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Introduction 
Distributed software development (DSD) refers to the 
practice of developing software using a distributed team, 
where team members are located in different geographic 
locations [1]. There are several benefits to using a 
distributed team for software development includes 
accessing to a larger pool of talent, cost savings, improved 
work-life balance. DSD allows organizations to tap into a 
global pool of talent, allowing them to find the best 
developers for their projects regardless of location. It also 
allows for greater flexibility in scheduling and the ability to 
work around the clock, as teams in different time zones can 
take over development tasks [2].  

One of the important processes of DSD is software 
versioning. Software versioning is the process of assigning 
unique version numbers to unique states of computer 
software [3]. These version numbers are used to identify 
and track changes to the software as it is developed and 
released. Versioning helps teams to coordinate the 
development and release of software, and it helps users to 
understand the state and evolution of the software [4].  

There are many different conventions and strategies for 
versioning software, and the specific approach used can 
vary depending on the needs of the software and the 

development team. In general, most of projects used 
semantic versioning [5]. In this approach, software 
versioning involves a combination of a major version 
number, a minor version number, and a patch number, with 
each number representing a different level of change to the 
software. Major releases are typically more significant and 
may include significant new features or major changes to 
the software. Minor releases, on the other hand, are 
typically smaller and may include bug fixes, security 
updates, and small new features or improvements. The 
frequency of minor releases is often higher than the 
frequency of major releases. The frequency of software 
releases can vary greatly depending on the software and the 
development team behind it. Some software is released on 
a very frequent basis, with new versions or updates being 
released every few weeks or even every few days. Other 
software may only be released once or twice a year, or even 
less frequently.  

Each new version of software has release notes which 
explain the development of related release. Release notes 
are documents that provide information about the features, 
bug fixes, and other changes included in a new software 
release. They are typically written by the development team 
and are intended to help users understand what has changed 
in the latest version of the software [6]. Release notes may 
include a list of new features, a summary of bug fixes and 
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Distributed Software Development is the practice of developing software with a team in different locations. 
The process of software versioning is crucial in distributed development as it helps in keeping track of the 
various software versions that are being developed and maintaining projects. In transition of each new 
version, the development team present release notes that inform all team members and stakeholders are 
aware of changes and provide tracking project progresses. Release notes consist information about the 
features, bug fixes, and other changes included in a new software release. Generating release notes and 
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some papers about generating release notes in the literature, there is not any study about automatic 
versioning. In this context, the aim of this paper is to predict the development types in release notes as the 
first phase of an automated versioning tool that is planned to be built in future work. We used BERT which 
is one of the popular transformers to classify developments of release notes and our model has 86% 
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making process in the context of explainable AI using ELI5 library. 
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performance improvements, and any known issues or 
limitations. They may also provide guidance on how to 
upgrade to the new release, as well as information about 
compatibility with other software or systems. Release notes 
are an important resource for users, as they help them stay 
informed about the latest updates and ensure that they are 
using the most current version of the software. In the 
context of distributed software development, software 
release notes are particularly important for several reasons 
[7]. They help ensure that all team members and 
stakeholders are aware of the changes that have been made 
to the software. This is especially important in a distributed 
environment, where team members may be working in 
different locations and time zones. They can serve as a 
reference point for future development, allowing team 
members to easily look back and understand the reasoning 
behind certain decisions that were made. Moreover, they 
can also be used to help track the progress of the 
development project and identify any potential issues or 
delays. Overall, software release notes play a vital role in 
the successful development and distribution of software, 
helping to ensure that all team members are informed and 
aligned on the direction of the project. There are several 
types of developments that may be included in software 
release notes, such as new features, improvements, bug 
fixes, security updates, performance improvements and 
deprecations, etc.  

The cost of generating release notes will depend on a 
number of factors, including the complexity of the software 
being released, the size of the team working on the project, 
and the tools and processes being used [8]. Development 
teams may feel that the process of generating release notes 
is an extra time burden [9]. Nevertheless, it requires them to 
document the changes that have been made to the software. 
However, release notes serve an important purpose in 
communicating the changes that have been made to 
stakeholders, such as customers, users, and other team 
members. Without clear and concise release notes, it can be 
difficult for these stakeholders to understand the impact of 
the changes and how they should be using the updated 
software. There are a number of ways that teams can make 
the process of generating release notes more efficient, such 
as using automated tools to generate draft release notes, 
establishing clear guidelines and templates for writing 
release notes, and involving the appropriate team members 
in the process.  

