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Research Article

Abstract − This paper contributes to the broader studies of fuzzy vector metric spaces
and fuzzy metric spaces based on order structures beyond the unit interval. It defines the
notions of the left (right) order convergence and continuity in non-Arcimedean L-fuzzy vector
metric spaces. The notation ME(a, b, s) means the nearness between a and b according to
any positive vector s. This study exemplifies definitions and reaches some well-known results.
Moreover, it proposes the concept of L-fuzzy vector metric diameter and studies some of its
basic properties. Further, the present paper proves the Cantor intersection theorem and the
Baire category theorem via these concepts. Finally, this study discusses the need for further
research.

Keywords Non-Archimedean L-fuzzy vector metrics, left and right order convergence, L-fuzzy vector diameter, Riesz
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1. Introduction

In the field of engineering design, it is often the case that there is no clear solution or design, which
often leads to fuzziness, and Zadeh [1] proposed a rule to address such issues in engineering and design.
Goguen [2] expanded Zadeh’s study with a fresh viewpoint, considering the ordered structures beyond
the unit interval. It is typically necessary for a partially ordered set (poset) to be at least a complete
lattice with distributive law to query what the maximum and minimum values of a fuzzy set are. A
detailed study about these concepts can be found in [2, 3].

Moreover, Menger [4] presented probabilistic metric spaces and associated ideas. The notion was then
greatly improved by Schweizer and Sklar [5, 6]. Subsequently, Kramosil and Michálek in [7] provided
an equivalent definition for the term probabilistic metric in the form of fuzzy metric spaces, which
George and Veeramani [8] later adapted to provide a Hausdorff topology. The degree of nearness
between two elements a and b of a set X concerning the real number s is the subject of the notion
of fuzzy metric. The reality of X having a vector space structure is a common occurrence (for more
details, see [9–11]). Alternatively, the distance in a Riesz space can be defined as a vector; more details
can be found in [12–15].

In this study, we consider the parameter s as a vector based on L-fuzzy sets given by Goguen and
the fuzzy metric space provided by Kramosil and Michálek. In this case, the order structure must be
added to the concept of left-hand continuity. Thus, we define left (right) order continuity to construct
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L-fuzzy vector metric spaces and non-Archimedean L-fuzzy vector metric spaces. Then, we obtain
some new results and provide Cantor’s intersection theorem and Baire’s theorem in non-Archimedean
L-fuzzy vector metric spaces.

2. Preliminaries

This section provides some basic notions to be needed in the next section. The concept of an L-fuzzy
set was introduced by Goguen [2], who generalized the notion of a fuzzy set nicely introduced by
Zadeh. Goguen defined an L-fuzzy set as a function that maps elements of a universe of discourse to
elements of a complete lattice L, where each lattice element represents the degree of membership of
the corresponding universe element in the fuzzy set. He defined L-fuzzy set in the following manner.

Definition 2.1. [2] Let X ̸= ∅ and L = (L,⩽L) be a complete lattice with distributive law. Then,
an L-fuzzy set A is a function such that A : X → L and A(a), for each a ∈ X, means the degree of a

in L.

Definition 2.2. [10] Let X ̸= ∅. Then, an intuitionistic L-fuzzy set Aξ,ϑ is an object on X such that
Aξ,ϑ = {(ξA(a), ϑA(a)) : a ∈ X}, where the notations ξA(a) and ϑA(a) represent the membership and
non-membership degrees of a, respectively, and satisfy the condition ξA(a) + ϑA(a) ⩽L 1L.

