
DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

Classifying Release Notes Explanations using BERT: An Initial Step to Automatic
Versioning in Distributed Software Development
 Abdulkadir ŞEKER1*
1 Sivas Cumhuriyet University, Computer Engineering Department, aseker@cumhuriyet.edu.tr, Orcid No: 0000-0002-4552-2676

Introduction
Distributed software development (DSD) refers to the
practice of developing software using a distributed team,
where team members are located in different geographic
locations [1]. There are several benefits to using a
distributed team for software development includes
accessing to a larger pool of talent, cost savings, improved
work-life balance. DSD allows organizations to tap into a
global pool of talent, allowing them to find the best
developers for their projects regardless of location. It also
allows for greater flexibility in scheduling and the ability to
work around the clock, as teams in different time zones can
take over development tasks [2].

One of the important processes of DSD is software
versioning. Software versioning is the process of assigning
unique version numbers to unique states of computer
software [3]. These version numbers are used to identify
and track changes to the software as it is developed and
released. Versioning helps teams to coordinate the
development and release of software, and it helps users to
understand the state and evolution of the software [4].

There are many different conventions and strategies for
versioning software, and the specific approach used can
vary depending on the needs of the software and the

development team. In general, most of projects used
semantic versioning [5]. In this approach, software
versioning involves a combination of a major version
number, a minor version number, and a patch number, with
each number representing a different level of change to the
software. Major releases are typically more significant and
may include significant new features or major changes to
the software. Minor releases, on the other hand, are
typically smaller and may include bug fixes, security
updates, and small new features or improvements. The
frequency of minor releases is often higher than the
frequency of major releases. The frequency of software
releases can vary greatly depending on the software and the
development team behind it. Some software is released on
a very frequent basis, with new versions or updates being
released every few weeks or even every few days. Other
software may only be released once or twice a year, or even
less frequently.

Each new version of software has release notes which
explain the development of related release. Release notes
are documents that provide information about the features,
bug fixes, and other changes included in a new software
release. They are typically written by the development team
and are intended to help users understand what has changed
in the latest version of the software [6]. Release notes may
include a list of new features, a summary of bug fixes and

Research Article

ARTICLE INFO

Article history:

Received 18 August 2023
Received in revised form 11
October 2023
Accepted 21 October 2023
Available online 31 December 2023
Keywords:

Release note, Software versioning,
Explainable AI, BERT, Software
development process.

ABSTRACT

Distributed Software Development is the practice of developing software with a team in different locations.
The process of software versioning is crucial in distributed development as it helps in keeping track of the
various software versions that are being developed and maintaining projects. In transition of each new
version, the development team present release notes that inform all team members and stakeholders are
aware of changes and provide tracking project progresses. Release notes consist information about the
features, bug fixes, and other changes included in a new software release. Generating release notes and
determining the release transition timing for new software versions can be costly. Despite of there are
some papers about generating release notes in the literature, there is not any study about automatic
versioning. In this context, the aim of this paper is to predict the development types in release notes as the
first phase of an automated versioning tool that is planned to be built in future work. We used BERT which
is one of the popular transformers to classify developments of release notes and our model has 86%
accuracy rate on our own public dataset. Additionally, we presented insights on the model's decision-
making process in the context of explainable AI using ELI5 library.

Doi: 10.24012/dumf.1345893

* Corresponding author

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

630

performance improvements, and any known issues or
limitations. They may also provide guidance on how to
upgrade to the new release, as well as information about
compatibility with other software or systems. Release notes
are an important resource for users, as they help them stay
informed about the latest updates and ensure that they are
using the most current version of the software. In the
context of distributed software development, software
release notes are particularly important for several reasons
[7]. They help ensure that all team members and
stakeholders are aware of the changes that have been made
to the software. This is especially important in a distributed
environment, where team members may be working in
different locations and time zones. They can serve as a
reference point for future development, allowing team
members to easily look back and understand the reasoning
behind certain decisions that were made. Moreover, they
can also be used to help track the progress of the
development project and identify any potential issues or
delays. Overall, software release notes play a vital role in
the successful development and distribution of software,
helping to ensure that all team members are informed and
aligned on the direction of the project. There are several
types of developments that may be included in software
release notes, such as new features, improvements, bug
fixes, security updates, performance improvements and
deprecations, etc.