In our empirical study, we firstly analyzed the release notes 
of a popular open source project and predicting the 
development types of release notes in order to automatically 
generate them in the next studies. To conduct this study, we 
collected some release notes from four open-source project. 
After that, we use the transformers that is the one of popular 
deep learning models to predict the development types. By 
predicting the development types of release notes, we may 
be able to automate the process of generating release notes 
for future releases. Thanks to automate this process, 
development team may be able to save time, resources and 
improve the efficiency. 

Other parts of the study are organized as follows. In the 
second section, the data set used are explained in detail. In 
the third section, the literature that guided the study was 

examined. The research methodology is presented and the 
findings are given in detail in the next sections. In the last 
section, the results of the study are presented and future 
studies are expressed. 

Related Works 
Classifying and labeling issues in software projects is a 
significant challenge. While developers may occasionally 
label issues, the practice is not widely used [10]. Different 
methods are being explored to address this challenge. In one 
study, the authors examined the cost of inaccurately 
labeling issues [11]. In another study, a naive bayes method 
was used to classify and analyze 4000 issues extracted from 
JIRA [12].  

Despite some studies on issue labeling and classification, 
there is limited research in the literature on classifying 
developments within release notes. The one of the studies 
about this problem, the authors used classic machine 
learning techniques. The most successful model is based on 
SVM with the %77 accuracy rate [13].  

Some other studies focus on generating release notes. In a 
study, the authors develop a framework named as ARENA, 
for automatically generating release notes [9]. Another 
study found that release notes generated using this method 
were more accurate than those created manually [14]. 

Text classification serves as a foundational domain within 
the realm of natural language processing, garnering 
significant attention from researchers and practitioners alike 
[15]. In recent years, deep learning models have emerged as 
powerful tools for tackling this challenge, with transformers 
gaining widespread prominence [16]. Notably, Soyalp et al. 
introduced an expanded transformer model designed 
specifically for text classification tasks, achieving superior 
performance when compared to earlier state-of-the-art 
models like LSTM and CNN [17]. In another study, a 
BERT-based CNN model was leveraged to classify Chinese 
news articles, exhibiting exceptional accuracy [18]. These 
studies underscore the transformative impact of deep 
learning and transformer-based approaches in advancing 
text classification techniques. 

Materials and Methods 
The diagram below illustrates the flowchart utilised in this 
study (Figure 1).  

 
Figure 1. The flowchart of the study. 



DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638 
 

 
 

631 

 

Collecting Data with Labels 

We selected four popular open-source projects in different 
domain to conduct our study. As we review projects, we 
determined according to their release consistency schedule 
and the presence of comprehensive release notes. Thus, we 
create a dataset from the release notes of Mozilla Firefox 
[19], Thunderbird [20], Slack [21], and OBSProject [22]. In 
our dataset, we collected 333 release notes published after 
each version's migration (Table 1). 

To crawl this data, we used selenium framework. Our 
dataset is shared on a GitHub repository. With this 
framework, we navigate the web pages of each release. 
Thereby we use the unique features (id, class, type) of web 
components, we reach the context of release notes 
developments. Then, we record them with labels into an 
excel file. In the release notes, developments and changing 
labeled such as new, fixed, changed, unresolved, developer, 
enterprise, web platform, improvements, addition, etc.  

The labels introduce the development types of release note 
explanations in related release. Some of them are given 
below.  

- New: It typically refers to the introduction of new 
features or functionality that has been added to the 
software or system being released. 

- Changed: It typically refers to modifications or updates 
that have been made to existing features or 
functionality of the software or system being released. 
It could also refer to changes in the behavior of the 
software or system. These changes could be bug fixes, 
performance improvements, or changes in the user 
interface or user experience. 

- Fixed: It typically refers to a correction of a problem or 
error that existed in a previous version of the software 
or system. This could include resolving issues such as 
bugs, glitches, or crashes that have been reported by 
users or identified by the development team. These 
fixes are done to improve the stability, performance 
and correct the problem that was previously identified 
in the software. 

- Unresolved: It typically refers to issues, bugs or 
problems that have been reported but have not yet been 
fixed or addressed in the current release. These are 
known issues that developers are aware of and are 
working to resolve in future releases. The unresolved 
issues may also be reported in the bug tracking system. 
This information is usually provided in the release 
notes to inform the users of the current state of the 
software and to set expectations for the known issues 
that are yet to be fixed. 