Goguen [2] and Sadati et al. [10] provided the definitions of t-norm, decreasing negation function, and
involutive negation as follows:

Definition 2.3. [2, 10] A t-norm on L is a function T : L2 → L holding following properties, for all
k, l, m, n ∈ L, where inf L = 0L and sup L = 1L.

i. T (k, 1L) = k (boundary condition)

ii. T (k, l) = T (l, k) (commutativity)

iii. T (k, T (l, m)) = T (T (k, l), m) (associativity)

iv. k ⩽L m and l ⩽L n ⇒ T (k, l) ⩽L T (m, n) (monotonicity)

Definition 2.4. [2, 10] Let L = (L,⩽L) be a complete lattice. Then, N : L → L is a decreasing
negation function on L satisfying N (0L) = 1L and N (1L) = 0L. Furthermore, N is called an involutive
negation if N (N (x)) = x, for all x ∈ L.

Aliprantis, in his books Infinite Dimensional Analysis [12] and Positive Operators [13], discussed the
concept of ordered vector space in the following fashion.

Definition 2.5. [12,13] Let E be a real vector space. If E has an order relation ≤, which is compatible
with the algebraic structure of E in terms of the following two axioms:

i. if s ≤ u, then s + w ≤ u + w, for all w ∈ E

ii. if s ≤ u, then γs ≤ γu, for all γ ∈ R+

then E is called an ordered vector space.

For any two vectors s, u ∈ E, the notation s ≤ u can be represented by u ≥ s in another way. If θ ≤ s

where θ represents the zero vector of E, then the vector s is called positive. The set of all the positive
vectors of E is denoted by E+ := {s ∈ E : θ ≤ s}.

Aliprantis et al. [12, 13] also proposed the concept of Riezs spaces and some related concepts in the
following form.

Definition 2.6. [12, 13] Let E be an ordered vector space. For all s, u ∈ E, if E has the supremum
and the infimum of the set {s, u}, then E is called a Riesz space or a vector lattice. The notations
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used for sup{s, u} and inf{s, u} are as follows:

s ∨ u = sup{s, u} and s ∧ u = inf{s, u}

An example of a Riesz space is the space of real-valued continuous functions on a set X, considering
the pointwise ordering, defined as follows: f1 ≤ f2 in E if and only if f1(a) ≤ f2(a), for all a ∈ X.
The lattice operation in any function space E can be defined as

[f1 ∨ f2](a) = max{f1(a), f2(a)} and [f1 ∧ f2](a) = min{f1(a), f2(a)}

for each pair f1, f2 ∈ E and for all a ∈ X.

We will denote Riesz spaces with the letter E in the rest of this study.

Theorem 2.7. [12, 13] For all s, u, w ∈ E, the following properties hold:

i. s ∨ u = −[(−s) ∧ (−u)] and s ∧ u = −[(−s) ∨ (−u)]

ii. s + u = (s ∧ u) + (s ∨ u)

iii. s + (u ∨ w) = (s + u) ∨ (s + w) and s + (u ∧ w) = (s + u) ∧ (s + w)

iv. γ(s ∨ u) = (γs) ∨ (γu) and γ(s ∧ u) = (γs) ∧ (γu), for all γ ⩾ 0

For any vector s ∈ E, the positive part, negative part, and absolute value of s are denoted by s+, s−,
and |s|, respectively, and defined as follows:

s+ := s ∨ θ, s− := (−s) ∨ θ, and |s| = s ∨ (−s)

Theorem 2.8. [12, 13] For any vector s ∈ E, the following properties hold:

i. s = s+ − s−

ii. |s| = s+ + s−

iii. s+ ∧ s− = θ

A sequence (sn) ⊆ E is decreasing, denoted by sn ↓, if and only if n ⩾ m implies sn ≤ sm. In
addition the notation sn ↓ s means sn ↓ and inf{sn} = s. Similarly, a sequence (sn) ⊆ E is increasing,
represented by sn ↑, if and only if n ⩽ m implies sn ≤ sm. In addition the notation sn ↑ s means sn ↑
and sup{sn} = s.

Aliprantis et al. [12,13] set forth the concepts of ordered convergence and lattice norm in the following
way.