The cost of generating release notes will depend on a
number of factors, including the complexity of the software
being released, the size of the team working on the project,
and the tools and processes being used [8]. Development
teams may feel that the process of generating release notes
is an extra time burden [9]. Nevertheless, it requires them to
document the changes that have been made to the software.
However, release notes serve an important purpose in
communicating the changes that have been made to
stakeholders, such as customers, users, and other team
members. Without clear and concise release notes, it can be
difficult for these stakeholders to understand the impact of
the changes and how they should be using the updated
software. There are a number of ways that teams can make
the process of generating release notes more efficient, such
as using automated tools to generate draft release notes,
establishing clear guidelines and templates for writing
release notes, and involving the appropriate team members
in the process.

In our empirical study, we firstly analyzed the release notes
of a popular open source project and predicting the
development types of release notes in order to automatically
generate them in the next studies. To conduct this study, we
collected some release notes from four open-source project.
After that, we use the transformers that is the one of popular
deep learning models to predict the development types. By
predicting the development types of release notes, we may
be able to automate the process of generating release notes
for future releases. Thanks to automate this process,
development team may be able to save time, resources and
improve the efficiency.

Other parts of the study are organized as follows. In the
second section, the data set used are explained in detail. In
the third section, the literature that guided the study was

examined. The research methodology is presented and the
findings are given in detail in the next sections. In the last
section, the results of the study are presented and future
studies are expressed.

Related Works
Classifying and labeling issues in software projects is a
significant challenge. While developers may occasionally
label issues, the practice is not widely used [10]. Different
methods are being explored to address this challenge. In one
study, the authors examined the cost of inaccurately
labeling issues [11]. In another study, a naive bayes method
was used to classify and analyze 4000 issues extracted from
JIRA [12].

Despite some studies on issue labeling and classification,
there is limited research in the literature on classifying
developments within release notes. The one of the studies
about this problem, the authors used classic machine
learning techniques. The most successful model is based on
SVM with the %77 accuracy rate [13].

Some other studies focus on generating release notes. In a
study, the authors develop a framework named as ARENA,
for automatically generating release notes [9]. Another
study found that release notes generated using this method
were more accurate than those created manually [14].

Text classification serves as a foundational domain within
the realm of natural language processing, garnering
significant attention from researchers and practitioners alike
[15]. In recent years, deep learning models have emerged as
powerful tools for tackling this challenge, with transformers
gaining widespread prominence [16]. Notably, Soyalp et al.
introduced an expanded transformer model designed
specifically for text classification tasks, achieving superior
performance when compared to earlier state-of-the-art
models like LSTM and CNN [17]. In another study, a
BERT-based CNN model was leveraged to classify Chinese
news articles, exhibiting exceptional accuracy [18]. These
studies underscore the transformative impact of deep
learning and transformer-based approaches in advancing
text classification techniques.

Materials and Methods
The diagram below illustrates the flowchart utilised in this
study (Figure 1).

Figure 1. The flowchart of the study.

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

631

Collecting Data with Labels

We selected four popular open-source projects in different
domain to conduct our study. As we review projects, we
determined according to their release consistency schedule
and the presence of comprehensive release notes. Thus, we
create a dataset from the release notes of Mozilla Firefox
[19], Thunderbird [20], Slack [21], and OBSProject [22]. In
our dataset, we collected 333 release notes published after
each version's migration (Table 1).

To crawl this data, we used selenium framework. Our
dataset is shared on a GitHub repository. With this
framework, we navigate the web pages of each release.
Thereby we use the unique features (id, class, type) of web
components, we reach the context of release notes
developments. Then, we record them with labels into an
excel file. In the release notes, developments and changing
labeled such as new, fixed, changed, unresolved, developer,
enterprise, web platform, improvements, addition, etc.