As observed, the definitions of labels are often similar to 
one another, which makes the classification of them a 
challenging task.   

As seen Figure 1, each release note consists of some 
development types of titles (new, fixed, development, etc.) 
and explanations about changing part of the application. 
While we were creating the dataset, we record each part of 
notes as an individual development. 

 

 
Figure 2. An example of a release notes of The Mozilla 

Firefox Project. 

For example, in Figure 2, there are two changes that are 
titled with “New”. In this way, in our dataset there are 

800 total rows with labels (Table 1). 

Table 1. The dataset information. 

 Release Count Total Changes 
Chrome 74 212 
Slack 134 74 

ThunderBird 67 196 
OBSProject 58 318 

In our dataset, some of the labels (classes) are used rarely. 
Because of that we bring together some labels into “other” 
label. In Table 2, it is given that the number of labels in our 
dataset. 

Table 2. The label counts of changes in our dataset. 

Initial Status Status After Merge 
labels count labels count 
new 115 new 115 
fixed 295 fixed 295 

changed 226 changed 226 
unresolved 63 unresolved 63 
developer 30 

other 101 

enterprise 32 
web platform 2 
improvements 34 

 changed 2 
addition 1 

 

Pre-processing  

Pre-processing is an important step in natural language 
processing (NLP). It involves preparing the raw text data 
for further processing and analysis. The specific steps in the 
preprocessing stage can vary depending on the task and the 
specific needs of the project, but common steps include; 

- Tokenization: This involves splitting the text into 
individual words or smaller pieces called tokens. 

- Lowercasing/uppercasing: This involves converting all 
text to either lowercase or uppercase. 
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- Removing punctuation: This involves removing any 
punctuation marks from the text. 

- Removing numbers: This involves removing any 
numerical values from the text. 

- Removing stop words: This involves removing common 
words that do not add significant meaning to the text, 
such as "the" "and" and "but". 

- Stemming: This involves reducing words to their base 
form to reduce the dimensionality of the data. For 
example, "jumping" "jumps" and "jumped" would all 
be reduced to the base form "jump". 

We applied pre-processing steps to our dataset, except for 
stemming. We attempted to use four different stemmer 
libraries/framework such as TextHero, Lancaster, Porter 
and Snowball. As seen in Table 3, we found that TextHero 
library has the most accurate and fastest stemming process 
among four, and noticed that it did not change the words too 
much. As a result, there was no significant impact on the 
prediction model, so we did not apply stemming to dataset. 

Creating Classification Model with Transformers 

Transformers are a type of neural network architecture that 
was introduced in the paper of Vaswani et al [23]. Since 
then, they have become one of the most popular and 
effective models in natural language processing (NLP) 
tasks, such as machine translation and language modeling. 

One of the key innovations of the Transformer architecture 
is the use of self-attention mechanisms. In a traditional 

neural network, the input is processed sequentially through 
a series of layers, with each layer using the output of the 
previous layer as input. In contrast, the Transformer uses 
self-attention mechanisms, which allow the model to 
consider the entire input sequence simultaneously when 
processing a particular element in the sequence [23].  

BERT (Bidirectional Encoder Representations from 
Transformers) is a state-of-the-art language processing 
model developed by Google [24]. It is trained with 
approximately 4 million words extracted from Wikipedia 
and BooksCorpus to understand the context of a word based 
on the words that come before and after it—a technique 
called contextual modeling. BERT is designed to 
preprocess text data for natural language processing tasks 
such as question answering, classification, and language 
translation, by encoding the context of words in a sentence. 
DistilBERT, on the other hand, is a smaller and faster 
version of BERT. It is a distilled version of BERT, which 
means that it has been trained to have a smaller architecture 
while still maintaining a similar performance to BERT. 
DistilBERT can be fine-tuned for the same NLP tasks as 
BERT but with less computational resources. 

To predict the development types of release notes changes, 
we used two different BERT models, “DistilBERT-base-
uncased” and “BERT-base-uncased”. 

We divided the dataset into 80% for training and 20% for 
testing. Before training, we shuffled data with the Pandas 
library. In one of the iterations, the distribution of labels in 
the training and testing datasets is shown in Table 4.

Table 3. The comparison of the stemming libraries. 

