ≤ (1−ν)a+νb≤ KR

(a
b

)
a1−ν bν (1.6)

where a,b > 0, ν ∈ [0,1], r = min{1−ν ,ν} and R = max{1−ν ,ν} .
The first inequality in (1.6) was obtained by Zou et al. in [6] while the second by Liao et al. [7].
In [6] the authors also showed that Kr (h)≥ S (hr) for h > 0 and r ∈

[
0, 1

2

]
implying that the lower bound in (1.6) is better

than the lower bound from (1.3).
In the recent paper [8] we obtained the following reverses of Young’s inequality as well:

0≤ (1−ν)a+νb−a1−ν bν ≤ ν (1−ν)(a−b)(lna− lnb) (1.7)

and

1≤ (1−ν)a+νb
a1−ν bν

≤ exp
[
4ν (1−ν)

(
K
(a

b

)
−1
)]

, (1.8)

where a,b > 0, ν ∈ [0,1].
In [9], we obtained the following Young related inequalities:

Theorem 1.1. For any a,b > 0 and ν ∈ [0,1] we have

1
2

ν (1−ν)(lna− lnb)2 min{a,b} ≤ (1−ν)a+νb−a1−ν bν (1.9)

≤ 1
2

ν (1−ν)(lna− lnb)2 max{a,b}
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and

exp

[
1
2

ν (1−ν)
(b−a)2

max2 {a,b}

]
≤ (1−ν)a+νb

a1−ν bν
(1.10)

≤ exp

[
1
2

ν (1−ν)
(b−a)2

min2 {a,b}

]
.

For an equivalent form and a different approach in proving the results (1.9) and (1.10) see [10].
The second inequalities in (1.9) and (1.10) are better than the corresponding results obtained by Furuichi and Minculete in

[11] where instead of constant 1
2 they had the constant 1. Let I1, ..., Ik be intervals from R and let f : I1× ...× Ik→ R be an

essentially bounded real function defined on the product of the intervals. Let A = (A1, ...,An) be a k-tuple of bounded selfadjoint
operators on Hilbert spaces H1, ...,Hk such that the spectrum of Ai is contained in Ii for i = 1, ...,k. We say that such a k-tuple is
in the domain of f . If

Ai =
∫

Ii
λidEi (λi)

is the spectral resolution of Ai for i = 1, ...,k; by following [12], we define

f (A1, ...,Ak) :=
∫

I1
...
∫

Ik
f (λ1, ...,λk)dE1 (λ1)⊗ ...⊗dEk (λk) (1.11)

as a bounded selfadjoint operator on the tensorial product H1⊗ ...⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional

calculus for arbitrary real functions. This construction [12] extends the definition of Korányi [13] for functions of two variables
and have the property that

f (A1, ...,Ak) = f1(A1)⊗ ...⊗ fk(Ak),

whenever f can be separated as a product f (t1, ..., tk) = f1(t1)... fk(tk) of k functions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0,∞), namely

f (st)≥ (≤) f (s) f (t) for all s, t ∈ [0,∞)

and if f is continuous on [0,∞) , then [14, p. 173]

f (A⊗B)≥ (≤) f (A)⊗ f (B) for all A, B≥ 0. (1.12)

This follows by observing that, if

A =
∫
[0,∞)

tdE (t) and B =
∫
[0,∞)

sdF (s)

are the spectral resolutions of A and B, then

f (A⊗B) =
∫
[0,∞)

∫
[0,∞)

f (st)dE (t)⊗dF (s) (1.13)

for the continuous function f on [0,∞) .
Recall the geometric operator mean for the positive operators A, B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2,

where t ∈ [0,1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.