The labels introduce the development types of release note
explanations in related release. Some of them are given
below.

- New: It typically refers to the introduction of new
features or functionality that has been added to the
software or system being released.

- Changed: It typically refers to modifications or updates
that have been made to existing features or
functionality of the software or system being released.
It could also refer to changes in the behavior of the
software or system. These changes could be bug fixes,
performance improvements, or changes in the user
interface or user experience.

- Fixed: It typically refers to a correction of a problem or
error that existed in a previous version of the software
or system. This could include resolving issues such as
bugs, glitches, or crashes that have been reported by
users or identified by the development team. These
fixes are done to improve the stability, performance
and correct the problem that was previously identified
in the software.

- Unresolved: It typically refers to issues, bugs or
problems that have been reported but have not yet been
fixed or addressed in the current release. These are
known issues that developers are aware of and are
working to resolve in future releases. The unresolved
issues may also be reported in the bug tracking system.
This information is usually provided in the release
notes to inform the users of the current state of the
software and to set expectations for the known issues
that are yet to be fixed.

As observed, the definitions of labels are often similar to
one another, which makes the classification of them a
challenging task.

As seen Figure 1, each release note consists of some
development types of titles (new, fixed, development, etc.)
and explanations about changing part of the application.
While we were creating the dataset, we record each part of
notes as an individual development.

Figure 2. An example of a release notes of The Mozilla

Firefox Project.

For example, in Figure 2, there are two changes that are
titled with “New”. In this way, in our dataset there are

800 total rows with labels (Table 1).

Table 1. The dataset information.

 Release Count Total Changes
Chrome 74 212
Slack 134 74

ThunderBird 67 196
OBSProject 58 318

In our dataset, some of the labels (classes) are used rarely.
Because of that we bring together some labels into “other”
label. In Table 2, it is given that the number of labels in our
dataset.

Table 2. The label counts of changes in our dataset.

Initial Status Status After Merge
labels count labels count
new 115 new 115
fixed 295 fixed 295

changed 226 changed 226
unresolved 63 unresolved 63
developer 30

other 101

enterprise 32
web platform 2
improvements 34

 changed 2
addition 1

Pre-processing

Pre-processing is an important step in natural language
processing (NLP). It involves preparing the raw text data
for further processing and analysis. The specific steps in the
preprocessing stage can vary depending on the task and the
specific needs of the project, but common steps include;

- Tokenization: This involves splitting the text into
individual words or smaller pieces called tokens.

- Lowercasing/uppercasing: This involves converting all
text to either lowercase or uppercase.

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

632

- Removing punctuation: This involves removing any
punctuation marks from the text.

- Removing numbers: This involves removing any
numerical values from the text.

- Removing stop words: This involves removing common
words that do not add significant meaning to the text,
such as "the" "and" and "but".

- Stemming: This involves reducing words to their base
form to reduce the dimensionality of the data. For
example, "jumping" "jumps" and "jumped" would all
be reduced to the base form "jump".

We applied pre-processing steps to our dataset, except for
stemming. We attempted to use four different stemmer
libraries/framework such as TextHero, Lancaster, Porter
and Snowball. As seen in Table 3, we found that TextHero
library has the most accurate and fastest stemming process
among four, and noticed that it did not change the words too
much. As a result, there was no significant impact on the
prediction model, so we did not apply stemming to dataset.

Creating Classification Model with Transformers

Transformers are a type of neural network architecture that
was introduced in the paper of Vaswani et al [23]. Since
then, they have become one of the most popular and
effective models in natural language processing (NLP)
tasks, such as machine translation and language modeling.

One of the key innovations of the Transformer architecture
is the use of self-attention mechanisms. In a traditional

neural network, the input is processed sequentially through
a series of layers, with each layer using the output of the
previous layer as input. In contrast, the Transformer uses
self-attention mechanisms, which allow the model to
consider the entire input sequence simultaneously when
processing a particular element in the sequence [23].

