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Introduction 
 
The use of mathematics in demonstrating empirical 
problems in applied science and other areas of study in 
which  noises are introduced into the deterministic 
models of differential equations [1]. It was found that the 
deterministic differential equations were ineffective and 
inadequate to handle differential equations arising from 
these fields of study with intrinsically complex systems 
containing millions or billions of interacting particles [2]. 
The computations of empirical problems will be used for 
sampling the first order initial value problem given as: 
 

      ' , , 0 0f u u         (1) 

Most of the empirical problems and studies 
mentioned above are coded in numbers and 
mathematical symbols to form an equation in order to 
have meaning, construction, and application [3]. One of 
such equations is known as a differential equation of the 
form (1) [3]. The differential equation (1) may evolve from 
empirical problems that involve the rate of change of a 
given variable in the structure (system) with respect to 
another. These equations came to prominence in the late 
17th century with the independent invention of 
infinitesimal calculus by an English mathematician, Isaac 
Newton (1642-1727), and a German mathematician, 
Gottfried Wilhelm Leibniz (1646-1716). 

The computational solution of an empirical problem 
modeled in (1) has great significance to researchers. A lot 
has been considered in finding analytic solutions to (1).  
Among others,  [4, 5, 6, 7, 8] developed  block methods for 

solving (1). The study of the Obrechkoff method for 
solving (1) is considered [9, 10]. The collocation method 
was employed by [11, 12,13, 14, 15, 16] to investigate the 
resolution of Volterra-Fredholm integro-differential 
equations and Volterra-Fredholm fractional order integro-
differential equations. 

Also,  [17, 18, 19,20, 21,22,23,24,25] adopt some 
methods to solve (1). However, it was noticed that many 
of the problems leading to this type of equation, especially 
when they are non-linear, could not be easily solved 
analytically to get the exact solution. As a result, various 
numerical methods for solving the equations have been 
developed in order to obtain an approximate solution to 
(1) [26]. 

 

Mathematical Formulation of the Method 

 
This section shows the formulation of the method. The 

method is derived using the linear block approach [27].  
The linear block approach is of the form 
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Eq. (2) and Eq. (3) are solved step by step  using linear block approach through 

2,,,1,,,0, banm  

The polynomial thxx s  , is used in Eq. (3) to yield the block hybrid method of the form: 
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To get the unknown values of Eq.(3), we simplify QAai

1  to obtain 
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Basic Properties of the Block Method 

Order and Error Constant 

This subsection establishes the linear operator   hxy i ;  associated with the newly derived method. 

Proposition 1 

The local truncation error of the newly derived scheme is    080707

07 0 hxyhC n  . 
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Proof 

The linear difference operators associated with the newly derived method is given as: 
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If  xy  is sufficiently differentiable, we can use the Taylor series to expand Eq. (7) in the power of h. It is 

critical to emphasize that the first non-zero term in each formula in Equation (7) is    080707

07 0 hxyhC n   

Definition 1. [28] 

A linear multistep method is of order p if it satisfies the condition  
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The parameter 02 pc  is referred to as the error constant with the local truncation error 

defined as 
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Corollary 1 [28].  

The newly derived scheme's local truncation error is given by. 
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Therefore, the newly derived scheme is of uniform order seven as well as error constant is given by 
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Consistent  
Traditionally, the method is consistent if the order of the method is  greater than or equal to one. 

Definition 2. [5] 

By definition, the method is said to be zero stable as 0h  if the roots of the polynomial   0r  satisfy 

  ,110  kRA and those roots with R = 1 must be simple. 

Hence according to [8] it’s found as 
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Then, solving for  r in  16 rr , 

Gives 1,0,0,0,0,0r . Therefore, the method is zero stable. 

Dahlquist's theorem states that the scheme is convergent, and consistency and zero-stability are analyzed and 
fulfilled [29]. 