By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B)#(B⊗A) .
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In 2007, Wada [15] obtained the following Callebaut type inequalities for tensorial product

(A#B)⊗ (A#B)≤ 1
2
[(A#α B)⊗ (A#1−α B)+(A#1−α B)⊗ (A#α B)] (1.14)

≤ 1
2
(A⊗B+B⊗A)

for A, B > 0 and α ∈ [0,1] .
Recall that the Hadamard product of A and B in B(H) is defined to be the operator A◦B ∈ B(H) satisfying〈

(A◦B)e j,e j
〉
=
〈
Ae j,e j

〉〈
Be j,e j

〉
for all j ∈ N, where

{
e j
}

j∈N is an orthonormal basis for the separable Hilbert space H.

It is known that, see [16], we have the representation

A◦B = U ∗ (A⊗B)U (1.15)

where U : H→ H⊗H is the isometry defined by U e j = e j⊗ e j for all j ∈ N.
If f is super-multiplicative (sub-multiplicative) on [0,∞) , then also [14, p. 173]

f (A◦B)≥ (≤) f (A)◦ f (B) for all A, B≥ 0. (1.16)

We recall the following elementary inequalities for the Hadamard product

A1/2 ◦B1/2 ≤
(

A+B
2

)
◦1 for A, B≥ 0

and Fiedler inequality

A◦A−1 ≥ 1 for A > 0. (1.17)

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [17] showed that

A◦B≤
(
A2 ◦1

)1/2 (
B2 ◦1

)1/2
for A, B≥ 0

and Aujla and Vasudeva [18] gave an alternative upper bound

A◦B≤
(
A2 ◦B2)1/2

for A, B≥ 0.

It has been shown in [19] that
(
A2 ◦1

)1/2 (B2 ◦1
)1/2 and

(
A2 ◦B2

)1/2 are incomparable for 2-square positive definite matrices
A and B.

Motivated by these results, in this paper we provide among others some upper and lower bounds for the Young differences

(1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

and

[(1−ν)A+νB]◦1−A1−ν ◦Bν

for ν ∈ [0,1] and A, B > 0.

2. Main Results
The first main result is as follows:

Theorem 2.1. Assume that the selfadjoint operators A and B satisfy the condition 0 < m≤ A, B≤M, then

0≤ 1
2

mν (1−ν)
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
(2.1)

≤ (1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

≤ 1
2

Mν (1−ν)
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
≤ 1

2
ν (1−ν)M (lnM− lnm)2
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for all ν ∈ [0,1] .
In particular,

0≤ 1
8

m
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
(2.2)

≤ A⊗1+1⊗B
2

−A1/2⊗B1/2

≤ 1
8

M
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
≤ 1

8
M (lnM− lnm)2 .

Proof. If t, s ∈ [m,M]⊂ (0,∞) , then by (1.9) we get

0≤ 1
2

mν (1−ν)(ln t− lns)2 ≤ (1−ν) t +νs− t1−ν sν (2.3)

≤ 1
2

Mν (1−ν)(ln t− lns)2

≤ 1
2

Mν (1−ν)(lnM− lnm)2 .

If

A =
∫ M

m
tdE (t) and B =

∫ M

m
sdF (s)

are the spectral resolutions of A and B, then by taking in (2.3) the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) , we get

0≤ 1
2

mν (1−ν)
∫ M

m

∫ M

m
(ln t− lns)2 dE (t)⊗dF (s) (2.4)

≤
∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
dE (t)⊗dF (s)

≤ 1
2

Mν (1−ν)
∫ M

m

∫ M

m
(ln t− lns)2 dE (t)⊗dF (s)

≤ 1
8

M (lnM− lnm)2
∫ M

m

∫ M

m
dE (t)⊗dF (s) .