BERT (Bidirectional Encoder Representations from
Transformers) is a state-of-the-art language processing
model developed by Google [24]. It is trained with
approximately 4 million words extracted from Wikipedia
and BooksCorpus to understand the context of a word based
on the words that come before and after it—a technique
called contextual modeling. BERT is designed to
preprocess text data for natural language processing tasks
such as question answering, classification, and language
translation, by encoding the context of words in a sentence.
DistilBERT, on the other hand, is a smaller and faster
version of BERT. It is a distilled version of BERT, which
means that it has been trained to have a smaller architecture
while still maintaining a similar performance to BERT.
DistilBERT can be fine-tuned for the same NLP tasks as
BERT but with less computational resources.

To predict the development types of release notes changes,
we used two different BERT models, “DistilBERT-base-
uncased” and “BERT-base-uncased”.

We divided the dataset into 80% for training and 20% for
testing. Before training, we shuffled data with the Pandas
library. In one of the iterations, the distribution of labels in
the training and testing datasets is shown in Table 4.

Table 3. The comparison of the stemming libraries.

 WORD TextHero Lancaster Porter Snowball

SA
M

PL
E

W
O

R
D

S
 information information inform inform inform

developer developer develop develop develop
various various vary variou various
fixed fix fix fix fix

images images im imag imag
capturing capture capt captur captur
activities activities act activ activ
stories stories story stori stori

automatic automatic autom automat automat
Running Time 75ms 576ms 856ms 702ms

Table 4. The distribution of the test-train dataset parts.

Label Label_num Type Record

changed 4 train 180
test 45

fixed 0 train 232
test 58

new 2 train 90
test 23

other 1 train 78
test 20

unresolved 3 train 51
test 12

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

633

We develop our models in the Google Colaboratory
platform with NVIDIA-SMI GPU. We trained our models
with ktrain library which is a lightweight wrapper library

for TensorFlow Keras. The hyper parameters of our models
are given Table 5.

Table 5. The hyper parameters of our models.

 Bert DistilBert
model name BERT_base_uncased DistilBERT_base_uncased
epoch size 5 5

learning rate 5e-5 5e-5
batch size 6 6

maxlen 500 500

Results
Model Results

Our model provides class-specific scores and overall
evaluation metrics. Classification problems are commonly

evaluated using accuracy, precision, recall, and F1 score
metrics. In a multi-class problem, the calculation of these
metrics is specific to each class [25]. The terms of metrics
(True Positives, True Negatives, False Positives, False
Negatives) are different to binary classification. In figure 3,
it is seen that the difference between them.

Figure 3. The comparison of between binary-class and multi-class classification.

Precision is referred to the proportion of correct predictions
among all predictions for a particular class. Recall is
referred to the proportion of examples of a specific class
that have been predicted by the model as belonging to that
class. F1 Score is the harmonic mean of precision and recall.

precision 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =
𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
 (1)

recall 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =
𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
 (2)

f1score 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 = 2 x
precision 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∗ recalll 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
precision 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + recalll 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

 (3)

These metrics should be used with caution as it can be
misleading, especially when the class distribution is
imbalanced. Because of that we also give macro and
averaged metrics. The macro approach calculates the
average measure for each class without considering class

size. In contrast, the weighted method takes into account the
number of samples per class and calculates a weighted
average measure. For example, weighted and macro
precisions are calculated with Equation 4 and Equation 5.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡=
∑(𝑝𝑝𝑝𝑝𝑤𝑤𝑐𝑐𝑤𝑤𝑐𝑐𝑤𝑤𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∗ 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑝𝑝 𝑝𝑝𝑜𝑜 𝑐𝑐𝑐𝑐𝑛𝑛𝑝𝑝𝑐𝑐𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

∑(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑝𝑝 𝑝𝑝𝑜𝑜 𝑐𝑐𝑐𝑐𝑛𝑛𝑝𝑝𝑐𝑐𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
 (4)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 =
∑(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (5)

In these equations above, “i” is the class index and the sum
(∑) is over all classes.

In addition to these evaluation metrics, the confusion
matrices of the models is also provided. The results of above
metrics and confusion matrices for both models are
presented below.