Definition 2.9. [12,13] Let (sn) ⊆ E be a sequence and s ∈ E be a vector. Then, (sn) is called order
convergent to s, denoted by sn

o→ s, if there exists another sequence (un) satisfying |sn − s| ≤ un ↓ θ.

Definition 2.10. [3,13] Let s and u be some vectors of E and ∥·∥ be a defined norm on E. If |s| ≤ |u|
implies ∥s∥ ≤ ∥u∥, then ∥·∥ is called a lattice norm. In addition, a Riesz space equipped with this
norm is called a normed Riesz space.

The notion of vector metric spaces, where the distance function takes values in Riesz spaces, was first
mentioned in [14].

Definition 2.11. [14] Let X ̸= ∅, E be a Riesz space, and dE : X × X → E be a function. Then,
(X, dE) is called a vector metric space if the function dE satisfies the following properties, for all
a, b, c ∈ X:

i. θ ≤ dE(a, b)
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ii. dE(a, b) = θ if and only if a = b

iii. dE(a, b) = dE(b, a)

iv. dE(a, c) ≤ dE(a, b) + dE(b, c)

Since the set of real numbers R is a Riesz space with the usual ordering, it is obvious that every metric
space is a vector metric space.

Example 2.12. [14] Every Riesz space E is a vector metric space with the function dE : E × E → E

defined by dE(a, b) = |a − b|. This vector metric is called the absolute valued vector metric on E.

To set up the definition of non-Archimedean L-fuzzy vector metric spaces, we benefit from the defini-
tion of fuzzy metric space suggested by Kramosil and Michálek [7].

Definition 2.13. [7] Let X ̸= ∅, M be a fuzzy set on X × X × [0, ∞), and T be a continuous
t-norm. Then, the triple (X, M, ∗) is a fuzzy metric space as Kramosil and Michálek describe, if for
all a, b, c ∈ X and 0 < s, u, the following properties hold:

i. M(a, b, 0) = 0

ii. M(a, b, s) = 1 if and only if a = b

iii. M(a, b, s) = M(b, a, s)

iv. T (M(a, b, s), M(b, c, u)) ⩽ M(a, c, s + u)

v. M(a, b, .) : [0, ∞) → [0, 1] is left-continuous

Here, the notation M(a, b, s) denotes the nearness degree between a and b according to s.

3. Main Results

We define the concepts of left and right-order convergence and continuity. Thanks to these concepts,
new ideas on L-fuzzy vector metric space will be built.

Definition 3.1. Let (sn) ⊆ E be a sequence and s ∈ E be a vector. Then,

i. (sn) is called left-order convergent to some vector s, denoted by sn
o−
→ s, if there exists another

sequence (un) satisfying (sn − s)− ≤ un ↓ θ.

ii. (sn) is called right-order convergent to some vector s, denoted by sn
o+
→ s, if there exists another

sequence (un) satisfying (sn − s)+ ≤ un ↓ θ.

Definition 3.2. Let X ̸= ∅, ME be an L-fuzzy set on X ×X ×E+, and T be a continuous t-norm on
L. Then, the triple (X, ME , T ) is an L-fuzzy vector metric space if for all a, b, c ∈ X and s, u ∈ E+,
the following properties hold:

i. ME(a, b, θ) = 0L

ii. ME(a, b, s) = 1L if and only if a = b

iii. ME(a, b, s) = ME(b, a, s)

iv. T (ME(a, b, s), ME(b, c, u)) ⩽L ME(a, c, s + u)

v. ME(a, b, .) : E+ → L is left-order-continuous

If the condition vi below is used instead of the condition iv, then the triple (X, ME , T ) is said to be
a non-Archimedean L-fuzzy vector metric space.

vi. T (ME(a, b, s), ME(b, c, u)) ⩽L ME(a, c, s ∨ u)
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It can be observed that every non-Archimedean L-fuzzy vector metric space is an L-fuzzy vector metric
space because the triangular inequality vi implies iv. Moreover, if s∧u = 0, then every L-fuzzy vector
metric space becomes a non-Archimedean L-fuzzy vector metric space.