Now, observe that, by (1.11)∫ M

m

∫ M

m
(ln t− lns)2 dE (t)⊗dF (s) =

∫ M

m

∫ M

m

(
ln2 t−2ln t lns+ ln2 s

)
dE (t)⊗dF (s)

=
∫ M

m

∫ M

m
ln2 tdE (t)⊗dF (s)+

∫ M

m

∫ M

m
ln2 sdE (t)⊗dF (s)

−2
∫ M

m

∫ M

m
ln t lnsdE (t)⊗dF (s)

=
(
ln2 A

)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB,

∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
dE (t)⊗dF (s) =(1−ν)

∫ M

m

∫ M

m
tdE (t)⊗dF (s)+ν

∫ M

m

∫ M

m
sdE (t)⊗dF (s)

−
∫ M

m

∫ M

m
t1−ν sν dE (t)⊗dF (s)

=(1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

and ∫ M

m

∫ M

m
dE (t)⊗dF (s) = 1⊗1 = 1.

By employing (2.4), we then get the desired result (2.1).
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Corollary 2.2. With the assumptions of Theorem 2.1,

0≤ 1
2

mν (1−ν)
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
(2.5)

≤ [(1−ν)A+νB]◦1−A1−ν ◦Bν

≤ 1
2

Mν (1−ν)
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
≤ 1

2
ν (1−ν)M (lnM− lnm)2

for all ν ∈ [0,1] .
In particular,

0≤ 1
8

m
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
(2.6)

≤ A+B
2
◦1−A1/2 ◦B1/2

≤ 1
8

M
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
≤ 1

8
M (lnM− lnm)2 .

Proof. The proof follows from Theorem 2.1 by taking to the left U ∗, to the right U , where U : H→ H⊗H is the isometry
defined by U e j = e j⊗ e j for all j ∈ N and utilizing the representation (1.15).

Remark 2.3. If we take B = A in Corollary 2.2, then we get

0≤ mν (1−ν)
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ A◦1−A1−ν ◦Aν (2.7)

≤Mν (1−ν)
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ 1

2
ν (1−ν)M (lnM− lnm)2

for all ν ∈ [0,1] .
In particular,

0≤ 1
4

m
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ A◦1−A1/2 ◦A1/2 (2.8)

≤ 1
4

M
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ 1

8
M (lnM− lnm)2 .

Theorem 2.4. With the assumptions of Theorem 2.1, we have

0≤ m
2M2 ν (1−ν)

(
A2⊗1+1⊗B2−2A⊗B

)
(2.9)

≤ (1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

≤ M
2m2 ν (1−ν)

(
A2⊗1+1⊗B2−2A⊗B

)
≤ M

2m2 ν (1−ν)(M−m)2

for all ν ∈ [0,1] .
In particular,

0≤ m
8M2

(
A2⊗1+1⊗B2−2A⊗B

)
(2.10)

≤ A⊗1+1⊗B
2

−A1/2⊗B1/2

≤ M
8m2

(
A2⊗1+1⊗B2−2A⊗B

)
≤ M

8m2 (M−m)2 .
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Proof. We observe that

0 <
1

max{a,b}
≤ lna− lnb

a−b
≤ 1

min{a,b}
,

which implies that

0 <
1

max2 {a,b}
≤
(

lna− lnb
a−b

)2

≤ 1
min2 {a,b}

for all a,b > 0.
By making use of (1.9), we derive

1
2

ν (1−ν)(b−a)2 min{a,b}
max2 {a,b}

(2.11)

≤ 1
2

ν (1−ν)(lna− lnb)2 min{a,b} ≤ (1−ν)a+νb−a1−ν bν

≤ 1
2

ν (1−ν)(b−a)2 max{a,b}
min2 {a,b}

.

If t, s ∈ [m,M]⊂ (0,∞) , then by (2.11) we get

0≤ m
2M2 ν (1−ν)(t− s)2 ≤ (1−ν) t +νs− t1−ν sν (2.12)

≤ M
2m2 ν (1−ν)(t− s)2 .

If

A =
∫ M

m
tdE (t) and B =

∫ M

m
sdF (s)

are the spectral resolutions of A and B, then by taking in (2.12) the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) , we get

0≤ m
2M2 ν (1−ν)

∫ M

m

∫ M

m
(t− s)2 E (t)⊗dF (s) (2.13)

≤
∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
E (t)⊗dF (s)

≤ M
2m2 ν (1−ν)

∫ M

m

∫ M

m
(t− s)2 E (t)⊗dF (s) .