Table 6 and 7 present the precision, recall, and f1-scores for
each class of the dataset. The last column shows the number
of samples associated with each label. Additionally, the

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

634

overall macro and weighted metrics of the models can be
found at the bottom of the table (italic). Lastly, the last row
of the table shows the overall accuracy score of the model.
In the tables, the top two scores in each column are
displayed in bold font.

Table 6. The evaluation metrics of the “DistilBERT”
model.

 precision recall f1-score support
changed 0.73 0.73 0.73 45

fixed 0.83 0.85 0.84 59
new 0.67 0.70 0.68 23
other 0.90 0.95 0.93 20

unresolved 1.00 0.77 0.87 13

macro avg 0.83 0.80 0.81 160
weighted avg 0.80 0.80 0.80 160

accuracy 0.80 160

The results of the first model “DistilBERT” are given Table
6. According to results, the model is given overall 0.80
accuracy. The confusion matrix of DistilBERT model is
given Figure 4.

Figure 4. The confusion matrix of “DistilBERT” model.

The model confused between “changed” and “fixed” label.
Indeed, these two classes are very similar in definition and
content.

Table 1. The evaluation metrics of the “BERT” model.
 precision recall f1-score support

changed 0.79 0.84 0.82 45
fixed 0.88 0.85 0.86 59
new 0.90 0.83 0.86 23
other 1.00 1.00 1.00 20

unresolved 0.79 0.85 0.81 13

macro avg 0.87 0.87 0.87 160
weighted avg 0.87 0.86 0.86 160

accuracy 0.86 160

Table 7 presents the BERT model’s results. The BERT
model has higher scores because it contains more
comprehensive data than the DistilBERT model. In our
dataset, we combined rare labels under the "other" category.

Because of the model has labeled all data it could not decide
on as "other.", the highest scores are seen in the "other"
label. The overall accuracy of this model is 0.86.

Figure 5. The confusion matrix of “BERT” model.

When looking at each class individually (Figure 5).

 The “changed” class is most often confused with
the “fixed” class.

 The “fixed” class is most often confused with the
“changed” class.

 The “new” class is most often confused with the
“fixed” and “changed” classes.

 The “unresolved” class is most often confused
with the “fixed” and “changed classes.

This situation also shows that the "changed" and “fixed”
classes are the most difficult to distinguish.

After seeing these results, we wanted to perform another
analysis to understand how the model makes decisions
based on the classes.

The explanation of AI

We analyze the BERT model's explainable AI aspect in
order to gain insight into the model's decision-making
process. With this purpose, we use ELI5 (explain like I'm
five) that is a Python library that provides an easy-to-use
interface for interpreting the predictions of machine
learning models [26]. It allows users to inspect the features
of a model that are most important for making a prediction
and to understand the reasoning behind a model's
predictions. Additionally, it has some visualization tools
which can be used to understand the predictions. It helps
non-technical people or people who are not experts in
machine learning to understand how a model works and
why it makes certain predictions.

the html date picker for date and datetime inputs can
now be with a keyboard alone improving its

accessibility for screen reader users users with
mobility can also use common keyboard shortcuts to

navigate the calendar grid and month
selection spinners.

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

635

We gathered release notes from recent versions of
Mozilla Firefox and observed which words in the release
notes are prominent to classifying process. Besides, after
removing these words from the sentence, we also
investigate whether the decision of the model changes or
not when we ask for a prediction again.

Our model correctly predicted the label for the first
below sample, which was labeled as “new”.

SAMPLE 1: “the html date picker for date and datetime
inputs can now be with a keyboard alone improving its
accessibility for screen reader users with mobility can also
use common keyboard shortcuts to navigate the calendar
grid and month selection spinners”

ELI5 is a library that helps to explain the predictions made
by the model. It produces a colorful output that shows which
parts of the input were most important in the model's
decision-making process. This can clarify how a model is
making its predictions and identifying any potential issues
or biases in the model's decision-making. In our sample the
output of ELI5 explain() methods is given below.

