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Abstract

In this research, generalized commutative quaternions with generalized Tetranacci number components are introduced and studied.
Then, some algebraic properties of these quaternions, such as a Binet-like formula and the summation formula are presented.
Furthermore, a matrix representation is given involving these generalized commutative quaternions.
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Oz

Bu caligmada, genellestirilmis Tetranacci say1 bilesenleri ile genellestirilmis komutatif kuaterniyonlar tanimlanmig ve incelenmigtir.
Bu kuarternionlara ait Binet-benzeri formil ve toplam formili gibi bazi cebirsel 6zellikler sunulmustur. Ayrica, bu genellestirilmis

komutatif kuaterniyonlar1 igeren bir matris temsilcisi verilmistir.

Anahtar Kelimeler: Genellestirilmis kuaterniyonlar, genellestirilmis tetranacci sayilar, kuaterniyonlar, tetranacci sayilar

1. Introduction

The Tetranacci numbers { M, },.,, were introduced by Wad-
dill (1992), while the generalized Tetranacci numbers were
considered by Yesil Baran and Yetis (2019). These sequences
can be viewed as generalizations of the Fibonacci numbers,
which appear frequently in nature and man-made systems.

The generalized Tetranacci sequence {T.},en is defined
with the recurrence relation

To=pT it qT ot 1T st 8T s, n= 4. 1)
Here, 79=0a,7.=0,7.=¢,7:=d and we have
ptqg+tr+s—1+#0, 2)

(Yesil Baran and Yetis 2019). When a =b=0,c=d=1

and p=q=r=s=1{T"},cn becomes the
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trans-

Tetranacci  sequence {M.,},.... In the case
a=b=1,c=2d=4p=q=r=s=1{T.}en
forms into the Tetrabonacci numbers {7, },.,, and 4-bonac-
ci numbers {F%’},.y mentioned in Ramirez and Sirvent
(2015). We have the Quadrapell numbers {D.},.. consid-
ered by Tagc1 (2009),fora=4b=c=1,d=2and p=0,9=7r=
1,5=2.Bytakinga=6=0,c=1,d=3and p=3,9=0,7=
-3, 5= -1, we get the quadra Fibona-Pell numbers {W.}en
, which are presented by Ozkoc; (2015). {7 },cx becomes
the quadra Lucas-Jacobsthal numbers {S.}, . described by
Kizilates (2017),for a=b=2,c=4,d=7and p = ¢ =2,7 = -3,
s = -2. We obtain Gaussian Tetranacci numbers {GM, },
, which are introduced by Tagct and Acar (2017), for a = &
=0,c=1,d=1+iandp=¢g=r=s=1."Thecase of a =1, =
2,c=4,d=9and p=¢=4,r=-5s=-1 gives us the bino-
mial transform of Quadrapell numbers {b,},., defined by
Kizilates et al. (2017). We get the Tetranacci-Lucas num-
bers {TL.},cx given in Soykan (2020) fora=4,0=1,c=
3,d=7,p=qg=s=r=1.Whilea=0,b=c=d=1 andp =0,
g=s=1,7=2,{7.},c becomes the Pell-Padovan Tetra-
nacci sequence {PT.,},..., which is defined by Petroudi et
al. (2020).
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Moreover, the sequences {N.},cv{P.}oew and {R.},cn
can be obtained from (1) and (2). The values of 4, 4, ¢, 4, p,
¢, 1, s corresponding to these sequences will be given in the
next section. Here, Narayana sequence { N, },.;; (sequence
A000930 in Sloane), Padovan sequence { P, },.y: (sequence
A000931 in Sloane) and Perrin sequence {R.},. (se-
quence A001608 in Sloane) are available at: http://oeis.org.