 WORD TextHero Lancaster Porter Snowball 

SA
M

PL
E 

W
O

R
D

S 
 information information inform inform inform 

developer developer develop develop develop 
various various vary variou various 
fixed fix fix fix fix 

images images im imag imag 
capturing capture capt captur captur 
activities activities act activ activ 
stories stories story stori stori 

automatic automatic autom automat automat 
Running Time 75ms 576ms 856ms 702ms 

Table 4. The distribution of the test-train dataset parts. 

Label Label_num Type Record 

changed 4 train 180 
test 45 

fixed 0 train 232 
test 58 

new 2 train 90 
test 23 

other 1 train 78 
test 20 

unresolved 3 train 51 
test 12 
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We develop our models in the Google Colaboratory 
platform with NVIDIA-SMI GPU. We trained our models 
with ktrain library which is a lightweight wrapper library 

for TensorFlow Keras. The hyper parameters of our models 
are given Table 5. 

 

Table 5. The hyper parameters of our models. 

 Bert DistilBert 
model name BERT_base_uncased DistilBERT_base_uncased 
epoch size 5 5 

learning rate 5e-5 5e-5 
batch size 6 6 

maxlen 500 500 

Results 
Model Results 

Our model provides class-specific scores and overall 
evaluation metrics. Classification problems are commonly 

evaluated using accuracy, precision, recall, and F1 score 
metrics. In a multi-class problem, the calculation of these 
metrics is specific to each class [25]. The terms of metrics 
(True Positives, True Negatives, False Positives, False 
Negatives) are different to binary classification. In figure 3, 
it is seen that the difference between them. 

 
Figure 3. The comparison of between binary-class and multi-class classification. 

Precision is referred to the proportion of correct predictions 
among all predictions for a particular class. Recall is 
referred to the proportion of examples of a specific class 
that have been predicted by the model as belonging to that 
class. F1 Score is the harmonic mean of precision and recall. 

precision 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  =
𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 

𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 +  𝐹𝐹𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 
 (1) 

 

recall 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  =
𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 

𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 +  𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 
 (2) 

 

f1score 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 = 2 x 
precision 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∗ recalll 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 
precision 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + recalll 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 

  (3) 

These metrics should be used with caution as it can be 
misleading, especially when the class distribution is 
imbalanced. Because of that we also give macro and 
averaged metrics. The macro approach calculates the 
average measure for each class without considering class 

size. In contrast, the weighted method takes into account the 
number of samples per class and calculates a weighted 
average measure. For example, weighted and macro 
precisions are calculated with Equation 4 and Equation 5. 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡=
∑(𝑝𝑝𝑝𝑝𝑤𝑤𝑐𝑐𝑤𝑤𝑐𝑐𝑤𝑤𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∗ 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑝𝑝 𝑝𝑝𝑜𝑜 𝑐𝑐𝑐𝑐𝑛𝑛𝑝𝑝𝑐𝑐𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 

∑(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑝𝑝 𝑝𝑝𝑜𝑜 𝑐𝑐𝑐𝑐𝑛𝑛𝑝𝑝𝑐𝑐𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
  (4) 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝  =
∑(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 )
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝             (5) 

In these equations above, “i” is the class index and the sum 
(∑) is over all classes.  

In addition to these evaluation metrics, the confusion 
matrices of the models is also provided. The results of above 
metrics and confusion matrices for both models are 
presented below. 

Table 6 and 7 present the precision, recall, and f1-scores for 
each class of the dataset. The last column shows the number 
of samples associated with each label. Additionally, the 
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overall macro and weighted metrics of the models can be 
found at the bottom of the table (italic). Lastly, the last row 
of the table shows the overall accuracy score of the model. 
In the tables, the top two scores in each column are 
displayed in bold font. 

Table 6. The evaluation metrics of the “DistilBERT” 
model. 

 precision recall f1-score support 
changed 0.73  0.73  0.73 45 

fixed 0.83  0.85  0.84        59 
new 0.67  0.70  0.68         23 
other 0.90  0.95  0.93         20 

unresolved 1.00  0.77  0.87        13 
 

macro avg 0.83 0.80 0.81 160 
weighted avg 0.80 0.80 0.80 160 

 
accuracy 0.80 160 

The results of the first model “DistilBERT” are given Table 
6. According to results, the model is given overall 0.80 
accuracy. The confusion matrix of DistilBERT model is 
given Figure 4. 