In addition to the explanations, ELI5 also provides a table
that shows the weights of the words in the input text during
the decision-making process. The table can be used to
identify any patterns or relationships in the input text that
the model is using to make its predictions. In Table 8, it is
seen that the words have negative impact on decision such
as “improving, common, shortcuts and use”.

Table 2. The weights of words used by ELI5 to decision-making process in the Sample-1.

Then, we chose a description that our model is unable to
predict correctly. Although, the correct label is “fixed”, the
model predicted as “new”.

SAMPLE 2: “when using a screen reader on windows
pressing enter to activate an element no longer fails or
clicks the wrong element and or another application
window for those blind or with very limited vision this
technology reads out loud what is on the screen and users
can adapt them to their needs now on our platform without
errors.”

Table 3. The weights of words used by ELI5 to decision-making process in the Sample-2.

As seen from Table 9, the phrase that cause the model to
make mistakes can be given as " vision this technology
reads ".

The last selected sample is one that our model was unable
to predict correctly. The real label is “changed”, the model
predicted as “new”.

when using a screen reader on windows pressing
enter to activate an element no longer fails or clicks

the wrong element and or another application
window for those blind or with very limited vision this
 technology reads out loud what is on the screen and

 users adapt them to their needs now on our
platform without errors

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

636

SAMPLE 3: “firefox has a new focus indicator for links
which replaces the old dotted outline with a solid blue
outline this change unifies the focus indicators across form
fields and links which makes it easier to identify the focused
link especially for users with low vision.”

Table 4. The weights of words used by ELI5 to decision-making process in the Sample-3.

The words “replace” and “new” have negative impact to the
decision of the model.

As can be seen from the examples, an AI model considers
some words more when deciding for text classification.
Particularly effective words here are "replace, fix, new, this,
etc".

Evaluating Model with Unseen Data

Lastly, we used data not seen by the model to evaluate our
best model. The results for the 10 enhancements taken from
the version notes of the new versions that are not in the
dataset are given below (Table 5). In this context, it is also
seen that the dataset is %84 successful.

Conclusion
In this paper, we analyzed the release notes of four open-
source projects. In these release notes, we aimed to predict
the development types such as new, fixed or changed.
Contrast to previous papers, we used for classification
BERT that is one of the popular transformer models. We
developed models with two different pre-trained models of
BERT.

In the text classification model development process, there's
a pre-processing step applied to text data. However, after
trying 4 different stemming libraries, we found that
stemming did not have a significant impact on the model.
Because of that, we apply other process except stemming.

As results of models are given that some common metrics
such as accuracy, recall, precision, and f1-score. We
presented the scores per class and the average scores
calculated using various methods while presenting results.
We achieved better results compared to a study using
traditional machine learning methods.

Besides, according to our conclusions from the confusion
matrices, the model experiences the most confusion in the
"changed" and "fixed" classes. It is also estimated that these
two classes are similar to each other when considering the
developments made in version transitions.

Lastly, we investigated how the model made its
classification decision using explainable AI concept and
presented the prominent parameters (words) in this context.

In this research paper, we employ text classification
techniques, a fundamental aspect of Natural Language
Processing (NLP), to address a pertinent challenge within
the realm of software engineering. Our objective is to
extend our investigations in future work by analyzing
commit notes within open-source projects. Specifically, we
aim to ascertain the nature of the development being
undertaken within these projects. Furthermore, we intend to
provide recommendations for version transitions and their
corresponding significance levels based on the degree of
change identified in these commit notes. This research
bridges the gap between NLP and software engineering,
offering valuable insights into the management and
evolution of open-source software projects.

firefox has a new focus indicator for links which
replaces the old dotted outline with a solid blue

outline this change unifies the focus indicators across
form fields and links which makes it easier to identify

the focused link especially for users with low vision

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

637

Table 5. Unseen data scores of the best model

 Text Actual
Class

Predicted
Class

1 You’ll encounter less website breakage in Private Browsing and Strict Enhanced
Tracking Protection with SmartBlock, which provides stand-in scripts so tha… new new

2 Now, you can set a default app to open a file type. Choose the application you want
to use to open files of a specific type in your Firefox settings fixed new