Recently, general forms of generating functions for se-

quences of numbers and polynomials are defined by Simsek
(2023) as

> _ 1 _ - — N
F(w,P(€.)) = 1+z;":1p_,-(e_,-)w” B ,lonn(P(Em))w
3)
and
I L0iE)w
Gl P(E)0(8) = - e 2

L+ Pie)w (4)
> S(PE):0E))w'
for P(€,) = (Pi(£1), P:(€2), ..., Pa(E.)),

Q(Ek) = (Ql(sl)’QZ(gz),m,Qk(gk))y (5)
Pi(g)) = ZZ:O a,€5,0/(€) = Z::O b€,

0<I<k0<j<mmeN and c¢dkeNU{0}. By
choosing suitable values, we can obtain the generating func-
tions of all the specific cases of {77}, that we mentioned
above.

Binet formula for {77}, . is given by the following rela-
tionship

Att Bt}
t—t) (ti—ts) (i —t)  (L—t) (t—ts) (ta—ta)
Ct} " Dt}

T=q

+

(6)

where ¢1,2,,t5,¢4 are the roots of characteristic equation of

(1) and

8t — ) (0 —ts) (6 — ) (8 — ts) (£ — t0) + Bt — ts) (£, — t4)
(tz - ts) (tz - t4)
t) (ti—t) (to—t) +D(t— ) (8 —ts) (t.— £5)
(tz - t:i) (tz - t4) (t.‘s - t4) ’

A=
_C(tl_

+

B=(b—ap)[(ts—t.) (t:— t:)] = =t ,
8)

C=(t;—t)[c—bp—aql+D, 9)

D=d-cp-bg-ar, (10)

(Yesil Baran 2021).
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'The Irish mathematician William Rowan Hamilton defined
quaternions in 1843 and they are a four-dimensional hy-
percomplex number system. Quaternions are widely used in
pure and applied mathematics, modern physics and many
other fields. Multiplication of quaternions is non-commu-
tative and this property makes it difficult to conduct appli-
cations to engineering problems. Commutative quaternions
are defined by modifying the definition of quaternions in a
way that enabled commutativity in multiplication. They are
a number system that has received a lot of attention and are
used in applications such as signal processing.

A generalized quaternion z is a vector which can be written

as

Tr=xotTie1 2200t 1365, (11)

Here,

el =—a,e;=—0,e;=—ap, (12)

€16; = —€261 = €3,6:63 = —€3€2 = Be, 165 = —€s61 = Qe
(13)

and 20,21,22,75,,8 € R. H,s denotes the family of all
generalized quaternions.

'The generalized commutative quaternions were introduced
and studied in Szynal-Liana and Wtoch (2022). A general-
ized commutative quaternion z is a vector of the form (11),
where generalized commutative quaternionic units e, es,€s
satisfy the equalities

ei=a,e;=pB,es=af (14)
and
€16y = €261 = €3,62€3 = €362 = ,6’61,6163 =e3e1 = ey (15)

for zo,21,222s5,a,8 € R. The family of all generalized
commutative quaternions is denoted by Hjs. The gener-
alized commutative quaternions are generalizations of el-
liptic quaternions (@ < 0,8 =1), parabolic quaternions
(¢=0,8=1), hyperbolic quaternions (& >0,8=1),
bicomplex numbers (@ = —1,8 = —1), complex hyperbolic
numbers (¢ =-1,A=1) and hyperbolic complex num-
bers (a=1,8=-1).

The generalized non-commutative Fibonacci quaterni-
ons were presented by Horadam (1963). Some properties
of generalized non-commutative Fibonacci quaternions
were given in Flaut and Shpakivskyi (2013), Akyigit et al.
(2014), Flaut (2014) and Flaut and Savin (2015). As for
the generalized commutative quaternions with Fibonacci
type number components, they were studied in Szynal-Li-
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ana and Wioch (2022), Bréd et al. (2022) and Bréd and
Szynal-Liana (2023), by utilizing Horadam, Jacobsthal and
Jacobsthal-Lucas numbers. Then, Szynal-Liana et al. (2023)
examined generalized commutative quaternions by using
Fibonacci, Lucas, Jacobsthal, Jacobsthal-Lucas, Pell and
Pell-Lucas polynomials sequences.