Lemma 3.3. In a non-Archimedean L-fuzzy vector metric space, the function ME(a, b, .) is non-
decreasing, for all a, b ∈ X.

Lemma 3.4. In a non-Archimedean L-fuzzy vector metric space, the following statements hold:

i. If sn
o→ s and sn

o→ u, then ME(a, b, s) = ME(a, b, u)

ii. If sn
o→ s and u ⩽ sn hold for n ∈ N, then ME(a, b, u) ⩽L ME(a, b, s)

iii. If sn ↓ and sn
o→ s, which means both sn

o+
→ s and sn ↓ s, then for all n ∈ N, ME(x, y, s) ⩽L

ME(x, y, sn)

iv. If sn ↑ and sn
o→ s, which means both sn

o−
→ s and sn ↑ s, then for all n ∈ N, ME(a, b, sn) ⩽L

ME(a, b, s)

v. If sn
o→ s and un

o→ u, then lim
n→∞

ME(a, b, ksn +run) = ME(a, b, ks+ru), for all n ∈ N and k, r ∈ R

Corollary 3.5. By the definition s+ := s ∨ θ, if s, u ∈ E+, then ME(a, c, s ∨ u) = ME(a, c, s+ ∨ u+).

Theorem 3.6. Let ∅ ≠ A ⊆ E+ and s ∈ E+. If inf A exists, then the infimum of the set (s∨A) exists
and

T (ME(a, b, s), ME(b, c, inf A)) ⩽L ME(a, c, s ∨ inf A) = ME(a, c, inf(s ∨ A))

Proof.
Assume that inf A exists. Let u = inf A, then s ∨ u ≤ s ∨ w, for all w ∈ A and s ∈ E, which means
that s ∨ u is a lower bound of the set s ∨ A and ME(a, b, s ∨ u) ⩽L ME(a, b, s ∨ w) holds. Let r be
another lower bound. To show that s ∨ u is the greatest lower bound of s ∨ A, we must show r ≤ s ∨ u.
Besides, w + s = (s ∧ w) + (s ∨ w), for all w ∈ E. From the properties in Theorem 2.7,

w = (s ∧ w) + (s ∨ w) − s ≥ (s ∧ w) + r − s ≥ (s ∧ u) + r − s

Because inf A = u, it follows that u ≥ (s ∧ u) + r − s. This implies u ≥ (u + s) − (s ∨ u) + r − s. Thus,
s ∨ u ≥ r is obtained. It means that s ∨ u is the greatest lower bound. Then, inf(s ∨ A) exists and
inf(s ∨ A) = s ∨ inf A. Consequently,

T (ME(a, b, s), ME(b, c, inf A)) ⩽L ME(a, c, s ∨ inf A) = ME(a, c, inf(s ∨ A))

Example 3.7. Let (X, ME , T ) be an L-fuzzy vector space with (sn) and (un) in C[0, 1] = {h | h :
[0, 1] → R is a continuous function} define as follows:

sn =
{

0 , x ∈ [0, 1
n+1 ]

(n+1)x−1
n , x ∈ ( 1

n+1 , 1]

un =
{

−(n + 1)x + 1 , x ∈ [0, 1
n+1 ]

0 , x ∈ ( 1
n+1 , 1]

Since sn ↑ 1L = 1 and un ↓ 0L = θ, then sn ∧ un = θ holds, where 1(x) = 1 and θ(x) = 0 are constant
functions in C[0, 1]. Hence, (X, ME , T ) becomes a non-Archimedean L-fuzzy vector metric space.

Example 3.8. Let the pair (X, dE) be a bounded vector metric space such that dE(a, b) < k, for
all a, b ∈ X and k ∈ E. In addition, let g : E+ → (∥k∥ , +∞) be an increasing continuous function.
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Define T (l, t) = sup{l + t − 1L, 0L} and the function ME by

ME(a, b, s) = 1L − dE(a, b)
g(s)

In this case, (X, ME , T ) becomes a non-Archimedean L-fuzzy vector metric space.