Convergence 
Theorem 1. [29] 

Consistency and zero-stability are both required and sufficient conditions for a linear multistep method to be 
convergent. 
Therefore, the newly derived scheme is convergent since it is consistent and zero-stable.  

Linear Stability 

Definition 3. [5] 

The region of absolute stability of a numerical method is the set of complex values h for 

which all solutions of the test problem yy ' will remain bounded as n . 

The concept of A-stability according to [8] is discussed by applying the test equation    yy kk   

to yield  

  hzYzY mm    ,1
                      (10) 

Where  z  is the amplification matrix of the form 

           111110100  zzzzz 


                          (11) 

The matrix  z  has Eigen values  k,,0,0    where k  is called the stability function. 

Thus, the stability function of the method is given by 
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The boundary locus method is used to generate the hybrid method's stability polynomial. The polynomial is defined as 
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The polynomial is used to plot the region as: 
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Figure 1. Showing the region of stability of the method. 

 
The region of absolute stability of the method is a region in the complex z  plane. The numerical solution of (6) satisfies 

0jy as j   for any initial condition [29]. The stability region obtained in Figure 1 is stableA  according 

[29]. 

Numerical Problems 

To validate the accuracy and convergence of the new method, the following IVPs are considered. 
The results obtained from the new method are compared with the existing methods.  
The following notations will be used in the tables and figures. 
ES means exact solution 
CS means computed solution 
ENM means error in method 
ES11 means error in Sunday 2011 [30] 
EJASY means error in James et al. 2013 [6] 
ESOAJ means error in Sunday et al. 2013 [5] 
ESJOA means error in Sunday et al. 2015 [4] 
EOSE means error in Okunuga et al. 2013 [31] 
E2SEM means error in the Two-Step Implicit Obrechkoff Method of Omar and Adeyeye 2016 [9]. 
E2SBM means error in New Two-Step Obrechkoff-Type Block Method of Omar and Adeyeye 2016 [9] 
EBYP means error in Badmus et al., 2015 [20] 
Problem 1 
A specific radioactive substance is known to decay at a rate proportional to its concentration. A block of this substance 

with a mass of g100  is observed. Its mass is reduced to g90  after 40 hours. Find an expression for the mass of the 

substance at any time and solve this problem for 1,0 u  using the new method. The differential equation for the 

above problem is 

  .1,0,1000,  uuu
dv

du
                         (13) 

 Where u represent the substance's mass at any point in time v  and    are constants that specify the rate at which 

this particular substance decays. As a result, 
ve 0026.0100 

 is the theoretical solution to equation (13). 
See: [8, 17]. 
Problem 2: The oscillatory differential equation solved by [4, 5]  

       ,00,01.0,cos200sin  uhvuv
dv

du
       (14) 

with the exact solution 

    vevvu 200cos            (15) 

Problem 3: Consider the oscillatory differential equation [4, 32] 
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    ,20,01.0,110
2

 uhu
dv

du
                                    (16) 

with the exact solution 

 
v

vu
101

1
1


                         (17) 

Problem 4: Consider the Highly stiff oscillatory differential equation [9, 20] 

  ,10,1.0,   uhu
dv

du
                     (18) 

with the exact solution 

  )exp( vvu                       (19) 

 

Results and Discussions 

Table 1. Showing the result for (13) with that of [6, 30]. 
V ES CS ENM ES11 EJASY 

0.1 99.97400337970708570600 99.97400337970708570600 0.0000e-00 2.0000e-08 0.0000e-00 

0.2 99.94801351765683795200 99.94801351765683795200 0.0000e-00 1.0000e-08 1.4211e-14 

0.3 99.92203041209234205300 99.92203041209234205300 0.0000e-00 0.0000e-00 0.0000e-00 

0.4 99.89605406125714006400 99.89605406125714006400 0.0000e-00 0.0000e-00 0.0000e-00 

0.5 99.87008446339523065700 99.87008446339523065700 0.0000e-00 3.0000e-08 1.4211e-14 