Since, by (1.11)∫ M

m

∫ M

m
(t− s)2 E (t)⊗dF (s) =

∫ M

m

∫ M

m

(
t2−2ts+ s2)E (t)⊗dF (s)

=
∫ M

m

∫ M

m
t2E (t)⊗dF (s)+

∫ M

m

∫ M

m
s2E (t)⊗dF (s)−

∫ M

m

∫ M

m
2tsE (t)⊗dF (s)

= A2⊗1+1⊗B2−2A⊗B,

then by (2.13) we derive the first part of (2.9).
The last part follows by the fact that

(t− s)2 ≤ (M−m)2

for all t, s ∈ [m,M] .
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Corollary 2.5. With the assumptions of Theorem 2.1, we have the following inequalities for the Hadamard product

0≤ m
M2 ν (1−ν)

(
A2 +B2

2
◦1−A◦B

)
(2.14)

≤ [(1−ν)A+νB]◦1−A1−ν ◦Bν

≤ M
m2 ν (1−ν)

(
A2 +B2

2
◦1−A◦B

)
≤ M

2m2 ν (1−ν)(M−m)2

for all ν ∈ [0,1] .
In particular,

0≤ m
4M2

(
A2 +B2

2
◦1−A◦B

)
≤ A+B

2
◦1−A1/2 ◦B1/2 (2.15)

≤ M
4m2

(
A2 +B2

2
◦1−A◦B

)
≤ M

8m2 (M−m)2 .

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.4 and we omit the details.

Remark 2.6. If we take B = A in Corollary 2.5, then we get

0≤ m
M2 ν (1−ν)

(
A2 ◦1−A◦A

)
≤ A−A1−ν ◦Aν (2.16)

≤ M
m2 ν (1−ν)

(
A2 ◦1−A◦A

)
≤ M

2m2 ν (1−ν)(M−m)2

for all ν ∈ [0,1] .
In particular,

0≤ m
4M2

(
A2 ◦1−A◦A

)
≤ A◦1−A1/2 ◦A1/2 (2.17)

≤ M
4m2

(
A2 ◦1−A◦A

)
≤ M

8m2 (M−m)2 .

Further, we also have:

Theorem 2.7. Assume that the selfadjoint operators A and B satisfy the condition 0 < A, B≤M, then

0≤ (1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν (2.18)

≤Mν (1−ν)

(
A−1⊗B+A⊗B−1

2
−1
)

for all ν ∈ [0,1] .
In particular,

0≤ A⊗1+1⊗B
2

−A1/2⊗B1/2 ≤ 1
4

M
(

A−1⊗B+A⊗B−1

2
−1
)
. (2.19)

Proof. Recall that if a, b > 0 and

L(a,b) :=


b−a

lnb−lna if a 6= b,

b if a = b

is the logarithmic mean and G(a,b) :=
√

ab is the geometric mean, then L(a,b)≥ G(a,b) for all a, b > 0.
Then from (1.9) we have for a 6= b that

(1−ν)a+νb−a1−ν bν ≤ 1
2

ν (1−ν)(lna− lnb)2 max{a,b}

=
1
2

ν (1−ν)(b−a)2
(

lna− lnb
b−a

)2

max{a,b}

≤ 1
2

ν (1−ν)
(b−a)2

ab
max{a,b}

=
1
2

ν (1−ν)

(
b
a
+

a
b
−2
)

max{a,b} ,
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which implies that

(1−ν)a+νb−a1−ν bν ≤ 1
2

ν (1−ν)

(
b
a
+

a
b
−2
)

max{a,b} (2.20)

for all a, b > 0.
If t, s ∈ [m,M]⊂ (0,∞) , then by (2.20) we get

(1−ν) t +νs− t1−ν sν ≤ 1
2

ν (1−ν)
( s

t
+

t
s
−2
)

max{t,s} (2.21)

≤ 1
2

Mν (1−ν)
( s

t
+

t
s
−2
)
.