Example 3.9. For T (k, l) = inf{k, l}, define the function ME by

ME(a, b, s) =
{

1, a = b

φ(s), a ̸= b

where φ : E+ → [0L, 1L) is an increasing continuous function. In this case, (X, ME , T ) becomes a
non-Archimedean L-fuzzy vector metric space.

Example 3.10. Let the pair (X, dE) be a vector metric space and E be a normed Riesz space. For
all a, b ∈ X and s ∈ E+ and for T (k, l) = inf{k, l}, define the function ME by

ME(a, b, s) = ∥s∥
∥s∥ + ∥dE(a, b)∥

Particularly, ME is called the standard L-fuzzy vector metric induced by the vector metric dE . Then,
(X, ME , T ) becomes a non-Archimedean L-fuzzy vector metric space.

Moreover, this example is used successfully in color image processing in [9,11] as a real-life application.
For this, let Fi and Fj be two image pixels. In this case, the spatial closeness between Fi and Fj is
calculated with

S(Fi, Fj , s) = s

s + ∥dE(Fi, Fj)∥

where s ∈ R+ is a parameter adjusting the sensitivity of S.

Definition 3.11. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space. In this case,
BE(a, r, s) and BE [a, r, s], for s ∈ E+, with center a ∈ X and radius r ∈ L \ {0L, 1L} are defined as
follows:

BE(a, r, s) = {b ∈ X : ME(a, b, s) >L N (r)}

and
BE [a, r, s] = {b ∈ X : ME(a, b, s) ⩾L N (r)}

Corollary 3.12. A subset Ω ⊆ X is said to be open if for a ∈ Ω, there exist an s ∈ E+ and a
radius r ∈ L \ {0L, 1L} such that BE(a, r, s) ⊂ Ω. Then, every open ball is an open set. Futhermore,
τME

= {Ω ⊆ X : Ω is open} is a topology on X.

Definition 3.13. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space.

i. Let ∅ ̸= Ω ⊆ X. For every a, b ∈ Ω and s ∈ E+, if there exists an r ∈ L \ {0L, 1L} such that
ME(a, b, s) ⩾L N (r), then Ω is bounded. Moreover, for all n ∈ N, (an) ⊆ X is called bounded if there
exists an r ∈ L \ {0L, 1L} such that (an) ⊆ BE [a, r, s].

ii. For every ε ∈ L \ {0L, 1L} and s ∈ E+, (an) ⊆ X is convergent to a ∈ X if there exists n0 ∈ N
such that ME(an, a, s) >L N (ε), for all n ⩾ n0 and denoted by

lim
n→∞

ME(an, a, s) = 1L or an
ME→ a

iii. For each ε ∈ L \ {0L, 1L} and s ∈ E+, (an) ⊆ X is a Cauchy sequence in X if there exists n0 ∈ N
such that ME(an, am, s) >L N (ε), for all n, m ⩾ n0.

iv. (X, ME , T ) is complete if and only if every Cauchy sequence in X is convergent.
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v. Let Ω ⊆ X. Then, Ω is said to be closed if (an) ⊆ Ω and an
ME→ a imply a ∈ Ω.

In the following example, we provide a nonconvergent sequence in a non-Archimedean L-fuzzy vector
metric space.

Example 3.14. Let X = (an) ∪ {1} for (an) ⊆ R+ with an ↑ 1. Define ME(an, an, s) = 1L,
ME(1, 1, s) = 1L, and

ME(an, 1, s) =
{

inf{an, s} , θ < s < 1

an , s > 1

for all n and s ∈ E+. Then, (X, ME , T ) is a non-Archimedean L-fuzzy vector metric space where
T (k, l) = inf{k, l}. Since lim

n→∞
ME(an, 1, 13 ) = 1

3 , (an) is not a convergent sequence in this space.