0.6 99.87008446339523065700 99.87008446339523065700 0.0000e-00 0.0000e-00 1.4211e-14 

0.7 99.84412161675106900700 99.84412161675106900700 0.0000e-00 3.0000e-08 1.4211e-14 

0.8 99.81816551956956667200 99.81816551956956667200 0.0000e-00 3.0000e-08 0.0000e-00 

0.9 99.79221617009609147100 99.79221617009609147100 0.0000e-00 0.0000e-00 0.0000e-00 

0.1 99.76627356657646737200 99.76627356657646737200 0.0000e-00 0.0000e-00 0.0000e-00 

Table 2. Showing the result for oscillatory differential equation (13) with that of [4, 5]. 
V                  ES                  CS     ENM  ESJOA   ESOAJ 

0.001 0.18126874692477177712 0.18126874692205980800 2.7120e-12 3.7249e-10 8.5812e-06 

0.002 0.32967795396412439246 0.32967795396502736584 9.0297e-13 5.2169e-10 2.9379e-06 

0.003 0.45118386391042716158 0.45118386390934856636 1.0786e-12 6.7870e-10 9.3961e-06 

0.004 0.55066303589223450724 0.55066303589344506955 1.2106e-12 7.6010e-10 1.1305e-05 

0.005 0.63210805885482676508 0.63210805885459932337 2.2744e-12 7.4126e-10 7.9107e-06 

0.006 0.69878778814058064233 0.69878778814179783856 1.2172e-12 7.4495e-10 1.0313e-05 

0.007 0.75337853615825529977 0.75337853615843502633 1.7973e-13 7.2211e-10 1.0426e-05 

0.008 0.79807148217492301264 0.79807148217601089409 1.0879e-12 6.5649e-10 7.7981e-05 

0.009 0.83466061205144457875 0.83466061205178772359 3.4315e-13 6.1326e-10 8.4900e-05 

1.000 0.86461471717914105002 0.86461471718005258589 9.1154e-13 5.6367e-10 8.0388e-05 

Table 3. Showing the result for oscillatory differential equation (15) with that of [4, 31]. 
V                   ES                 CS      ENM    ESJOA       EOSE 

0.001 1.90909090884750640830 1.90909090889090909090 4.3403e-11 2.4025e-08 1.0700e-04 

0.002 1.83333333337241953740 1.83333333333333333330 3.9086e-11 3.1560e-08 2.3800e-04 

0.003 1.76923076920944483900 1.76923076923076923080 2.1324e-11 3.2631e-08 4.5100e-04 

0.004 1.71428571432193859870 1.71428571428571428570 3.6224e-11 3.1192e-08 6.2000e-04 

0.005 1.66666666668304290430 1.66666666666666666670 1.6376e-11 2.8877e-08 8.8400e-04 

0.006 1.62500000002955801560 1.62500000000000000000 2.9558e-11 2.6370e-08 1.0300e-03 

0.007 1.58823529413888054590 1.58823529411764705880 2.1234e-11 2.3953e-08 1.2700e-03 

0.008 1.55555555557943834040 1.55555555555555555560 2.3883e-11 2.1734e-08 1.5300e-03 
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0.009 1.52631578949329163390 1.52631578947368421050 1.9607e-11 1.9740e-08 1.7500e-03 

1.000 1.50000000001952055900 1.50000000000000000000 1.9521e-11 1.7969e-08 1.8100e-03 

Table 4. Showing the result for oscillatory differential equation (15) with that of [9, 20]. 
V                        ES                CS      ENM     E2SEM    E2SBM 

0.1 0.90483741803595957316 0.90483741803596084590 1.2727e-15 7.5513e-05 9.0730e-12 

0.2 0.81873075307798185867 0.81873075307798400161 2.1429e-15 6.8684e-05 1.1768e-11 

0.3 0.74081822068171786607 0.74081822068170938478 8.4813e-15 1.2397e-04 2.3144e-11 