By taking in (2.21) the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) , we get∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
dE (t)⊗dF (s)≤ 1

2
Mν (1−ν)

∫ M

m

∫ M

m

( s
t
+

t
s
−2
)

dE (t)⊗dF (s) . (2.22)

Since ∫ M

m

∫ M

m

( s
t
+

t
s
−2
)

dE (t)⊗dF (s) =
∫ M

m

∫ M

m
t−1sE (t)⊗dF (s)+

∫ M

m

∫ M

m
ts−1dE (t)⊗dF (s)

−
∫ M

m

∫ M

m
dE (t)⊗dF (s)

=A−1⊗B+A⊗B−1−2,

hence by (2.22) we derive (2.18).

Corollary 2.8. With the assumptions of Theorem 2.7, we have the inequalities for the Hadamard product

0≤ [(1−ν)A+νB]◦1−A1−ν ◦Bν (2.23)

≤Mν (1−ν)

(
A−1 ◦B+A◦B−1

2
−1
)

for all ν ∈ [0,1] .
In particular,

0≤ A+B
2
◦1−A1/2 ◦B1/2 ≤ 1

4
M
(

A−1 ◦B+A◦B−1

2
−1
)
. (2.24)

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.7.
We observe that, if we take B = A in Corollary 2.8, then we get

0≤ A◦1−A1−ν ◦Aν ≤Mν (1−ν)
(
A−1 ◦A−1

)
(2.25)

for all ν ∈ [0,1] .
In particular,

0≤ A◦1−A1/2 ◦A1/2 ≤ 1
8

M
(
A−1 ◦A−1

)
. (2.26)

We also have the following multiplicative results:

Theorem 2.9. Assume that the selfadjoint operators A and B satisfy the condition 0 < m≤ A, B≤M, then

A1−ν ⊗Bν ≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

A1−ν ⊗Bν (2.27)

≤ (1−ν)A⊗1+ν1⊗B

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

A1−ν ⊗Bν
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for all ν ∈ [0,1] .
In particular,

A1−ν ⊗Bν ≤ exp

[
1
8

(
M−m

M

)2
]

A1/2⊗B1/2 (2.28)

≤ A⊗1+1⊗B
2

≤ exp

[
1
8

(
M−m

m

)2
]

A1/2⊗B1/2.

Proof. Since

(b−a)2

max2 {a,b}
=

(
max{a,b}−min{a,b}

max{a,b}

)2

=

(
1− min{a,b}

max{a,b}

)2

and

(b−a)2

min2 {a,b}
=

(
max{a,b}−min{a,b}

min{a,b}

)2

=

(
max{a,b}
min{a,b}

−1
)2

,

hence by (1.10) we derive

exp

[
1
2

ν (1−ν)

(
1− min{a,b}

max{a,b}

)2
]
≤ (1−ν)a+νb

a1−ν bν
(2.29)

≤ exp

[
1
2

ν (1−ν)

(
max{a,b}
min{a,b}

−1
)2
]
.

If t, s ∈ [m,M]⊂ (0,∞) , then by (2.29) we get

exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

t1−ν sν ≤ (1−ν) t +νs≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

t1−ν sν . (2.30)

Now, if we take the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) in (2.30), we derive the desired result (2.27).

Corollary 2.10. With the assumptions of Theorem 2.9, we have the inequalities for Hadamard product

A1−ν ◦Bν ≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

A1−ν ◦Bν (2.31)

≤ (1−ν)A+νB

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

A1−ν ◦Bν

for all ν ∈ [0,1] .
In particular,

A1/2 ◦B1/2 ≤ exp

[
1
8

(
M−m

M

)2
]

A1/2 ◦B1/2 (2.32)

≤ A+B
2
◦1

≤ exp

[
1
8

(
M−m

m

)2
]

A1/2 ◦B1/2.
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The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.9.
If we take B = A in Corollary 2.10, then we get the following inequalities for one operator A satisfying the condition

0 < m≤ A≤M,

A1−ν ◦Aν ≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

A1−ν ◦Aν (2.33)

≤ A◦1

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

A1−ν ◦Aν

for all ν ∈ [0,1] .
In particular,

A1/2 ◦A1/2 ≤ exp

[
1
8

(
M−m

M

)2
]

A1/2 ◦A1/2 (2.34)

≤ A◦1

≤ exp

[
1
8

(
M−m

m

)2
]

A1/2 ◦A1/2.