On the other hand, in literature there exist some interesting
results about the quaternions defined by using a generalized
and recurrent number sequence. To name some examples,
generalized Fibonacci quaternions, generalized Fibonac-
ci-Lucas quaternions, Horadam quaternions, generalized
Tribonacci quaternions, bicomplex generalized Tribonacci

numbers, bicomplex Tetranacci and Tetranacci-Lucas num-
bers, higher order Fibonacci quaternions, higher order Fi-
bonacci hyper complex numbers, incomplete Fibonacci and
Lucas quaternions were defined and examined by Swamy
(1973), Flaut and Savin (2015), Halici and Karatag (2017),
Cerda-Morales (2017), Kizilates et al. (2019), Soykan
(2020), Kizilates and Kone (2021a), Kizilates and Kone
(2021b), Kizilates (2022), respectively.

By taking these studies into account, we will define general-
ized commutative quaternions with generalized Tetranacci
number components in the next section.

2. Generalized Commutative Quaternions with Generalized Tetranacci Number Components

Definition 2.1. For n = 0, we define the n-th generalized commutative generalized Tetranacci quaternion

gCTn =T+ Twnei+ T et T e

(16)

where 77, is the n-th generalized Tetranacci number and the generalized commutative quaternionic units ey, e, es satisty

(14) and (15). The following are some special cases of this quaternion:

I) {gcT.},c become the generalized commutative Fibonacci quaternions {gcF, },.,, for a=0,b=c=1,d =2 and

p=q=1,r=s=0.

1) {gcT.},c. become the generalized commutative Jacobstal quaternions {gc/, }, ., for a =0,b=c=1,d =3 and

p=1,qg=2,r=s=0.

1) {gcT .}, become the generalized commutative Horadam quaternions { gc#. },.,, for a,b,c,d,p,q € R and

q=—qr=s=0.

IV) {gcT .}, become the generalized commutative Narayana quaternions {gcN., }, ., for a=b=c=1,d =2 and

p=r=1,q=s=0.

V) {gcT .}, o become the generalized commutative Padovan quaternions {gcP.}, ., for a=d=1,b=c=0 and

p=s=0,g=r=1.

VI) {gcT.},cn become the generalized commutative Perrin quaternions {gcR. },.,, for a =d =3,b=0,c =2 and

p=s=0,g=r=1.

VII) {gcT .}, become the generalized commutative Tetranacci quaternions {gcM. },, for a=b=0,c=d =1 and

p:q:rr:s:l_

We note that cases I, IT and III are considered by Szynal-Liana and Wioch (2022).

Theorem 2.1. Let n = 0 be an integer. Then, a Binet-like formula for generalized commutative quaternions with general-

ized Tetranacci components can be written as

A1+ te + e +tes]

Bt;[l + 1.6 +t§€2+ tgeg]

Ctil1+tie, +ties+ties]  Dti[1+tie,+tie, +ties]

9T = =) (=) (6 — 1)

(tz - tl) (tz - ta) (tz - t4)

<t3 - tl) (t‘; - tz) (t3 - t4) (t4 - tl) (t4 - tz) (t4 - t%) '

(17)

where £1,15,t5,¢, are the roots of characteristic equation of (1) and A,B,C,D are given with equalities (7) - (10).
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Proof. By (6) and (16), we have