0.4 0.67032004603563930074 0.67032004603564280973 3.5090e-15 1.1246e-04 2.8440e-11 

0.5 0.60653065971263342360 0.60653065971262806724 5.3564e-15 1.5237e-04 3.1815e-11 

0.6 0.54881163609402643263 0.54881163609403074200 4.3094e-15 1.3811e-05 3.4927e-11 

0.7 0.49658530379140951470 0.49658530379140642905 3.0857e-15 1.6640e-04 3.6582e-11 

0.8 0.44932896411722159143 0.44932896411722629572 4.7043e-15 1.5076e-04 3.8127e-11 

0.9 0.40656965974059911188 0.40656965974059764972 1.4622e-15 1.7033e-04 3.8576e-11 

1.0 0.36787944117144232160 0.36787944117144713602 4.8144e-15 1.5428e-04 3.9020e-11 

 

Table 5. Showing the result for oscillatory differential equation (15) with that of [9, 20]. 
V                       ES                  CS     EBYP 

0.1 0.90483741803595957316 0.90483741803596084590 1.5476e-10 

0.2 0.81873075307798185867 0.81873075307798400161 1.3823e-10 

0.3 0.74081822068171786607 0.74081822068170938478 1.3282e-10 

0.4 0.67032004603563930074 0.67032004603564280973 1.1733e-10 

0.5 0.60653065971263342360 0.60653065971262806724 1.1342e-10 

0.6 0.54881163609402643263 0.54881163609403074200 9.9385e-11 

0.7 0.49658530379140951470 0.49658530379140642905 9.6770e-11 

0.8 0.44932896411722159143 0.44932896411722629572 8.4003e-11 

0.9 0.40656965974059911188 0.40656965974059764972 8.2517e-11 

1.0 0.36787944117144232160 0.36787944117144713602 7.0848e-11 

 

 

Figure 2. Graphical curves for Problem 1. 
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Figure 3. Graphical curves for Problem 1. 

 

 

Figure 4. Graphical curves for Problem 2. 

 

 

Figure 5. Graphical curves for Problem 2. 
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Figure 6. Graphical curves for Problem 3. 

 

 

Figure 7. Graphical curves for Problem 3. 

 

 

Figure 8. Graphical curves for Problem 4. 
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Figure 9. Graphical curves for Problem 4. 

Discussion of results 
 
The newly derived method was applied to four sample 

problems. Problem 1 is the differential equation solved by 
[6, 30]. From the result obtained in Table 1 above, the new 
method performs accurately than [6, 30]. Figures 2 and 3 
show the graphical curve for problem 1. The oscillatory 
differential equation in problem 2 was considered by [4, 
5]. In Table 2, the proposed method performed accurately 
than that of [4, 5]. From figures 4 and 5, the textual curve 
of problem 2 is accurate. The result converges and 
performs better than that of [4, 5]. The oscillatory 
differential equation in problem 3 was solved and 
compared with [4, 31]. The textual results showed the 
convergence of the new method over the existing one. 
Finally, the highly stiff oscillatory differential (18) was 
solved by [20, 30], and the new method was accurate, as 
seen in tables 4 and 5 and figures 7 and 8 above. Hence, 
from the results, the new method has shown better 
accuracy and faster convergence graphically. Figures 3, 5, 
7, and 9 have shown the convergence of the new method 
closer to zero than those in the literature. 

Conclusion 

In this research, the application of a two-step block 
scheme is derived using the block approach for solving (1). 
The basic properties of the scheme were analyzed and 
satisfied all conditions. Some special classes of differential 
equations were implemented and compared with existing 
methods [4, 5, 6, 9, 20, 30, 31]. From tables 1 to 5, the new 
method proved to have better accuracy and faster 
convergence than the existing methods considered in this 
research. The graphical curve for problems 1 to 4 proved 
the convergence accuracy of the method. Therefore, the 
new methods have yielded a good result over the existing 
methods, both graphically and in tabular form. 
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