3 The native HTML date picker for date and datetime inputs can now be used with a
keyboard alone, improving its accessibility for screen reader users. Users … new changed

4 Firefox builds in the Spanish from Spain (es-ES) and Spanish from Argentina (es-
AR) locales now come with a built-in dictionary for the Firefox spellchecker new new

5 Fixes the default search engine being reset on upgrade for profiles which were
previously copied from a different location. fixed fixed

6 You can now pin private windows to your Windows taskbar on Window 10 and
Windows 11 for simpler access. Also, private windows have been redesigned… new new

7 Removed a configuration option to allow SHA-1 signatures in certificates: SHA-1
signatures in certificates—long since determined to no longerbe secure … changed changed

8 Power profiling — visualizing performance data recorded from web browsers — is
now also supported on Linux and Mac with Intel CPUs, … new new

9 When using a screen reader on Windows, pressing enter to activate an element no
longer fails or clicks the wrong element and/or another application window. fixed fixed

10 Removed subject common name fallback support from certificate validation. This
fallback mode was previously enabled only for manually changed changed

References
[1] A. B. Marques, R. Rodrigues, and T. Conte,

‘Systematic literature reviews in distributed
software development: A tertiary study’, in IEEE
7th International Conference on Global Software
Engineering, ICGSE 2012, 2012, pp. 134–143. doi:
10.1109/ICGSE.2012.29.

[2] L. Linsbauer, F. Schwägerl, T. Berger, and P.
Grünbacher, ‘Concepts of variation control
systems’, Journal of Systems and Software, vol.
171, p. 110796, Jan. 2021, doi:
10.1016/J.JSS.2020.110796.

[3] A. M. Aytekin, ‘Release Management with
Continuous Delivery: A Case Study’, Release
Management with Continuous Delivery: A Case
Study, vol. 8, no. 9, 2014, Accessed: Jan. 08, 2023.
[Online]. Available:
https://publications.waset.org/9999440/release-
management-with-continuous-delivery-a-case-
study

[4] L. Layman, L. Williams, D. Damian, and H. Bures,
‘Essential communication practices for Extreme
Programming in a global software development
team’, Inf Softw Technol, vol. 48, no. 9, pp. 781–
794, Sep. 2006, doi:
10.1016/J.INFSOF.2006.01.004.

[5] T. Preston-Werner, ‘Semantic Versioning 2.0.0 |
Semantic Versioning’. Accessed: Jan. 10, 2023.
[Online]. Available: https://semver.org/

[6] G. Karsai and D. Balasubramanian, ‘Assurance
Provenance: The Next Challenge in Software
Documentation’, in Leveraging Applications of
Formal Methods, Verification and Validation.
Software Engineering, vol. 13702, T. Margaria and
B. Steffen, Eds., Springer, Cham, 2022, pp. 90–
104. doi: 10.1007/978-3-031-19756-7_6.

[7] A. C. B. G. da Silva, G. de F. Carneiro, F. Brito e
Abreu, and M. P. Monteiro, ‘Frequent Releases in
Open Source Software: A Systematic Review’,
Information 2017, Vol. 8, Page 109, vol. 8, no. 3, p.
109, Sep. 2017, doi: 10.3390/INFO8030109.

[8] S. S. Nath and B. Roy, ‘Automatically Generating
Release Notes with Content Classification Models’,
International Journal of Software Engineering and
Knowledge Engineering, vol. 31, no. 11–12, pp.
1721–1740, Jan. 2022, doi:
10.1142/S0218194021400192.

[9] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A.
Marcus, and G. Canfora, ‘ARENA: An Approach
for the Automated Generation of Release Notes’,
IEEE Transactions on Software Engineering, vol.
43, no. 2, pp. 106–127, Feb. 2017, doi:
10.1109/TSE.2016.2591536.

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 629-638

638

[10] A. Şeker, B. Diri, and H. Arslan, ‘Using Open
Source Distributed Code Development Features on
GitHub: A Real-World Example’, in 2nd
International Eurasian Conference on Science,
Engineering and Technology, 2020, pp. 518–525.