3. Inequalities for Sums
We also have the following inequalities for sums of operators:

Proposition 3.1. Assume that 0 < m ≤ Ai, B j ≤ M and pi, q j ≥ 0 for i ∈ {1, ...,n} , j ∈ {1, ...,k} , and put Pn := ∑
n
i=1 pi,

Qk := ∑
k
j=1 q j. Then

0≤ m
2M2 ν (1−ν)

[
Qk

(
n

∑
i=1

piA2
i

)
⊗1+Pn1⊗

(
k

∑
j=1

q jB2
j

)
−2

(
n

∑
i=1

piAi

)
⊗

(
k

∑
j=1

q jB j

)]
(3.1)

≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)
−

(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)

≤ M
2m2 ν (1−ν)

[
Qk

(
n

∑
i=1

piA2
i

)
⊗1+Pn1⊗

(
k

∑
j=1

q jB2
j

)
−2

(
n

∑
i=1

piAi

)
⊗

(
k

∑
j=1

q jB j

)]

≤ M
2m2 ν (1−ν)(M−m)2 PnQk

and

0≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)
−

(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
(3.2)

≤Mν (1−ν)×

(∑n
i=1 piA−1

)
⊗
(

∑
k
j=1 q jB

)
+(∑n

i=1 piA)⊗
(

∑
k
j=1 q jB−1

)
2

−PnQk

 .
Proof. From (2.9) we get

0≤ m
2M2 ν (1−ν)

(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
≤ (1−ν)Ai⊗1+ν1⊗B j−A1−ν

i ⊗Bν
j

≤ M
2m2 ν (1−ν)

(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
≤ M

2m2 ν (1−ν)(M−m)2
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for all for i ∈ {1, ...,n} , j ∈ {1, ...,k} and ν ∈ [0,1] .
If we multiply by piq j ≥ 0 and sum, then we get

0≤ m
2M2 ν (1−ν)

n

∑
i=1

k

∑
j=1

q j pi
(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
(3.3)

≤
n

∑
i=1

k

∑
j=1

q j pi
[
(1−ν)Ai⊗1+ν1⊗B j−A1−ν

i ⊗Bν
j
]

≤ M
2m2 ν (1−ν)

n

∑
i=1

k

∑
j=1

q j pi
(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
≤ M

2m2 ν (1−ν)(M−m)2
n

∑
i=1

k

∑
j=1

q j pi.

Observe that

n

∑
i=1

k

∑
j=1

q j pi
(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
=

n

∑
i=1

k

∑
j=1

q j piA2
i ⊗1+

n

∑
i=1

k

∑
j=1

q j pi1⊗B2
j −2

n

∑
i=1

k

∑
j=1

q j piAi⊗B j

= Qk

(
n

∑
i=1

piA2
i

)
⊗1+Pn1⊗

(
k

∑
j=1

q jB2
j

)
−2

(
n

∑
i=1

piAi

)
⊗

(
k

∑
j=1

q jB j

)

and

n

∑
i=1

k

∑
j=1

q j pi
[
(1−ν)Ai⊗1+ν1⊗B j−A1−ν

i ⊗Bν
j
]
=(1−ν)

n

∑
i=1

k

∑
j=1

q j piAi⊗1+ν

n

∑
i=1

k

∑
j=1

q j pi1⊗B j

−
n

∑
i=1

k

∑
j=1

q j piA1−ν

i ⊗Bν
j

=(1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)

−

(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
.