 
Figure 4. The confusion matrix of “DistilBERT” model. 

The model confused between “changed” and “fixed” label. 
Indeed, these two classes are very similar in definition and 
content. 

Table 1. The evaluation metrics of the “BERT” model. 
 precision recall f1-score support 

changed 0.79 0.84 0.82 45 
fixed 0.88 0.85 0.86 59 
new 0.90 0.83 0.86 23 
other 1.00 1.00 1.00 20 

unresolved 0.79 0.85 0.81 13 
 

macro avg 0.87 0.87 0.87 160 
weighted avg 0.87 0.86 0.86 160 

 
accuracy 0.86 160 

Table 7 presents the BERT model’s results. The BERT 
model has higher scores because it contains more 
comprehensive data than the DistilBERT model. In our 
dataset, we combined rare labels under the "other" category. 

Because of the model has labeled all data it could not decide 
on as "other.", the highest scores are seen in the "other" 
label. The overall accuracy of this model is 0.86. 

 
Figure 5. The confusion matrix of “BERT” model. 

When looking at each class individually (Figure 5). 

 The “changed” class is most often confused with 
the “fixed” class. 

 The “fixed” class is most often confused with the 
“changed” class. 

 The “new” class is most often confused with the 
“fixed” and “changed” classes. 

 The “unresolved” class is most often confused 
with the “fixed” and “changed classes. 

This situation also shows that the "changed" and “fixed” 
classes are the most difficult to distinguish. 

After seeing these results, we wanted to perform another 
analysis to understand how the model makes decisions 
based on the classes. 

The explanation of AI 

We analyze the BERT model's explainable AI aspect in 
order to gain insight into the model's decision-making 
process. With this purpose, we use ELI5 (explain like I'm 
five) that is a Python library that provides an easy-to-use 
interface for interpreting the predictions of machine 
learning models [26]. It allows users to inspect the features 
of a model that are most important for making a prediction 
and to understand the reasoning behind a model's 
predictions. Additionally, it has some visualization tools 
which can be used to understand the predictions. It helps 
non-technical people or people who are not experts in 
machine learning to understand how a model works and 
why it makes certain predictions. 

the html date picker for date and datetime inputs can  
now be with a keyboard alone improving its  

accessibility for screen reader users users with  
mobility can also use common keyboard shortcuts to  

navigate the calendar grid and month  
selection spinners. 
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We gathered release notes from recent versions of 
Mozilla Firefox and observed which words in the release 
notes are prominent to classifying process. Besides, after 
removing these words from the sentence, we also 
investigate whether the decision of the model changes or 
not when we ask for a prediction again. 

Our model correctly predicted the label for the first 
below sample, which was labeled as “new”.   

SAMPLE 1: “the html date picker for date and datetime 
inputs can now be with a keyboard alone improving its 
accessibility for screen reader users with mobility can also 
use common keyboard shortcuts to navigate the calendar 
grid and month selection spinners”  

ELI5 is a library that helps to explain the predictions made 
by the model. It produces a colorful output that shows which 
parts of the input were most important in the model's 
decision-making process. This can clarify how a model is 
making its predictions and identifying any potential issues 
or biases in the model's decision-making. In our sample the 
output of ELI5 explain() methods is given below. 

In addition to the explanations, ELI5 also provides a table 
that shows the weights of the words in the input text during 
the decision-making process. The table can be used to 
identify any patterns or relationships in the input text that 
the model is using to make its predictions. In Table 8, it is 
seen that the words have negative impact on decision such 
as “improving, common, shortcuts and use”. 

Table 2. The weights of words used by ELI5 to decision-making process in the Sample-1. 

 
 

Then, we chose a description that our model is unable to 
predict correctly. Although, the correct label is “fixed”, the 
model predicted as “new”. 

SAMPLE 2: “when using a screen reader on windows 
pressing enter to activate an element no longer fails or 
clicks the wrong element and or another application 
window for those blind or with very limited vision this 
technology reads out loud what is on the screen and users 
can adapt them to their needs now on our platform without 
errors.”  

Table 3. The weights of words used by ELI5 to decision-making process in the Sample-2. 

 
As seen from Table 9, the phrase that cause the model to 
make mistakes can be given as " vision this technology 
reads ".  