Proposition 3.15. Let (X, ME1 , T ) and (Y, ME2 , T ) be two non-Archimedean L-fuzzy vector metric
spaces. If

ME((a1, b1), (a2, b2), s) = T (ME1(a1, a2, s), ME2(b1, b2, s))

for (a1, b1), (a2, b2) ∈ X × Y and for all s ∈ E+, then ME is a non-Archimedean L-fuzzy vector metric
on X × Y .

Note 3.16. For the rest of this study, T stands for a continuous t-norm on L such that for any
s ∈ E+ and ε ∈ L \ {0L, 1L}, there exists an element r ∈ L \ {0L, 1L} satisfying the condition
T (N (r), N (r)) ⩾L N (ε).

Theorem 3.17. Let ME be defined as in Proposition 3.15 and (an) ⊆ X and (bn) ⊆ Y be two
sequences. If an

ME1→ a in X and bn
ME2→ b in Y , then (an, bn) ME→ (a, b) in X × Y .

Proof.
Let an

ME1→ a in X and bn
ME2→ b in Y . Then, according to Definition 3.13 (ii) there exist n1 ∈ N and

n2 ∈ N such that ME1(an, a, s) >L N (r), for all n ⩾ n1 and ME2(bn, b, s) >L N (r), for all n ⩾ n2. If
n0 = max{n1, n2}, then

ME((an, bn), (a, b), s) = T (ME1(an, a, s), ME2(bn, b, s))
>L T (N (r), N (r))
⩾L N (ε)

is obtained. Thus, the proof is completed.

Theorem 3.18. Suppose (X, ME , T ) be a non-Arcimedean L-fuzzy vector metric space and (an) ⊆ X

be a convergent sequence. Then, the following properties hold:

i. (an) is bounded and its limit is unique.

ii. (an) is a Cauchy sequence.

iii. Any subsequence (ank
) of (an) converges to the same limit.

Proof.
Suppose (X, ME , T ) be a non-Arcimedean L-fuzzy vector metric space and (an) ⊆ X be a convergent
sequence.

i. Let an
ME→ a. Then, for each ε, η ∈ L \ {0L, 1L} and s ∈ E+, there exists n1 ∈ N such that

ME (an, a, s/2) ⩾L N (ε), for all n ⩾ n1 and a0 ∈ X such that ME (a0, a, s/2) ⩾L N (η). For some
λ ∈ L \ {0L, 1L}, suppose

min {ME (an, a, s/2) : n1 > n} = N (λ)
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Then, an r ∈ L \ {0L, 1L} can be found such that

min
{
T
(
N (η), N (λ)

)
, T
(
N (η), N (ε)

)}
= N (r)

Thereby, for all n ∈ N+

ME (a0, an, s) ⩾L T
(
ME (a0, a, s/2) , ME (an, a, s/2)

)
⩾L N (r)

is obtained. As a result, (an) ⊆ BE [a0, r, s], which means (an) is bounded. To illustrate the uniqueness
of the limit, suppose the sequence (an) has two different limits a and b. Let ε = N (ME(a, b, s)), for
any s ∈ E+. Since (an) is convergent, then there exist n1, n2 ∈ N such that ME (an, a, s/2) ⩾L N (λ)
and ME (an, b, s/2) ⩾L N (λ), for all n ⩾ n1, n2. Let n0 = max {n1, n2}. Then, for n ⩾ n0,

ME(a, b, s) ⩾L T
(
ME (an, a, s/2) , ME (an, b, s/2)

)
>L T

(
N (λ), N (λ)

)
⩾L N (ε)

which means a contraction. Hence, the limit of the convergent sequence is unique.

ii. Let s ∈ E+ and ε ∈ L \ {0L, 1L}. Because of the convergent of the sequence (an), there exists
n0 ∈ N such that ME (an, a, s/2) > N (λ), for all n ⩾ n0. Then, for all m ⩾ n0,