At} Bt}
gCTn N Tn + Tnﬂel * Tn+262 + Tn+363 N (tl - tz) (tl - ta) (tl - t4) * (tz - tl) (tz - t‘s) (tz - t4)
n Ct n Dt: +< At N Bty
(ts—t) (ts—t) (G—ts)  (ta—t) (Li—ta) (Ga—ts)  \ (= 8) (bi—ts) (G —t0) (o= t0) (ba—ts) (82— )
Ctg+1 thﬁ] At:ﬁrZ Bt;u
* (ts - tl) (t:s - tz) (t;s - t4) * (t4 - tl) (t4 - tz) (t4 - ts) >61 +< (tl - tz) (tl - ts) (tl - t4) * (tz - tl) (t2 - ts) (tz - t4)
N Cty N Dty >e. N < At N Bty (18)
(t—t) (ta—t) (ts—t)  (t—t) (=) (t—t) )7\ (—t) (ti—t) (i —ts) (= t) (= ts) (ta—ta)
N cty? N Dy % _ A1t tettletties] | B[l+be et tie]
(ts—t) (ts—t) (ts—t)  (ta—t) (=) (ta—ts) )77 (b= ta) (i — &) (6 — ) (ta—t1) (ta—ts) (ta—t)

Cti[1+tse,+ e, + thes
(t:; — t1) (ts - tz) (t:s - td)

Dﬁ[l +tie + e+ tie’i]

+ (ti=t) (b= ) (b= ts)

+

which completes the proof.

For simplicity, we can write

~ 1+t1€1+ﬁ62+t?63
= 19
tl (tl_tz) (tl_t’;) (11/1_15.1)7 ( )
~ 1+tse +ties+ties
, = 20
tz (tQ_tl) (tz_te) (tz_t4)7 ( )
~ 1+te +tie, +ties
ts= 21
’ (ts_tl)(tg_tz) (t:g_t4) ’ ( )
~ 1+t,161+ﬁ€2+t§63
ta= . 22
' (t4_t1) (t4_t2) (t4_t3) ( )
Then, using (19) - (22), equality (17) becomes
geT . = Atit1+Bts t2+Ctita+DEi L. (23)
Theorem 2.2. The following relations are valid for gc7,:
gcT o =p.gcT o+ q - gcT s+ 1r-gcT s+ s gcT v, (n > 4), (24)
gC7-n - gch e+ gCTn+2€2 - gCTn+3€3 = (Tn - 0'7-71,+2 + BTn+4 - aBTme) +2 ((]-n+2 - CYT,,M) €, (n > 0) . (25)

Proof. In order to examine the first equality, we write

D gcT v+ q gcT ot 1 -gcT s+ s gcT s =p (T + Twer + Tosieo+ Tunses) +q(Tos+ T
+7 e+ Tn+163) + T(Tn—:s +T e+ T et Tneii) +s (Tn—4 + T se+T et Tn—les)
= (p(]dn*l + an*Z + TTn*S + 87‘n*4) + (p?"w + q(]_;rl + TTn*Z + 87‘7@73) €1

(26)
+ (anﬂ + QT" +r7 ot STn—2> e+ (an+2 + an+1 +r7 .+ STn—l) =Tt T e+ T e+ T e = gc"fn,

by using (1), (16) and we obtain (24). As for (25), by (14) - (16), we have

9T = gcT wirer + gcT wines — gcT wises = (To+ Twsier + Toines + Trises) = (Toir + Toiser + Trvses + Toses) €4

(T ez + Trsser + Treseo + Trases) ea— (Tows + Tovaer + Tesea+ Treses) €3 = (T + Trier + Trwses + Trases)

(=T i1 = Toea@ = Tyeses — Tpaes) + (Tpses + Toses + Toia B+ T s Ber) + (=T vwses — Toeaes — T s Bes — T e @fS)
= (T = aT s+ BT wes— ABT v6) + 2(T o — T s €5

(27)
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'Thus, the proof is completed.

With the next theorem, we will present a summation formula for the generalized commutative quaternions with generalized
Tetranacci number components.