The last selected sample is one that our model was unable 
to predict correctly. The real label is “changed”, the model 
predicted as “new”. 

when using a screen reader on windows pressing  
enter to activate an element no longer fails or clicks  

the wrong element and or another application  
window for those blind or with very limited vision this
 technology reads out loud what is on the screen and

 users adapt them to their needs now on our  
platform without errors 
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SAMPLE 3: “firefox has a new focus indicator for links 
which replaces the old dotted outline with a solid blue 
outline this change unifies the focus indicators across form 
fields and links which makes it easier to identify the focused 
link especially for users with low vision.”

 

Table 4. The weights of words used by ELI5 to decision-making process in the Sample-3. 

 
The words “replace” and “new” have negative impact to the 
decision of the model.  

As can be seen from the examples, an AI model considers 
some words more when deciding for text classification. 
Particularly effective words here are "replace, fix, new, this, 
etc". 

Evaluating Model with Unseen Data 

Lastly, we used data not seen by the model to evaluate our 
best model.  The results for the 10 enhancements taken from 
the version notes of the new versions that are not in the 
dataset are given below (Table 5). In this context, it is also 
seen that the dataset is %84 successful.  

Conclusion 
In this paper, we analyzed the release notes of four open-
source projects. In these release notes, we aimed to predict 
the development types such as new, fixed or changed. 
Contrast to previous papers, we used for classification 
BERT that is one of the popular transformer models. We 
developed models with two different pre-trained models of 
BERT.  

In the text classification model development process, there's 
a pre-processing step applied to text data. However, after 
trying 4 different stemming libraries, we found that 
stemming did not have a significant impact on the model. 
Because of that, we apply other process except stemming. 

As results of models are given that some common metrics 
such as accuracy, recall, precision, and f1-score. We 
presented the scores per class and the average scores 
calculated using various methods while presenting results. 
We achieved better results compared to a study using 
traditional machine learning methods.  

Besides, according to our conclusions from the confusion 
matrices, the model experiences the most confusion in the 
"changed" and "fixed" classes. It is also estimated that these 
two classes are similar to each other when considering the 
developments made in version transitions. 

Lastly, we investigated how the model made its 
classification decision using explainable AI concept and 
presented the prominent parameters (words) in this context. 

In this research paper, we employ text classification 
techniques, a fundamental aspect of Natural Language 
Processing (NLP), to address a pertinent challenge within 
the realm of software engineering. Our objective is to 
extend our investigations in future work by analyzing 
commit notes within open-source projects. Specifically, we 
aim to ascertain the nature of the development being 
undertaken within these projects. Furthermore, we intend to 
provide recommendations for version transitions and their 
corresponding significance levels based on the degree of 
change identified in these commit notes. This research 
bridges the gap between NLP and software engineering, 
offering valuable insights into the management and 
evolution of open-source software projects. 

 

 
 

firefox has a new focus indicator for links which  
replaces the old dotted outline with a solid blue  

outline this change unifies the focus indicators across  
form fields and links which makes it easier to identify  

the focused link especially for users with low vision 
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Table 5. Unseen data scores of the best model 

 Text Actual 
Class 

Predicted 
Class 

1 You’ll encounter less website breakage in Private Browsing and Strict Enhanced 
Tracking Protection with SmartBlock, which provides stand-in scripts so tha… new new 

2 Now, you can set a default app to open a file type. Choose the application you want 
to use to open files of a specific type in your Firefox settings fixed new 

3 The native HTML date picker for date and datetime inputs can now be used with a 
keyboard alone, improving its accessibility for screen reader users. Users … new changed 

4 Firefox builds in the Spanish from Spain (es-ES) and Spanish from Argentina (es-
AR) locales now come with a built-in dictionary for the Firefox spellchecker new new 

5 Fixes the default search engine being reset on upgrade for profiles which were 
previously copied from a different location. fixed fixed 

6 You can now pin private windows to your Windows taskbar on Window 10 and 
Windows 11 for simpler access. Also, private windows have been redesigned… new new 

7 Removed a configuration option to allow SHA-1 signatures in certificates: SHA-1 
signatures in certificates—long since determined to no longerbe secure … changed changed 

8 Power profiling — visualizing performance data recorded from web browsers — is 
now also supported on Linux and Mac with Intel CPUs, … new  new 

9 When using a screen reader on Windows, pressing enter to activate an element no 
longer fails or clicks the wrong element and/or another application window. fixed fixed 

10 Removed subject common name fallback support from certificate validation. This 
fallback mode was previously enabled only for manually changed changed 
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