ME (an, am, s) ⩾L T
(
ME (an, a, s/2) , ME (a, am, s/2)

)
>L T

(
N (r), N (r)

)
⩾L N (ε)

Thus, every convergent sequence is a Cauchy sequence.

iii. Let an
ME→ a and (ani) ⊆ (an). Thus, for all ε ∈ L \ {0L, 1L} and s ∈ E+, there exists n0 ∈ N such

that ME (an, a, s/2) > N (ε), for all n ⩾ n0. If i ⩾ n0, then n0 ⩽ i ⩽ ni and thus ME (ani , a, s) >

N (ε).

Definition 3.19. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space and Ω ⊆ X.
Then, the L-fuzzy vector metric diameter DE(Ω) is defined as follows:

DE(Ω) = sup
s∈E+

{inf ME(a, b, s) : a, b ∈ Ω}

If DE(Ω) = 1L, then Ω is said to be bounded.

Remark 3.20. If Ω is a singleton set, then DE(Ω) = 1L. However, unlike crisp sets, the converse may
not always be true. For example, for the standard non-Archimedean L-fuzzy vector metric defined in
Example 3.10 as follows

ME(a, b, s) = ∥s∥
∥s∥ + ∥dE(a, b)∥

and for Ω = {a0, b0} ⊂ X,

DE(Ω) = sup
s∈E+

∥s∥
∥s∥ + ∥dE(a0, b0)∥ = 1L

is obtained.

Theorem 3.21. For DE(Ω), the following statements hold:

i. Let Ω ⊆ Ψ. Then, DE(Ψ) ⩽L DE(Ω)

ii. DE(Ω) ⩽L ME(a, b, s), for any a, b ∈ Ω

iii. Let Ω = {a, b}. Then, DE(Ω) = ME(a, b, s)
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iv. Let Ω ∩ Ψ ̸= ∅. Then, T (DE(Ω), DE(Ψ)) ⩽L DE(Ω ∪ Ψ)

Definition 3.22. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space. For ∅ ≠ (Ωn) ⊆
X if

lim
n→∞

DE(Ωn) = 1L

then it is said to be Ω has appearing L-fuzzy vector metric diameter. Moreover, for all r ∈ L\{0L, 1L}
and s ∈ E+, a number n0 ∈ N can be found such that ME(a, b, s) >L N (r), for all a, b ∈ Ωn0 .

Theorem 3.23 (Theorem of Cantor Intersection). Let (X, ME , T ) be a non-Archimedean L-fuzzy
vector metric space. Let ∅ ≠ Ωn be closed and decreasing sequence of subsets of X. Suppose that
lim

n→∞
DE(Ωn) = 1L. Then, X is complete if and only if the intersection of the sequence is a singleton.

Proof.
Let X be complete. For each n ∈ N by considering a point an ∈ Ωn, a sequence (an) can be
formed. If m ⩾ n is chosen, Ωm ⊆ Ωn is obtained such that all the points {am : m ⩾ n} of
the sequence belong to the set Ωn. According to Theorem 3.21, DE(Ωn) ⩽L ME(am, an, s), for
s ∈ E+ and for all m ⩾ n. Since the sequence (Ωn) has an appearing L-fuzzy vector diameter,

lim
n,m→∞

ME(am, an, s) = 1L. Thus, (an) is a Cauchy sequence. Since X is complete, there is a point
a ∈ X such that lim

n→∞
ME(an, a, s) = 1L. If a set Ωn0 is taken and formed the sequence (an) ⊂ Ωn0 , for

n ⩾ n0, then lim
n→∞

ME(an, a, s) = 1L. Moreover, a ∈ Ωn0 because Ωn0 is closed. As a result, it follows

that a belongs to all the members of the sequence (Ωn). Hence, a ∈
∞⋂

n=1
Ωn is obtained. Considering

another point a′ ∈
∞⋂

n=1
Ωn, DE(Ωn) ⩽L ME(a, a′, s), for all s ∈ E+. Since the sequence (Ωn) has

an appearing L-fuzzy vector diameter, ME(a, a′, s) = 1L. As a result, it follows that
∞⋂

n=1
Ωn = {a}

because of a = a′.