Theorem 2.3. Suppose that n = 4 is an integer. Then, we have

_ (ptqrr+s)gcT . (qrr+s)gcT i+ (r+s5)gcT vn+sgcT s+ p+q+r—1DgcT o+ (p+qg—1)gcT

2 8cTi= ptrqg+r+s—1 *
(p—1)gcT>—gcT,
ptgt+r+s—1 -
(28)

Proof. Since we have equality (24) for n = 4 and by considering (2), we get
D gcTi=gcTo+gcT + gcT >+ gcTs +pzz;; gcT i+ qzz gcT i+ rzk: gcT+

k=0

szz;igc’ﬁ =p+qg+ r+s)Z::0gc‘7'k— p+qg+r+s)geT,—(q+r+s)gcT .- — (29)
(r+s)gcT n—sgcTos—(p+qg+r—1DgcTo—(p+qg—1DgcT —(p—1)gcT >+ gcTs.

'Therefore, the proof is completed.

3. Matrix Representation of Generalized Commutative Quaternions with Generalized Tetranacci
Number Components

Now, we give the matrix generator of the numbers gc7,.

Theorem 3.1. Suppose that n = 1 is an integer. Then, matrix formulation of gc7", can be given as

9cT wvs 9T wia GcT wes GCT nez gcTs gcTs gcTa geTs| [p 1 0 O

gCTnM gCTn+3 gcTMQ gCTnH _ gCTs gc7'4 gCT3 gcTQ ) q 010 (30)
9cT wvs gcT wra gcT w1 gcT gcT s gcTs geT> geT1| |r 0 0 1
gCTn+2 gCTnH gCTn gCTn—1 gCTs gCTz gch gCTo s 000

Proof. The proof was done using the principle of mathematical induction. The result is obvious for n =1, which can be
easily seen. We will show the equality is true for n + 1, by assuming that the formula (30) holds for n = 1. We get

gcTs gcTs geTs gcTs|[p 1 0 0" [p 100 gcT w5 gcT wea gcT wes gcT 2| [p 1 0 O
gcTs gcT s geTs gcTa||lg 010 g 01 0] _|gcTwes geTws gcT ne2 gcT 21| |qg 0 1 0
gcT gcTs geTs geT[|r 00 1| “|r 0 0 1| |gcT s gcT s gcT s gcT ||r 0 0 1
gcTs gcT> geT1 gcTolls 0 0 0 s 00 01 lgeTws gcT w1 9gcTw  gcTalls 0 0 0

9T w6 gCT nis GCT wva GCT uvs

_ 9T wis gCT nea GCT wrs GCT vz (31)
gCT71+/1 QCTMS gcTn+2 gC7'n+17
gcT wes gT wvo gcT we1 gcT

by considering induction’s hypothesis and equality (24) and this ends the proof.

Moreover, we have

9cTs gcTs geT+ geTs|[p 1 00 p 1 0 0] [geTs gcTs gcTy geTs
gcTs gcTy geTs gcT2|lq 0 1 0 _[q O 1 0| |gcT5 geT+ gcTs geT
gcT s gcTs gcT geT 2 ||r 00 1| |7 00 1| |gcT gcTs geT gcT (32)
gcT s gcT> gcT1 geTolls 0 0 0 s 00 01 [geTs geT> geT1 gcTo

Karaelmas Fen Miih. Derg., 2023; 13(2):309-315 313
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and

det = det

=-—r.

33)

w I Q3
S O O

0
0
1
0

O O = O
nw I3
OO O
O O = O
O = O O

4. Conclusion

We defined the generalized commutative quaternions by
using a number sequence which is defined with a gener-
alized recurrence relation. This new definition generalizes
the quaternions introduced by Szynal-Liana and Wioch
(2022) and further investigated by Bréd et al. (2022) and
Bréd and Szynal-Liana (2023). Some properties involving
the sequence {gc7,},.,, were presented, including the Bi-
net type formula and the summation formula. In addition,
a specific matrix, whose elements are the generalized com-
mutative quaternions with generalized Tetranacci number
components, was given as an alternative way to acquire the
n-th term of the sequence {gc7 ", },.;. We believe that the
quaternions considered in this article can be extended to
generalize other quaternion families and the results given in
this article could be useful for further research on this topic.
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