[11] K. Herzig, S. Just, and A. Zeller, ‘It’s not a bug, it’s
a feature: How misclassification impacts bug
prediction’, in Proceedings - International
Conference on Software Engineering, 2013, pp.
392–401. doi: 10.1109/ICSE.2013.6606585.

[12] M. Ohira et al., ‘A dataset of high impact bugs:
Manually-classified issue reports’, in IEEE
International Working Conference on Mining
Software Repositories, IEEE Computer Society,
Aug. 2015, pp. 518–521. doi:
10.1109/MSR.2015.78.

[13] A. Şeker, S. Yeşilyurt, İ. Can Ardahan, and B.
Çınar, ‘Prediction of Development Types from
Release Notes for Automatic Versioning of OSS
Projects’, in Smart Applications with Advanced
Machine Learning and Human-Centred Problem
Design, Springer International Publishing, 2023,
pp. 399–407. doi: 10.1007/978-3-031-09753-9_28.

[14] M. Ali, A. Aftab, and W. H. Buttt, ‘Automatic
Release Notes Generation’, Proceedings of the
IEEE International Conference on Software
Engineering and Service Sciences, ICSESS, vol.
2020-October, pp. 76–81, Oct. 2020, doi:
10.1109/ICSESS49938.2020.9237671.

[15] S. Minaee, N. Kalchbrenner, E. Cambria, N.
Nikzad, M. Chenaghlu, and J. Gao, ‘Deep
Learning--based Text Classification: A
Comprehensive Review’, ACM Computing
Surveys (CSUR), vol. 54, no. 3, Apr. 2021, doi:
10.1145/3439726.

[16] A. Gasparetto, M. Marcuzzo, A. Zangari, and A.
Albarelli, ‘A Survey on Text Classification
Algorithms: From Text to Predictions’, Information
2022, Vol. 13, Page 83, vol. 13, no. 2, p. 83, Feb.
2022, doi: 10.3390/INFO13020083.

[17] G. Soyalp, A. Alar, K. Ozkanli, and B. Yildiz,
‘Improving Text Classification with Transformer’,

Proceedings - 6th International Conference on
Computer Science and Engineering, UBMK 2021,
pp. 707–712, 2021, doi:
10.1109/UBMK52708.2021.9558906.

[18] X. Chen, P. Cong, and S. Lv, ‘A Long-Text
Classification Method of Chinese News Based on
BERT and CNN’, IEEE Access, vol. 10, pp.
34046–34057, 2022, doi:
10.1109/ACCESS.2022.3162614.

[19] ‘Mozilla Firefox Release Notes’. Accessed: Jan. 16,
2023. [Online]. Available:
https://www.mozilla.org/en-US/firefox/releases/

[20] ‘Thunderbird Release Notes — Thunderbird’.
Accessed: Jan. 16, 2023. [Online]. Available:
https://www.thunderbird.net/en-
US/thunderbird/releases/

[21] ‘Slack for Windows - Release Notes | Slack’.
Accessed: Jan. 16, 2023. [Online]. Available:
https://slack.com/release-notes/windows

[22] ‘Releases · obsproject/obs-studio’. Accessed: Jan.
16, 2023. [Online]. Available:
https://github.com/obsproject/obs-studio/releases

[23] A. Vaswani et al., ‘Attention is All you Need’, in
Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2017.

[24] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and
A. I. Language, ‘Bert: Pre-training of deep
bidirectional transformers for language
understanding’, in Proceedings of NAACL-HLT
2019, Minnesota, 2019, pp. 4171–4186. Accessed:
Jan. 17, 2023. [Online]. Available:
https://arxiv.org/abs/1810.04805

[25] M. Grandini, E. Bagli, and G. Visani, ‘Metrics for
Multi-Class Classification: an Overview’, arXiv
preprint arXiv:2008.05756, Aug. 2020.

[26] ‘ELI5 ’. Accessed: Jan. 24, 2023. [Online].
Available:
https://eli5.readthedocs.io/en/latest/overview.html