Conversely, considering a Cauchy sequence (an) ⊆ X and closed nonempty subset Ωn = {am : m ⩾ n}
of X, then lim

n→∞
DE(Ωn) = 1L because the sequence (Ωn) is decreasing and (an) is a Cauchy sequence.

According to the assumption of the theorem, there is only a single point a such that
∞⋂

n=1
Ωn = {a}.

Then, because of the definition of L-fuzzy vector diameter there is a natural number n0 such that
DE(Ωn0) >L N (ε), for each ε ∈ L \ {0L, 1L}. Moreover, since a ∈ Ωn0 , M(an, a, s) >L N (ε), for all
n ⩾ n0. It means that an

ME→ a. Consequently, the non-Archimedean L-fuzzy vector metric space X

is a complete space.

Theorem 3.24 (Baire Category Theorem). Let (X, ME , T ) be a non-Archimedean L-fuzzy vector
metric space and let (Ωn) ⊂ X be a countable collection of open and dense subsets. Then, the
intersection of (Ωn) is also dense in X.

Proof.
For proof, it is necessary that

BE(a, r, s) ∩
( ∞⋂

n=1
Ωn

)
̸= ∅

is satisfied for all a ∈ X, r ∈ L \ {0L, 1L} and s ∈ E+. For Ω1, BE(a, r, s) ∩ Ω1 is open and
nonempty because Ω1 ⊂ X is dense. Considering the element a1 ∈ BE(a, r, s) ∩ Ω1, then there exist
r1 ∈ L \ {0L, 1L} and s1 ∈ E+ such that BE [a1, r1, s1] ⊂ BE(a, r, s) ∩ Ω1. Let BE1 = BE(a1, r1, s1).
BE1 ∩Ω2 is open and nonempty because Ω2 ⊂ X is dense. Considering the element a2 ∈ BE1 ∩Ω2, then
there exist r2 ∈ (0L, 1L/2) and s2 ∈ E+ such that BE [a2, r2, s2] ⊂ BE1 ∩ Ω2. Let BE2 = BE(a2, r2, s2).
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If continued inductively, two sequences (an) ⊆ X and (rn) ⊆ R are obtained such that

BE [an+1, rn+1, sn+1] ⊂ BEn ∩ Ωn+1 ⊂ BE [an, rn, sn] and rn ∈ (0L, 1L/n)

for all n ∈ N. According to Theorem 3.23,
∞⋂

n=1
BE [an, rn, sn] has only one element. As a result, from

∞⋂
n=1

BE [an, rn, sn] ⊂ BE(a, r, s) ∩
( ∞⋂

n=1
Ωn

)

we reach the conclusion BE(a, r, s) ∩
( ∞⋂

n=1
Ωn

)
̸= ∅. This completes the proof.

4. Conclusion

In conclusion, this article contributes to the field of fuzzy metric spaces by defining left and right-order
convergence and continuity within the framework of non-Archimedean L-fuzzy vector metric spaces.
Left and right-order continuity concepts are used to construct L-fuzzy vector metric spaces and non-
Archimedean L-fuzzy vector metric spaces. Furthermore, some non-trivial examples are built, and as
an implication, the findings are used to prove Cantor’s intersection theorem and Baire’s theorem. In
the next stages, as a continuation of this study, examples of these spaces can be multiplied, and fixed
point theorems can be studied.
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[15] Ş. Eminoğlu, C. Çevik, Fuzzy Vector Metric Spaces and Some Results, Journal of Nonlinear
Sciences and Applications 10 (2017) 3429–3436.


	Introduction
	Preliminaries
	Main Results
	Conclusion