By (3.3) we then get the desired result (3.1).
The inequality (3.2) follows in a similar way from (2.18).

Corollary 3.2. With the assumptions of Proposition 3.1, we have the Hadamard product inequalities

0≤ m
2M2 ν (1−ν)

[(
Qk

(
n

∑
i=1

piA2
i

)
+Pn

(
k

∑
j=1

q jB2
j

))
◦1 −2

(
n

∑
i=1

piAi

)
◦

(
k

∑
j=1

q jB j

)]
(3.4)

≤

[
(1−ν)Qk

(
n

∑
i=1

piAi

)
+νPn

(
k

∑
j=1

q jB j

)]
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)

≤ M
2m2 ν (1−ν)

[(
Qk

(
n

∑
i=1

piA2
i

)
+Pn

(
k

∑
j=1

q jB2
j

))
◦1 −2

(
n

∑
i=1

piAi

)
◦

(
k

∑
j=1

q jB j

)]

≤ M
2m2 ν (1−ν)(M−m)2 PnQk
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and

0≤

[
(1−ν)Qk

(
n

∑
i=1

piAi

)
+νPn

(
k

∑
j=1

q jB j

)]
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
(3.5)

≤Mν (1−ν)×

(∑n
i=1 piA−1

)
◦
(

∑
k
j=1 q jB

)
+(∑n

i=1 piA)◦
(

∑
k
j=1 q jB−1

)
2

−PnQk

 .
If we take k = n, pi = qi and Bi = Ai, then we get the simpler inequalities

0≤ m
M2 ν (1−ν)×

[
Pn

(
n

∑
i=1

piA2
i

)
◦1−

(
n

∑
i=1

piAi

)
◦

(
n

∑
i=1

piAi

)]
(3.6)

≤ Pn

(
n

∑
i=1

piAi

)
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)

≤ M
2m2 ν (1−ν)×

[
Pn

(
n

∑
i=1

piA2
i

)
◦1−

(
n

∑
i=1

piAi

)
◦

(
n

∑
i=1

piAi

)]

≤ M
2m2 ν (1−ν)(M−m)2 P2

n

and

0 ≤ Pn

(
n

∑
i=1

piAi

)
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)
(3.7)

≤ Mν (1−ν)

[(
n

∑
i=1

piA−1

)
◦

(
n

∑
i=1

piA

)
−P2

n

]
,

for all ν ∈ [0,1] , provided that 0 < m≤ Ai ≤M and pi ≥ 0 for i ∈ {1, ...,n} .
We also have the multiplicative inequalities:

Proposition 3.3. With the assumptions of Proposition 3.3,(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
](

n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
(3.8)

≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
](

n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)

and (
n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
(3.9)

≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
◦1+νPn1◦

(
k

∑
j=1

q jB j

)

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
,

for all ν ∈ [0,1] .
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If we take k = n, pi = qi and Bi = Ai in (3.9), then we get the simpler inequalities(
n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)
≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
(3.10)

≤ Pn

(
n

∑
i=1

piAi

)
◦1

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)
,

for all ν ∈ [0,1] , provided that 0 < m≤ Ai ≤M and pi ≥ 0 for i ∈ {1, ...,n} .

4. Conclusion
In this paper, by utilizing some recent refinements and reverses of scalar Young’s inequality, we provided some upper and

lower bounds for the Young differences

(1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

and

[(1−ν)A+νB]◦1−A1−ν ◦Bν

for ν ∈ [0,1] and A, B > 0. The case of weighted sums for sequences of operators were also investigated.
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[10] H. Alzer, C. M. da Fonseca, A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear
Algebra, 63(3) (2015), 622–635.

[11] S. Furuichi, N. Minculete, Alternative reverse inequalities for Young’s inequality, J. Math Inequal., 5(4) (2011), 595–600.
[12] H. Araki, F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128(7) (2000),

2075–2084.
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