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Abstract: The main goal of brain extraction is to separate the brain from non-brain parts, which 

enables accurate detection or classification of abnormalities within the brain region. The precise 

brain extraction process significantly influences the quality of successive neuroimaging 

analyses. Brain extraction is a challenging task mainly due to the similarity of intensity values 

between brain and non-brain structure. In this study, a UNet model improved with ResNet50 or 

DenseNet121 feature extraction layers was proposed for brain extraction from Magnetic 

Resonance Imaging (MRI) images. Three publicly available datasets (IBSR, NFBS and CC-

359) were used for training the deep learning models. The findings of a comparison between 

different feature extraction layer types added to UNet shows that residual connections taken 

from ResNet50 is more successful across all datasets. The ResNet50 connections proved 

effective in enhancing the distinction of weak but significant gradient values in brain boundary 

regions. In addition, the best results were obtained for CC-359. The improvement achieved with 

CC-359 can be attributed to its larger number of samples with more slices, indicating that the 

model learned better. The performance of our proposed model, evaluated using test data, is 

found to be comparable to the results obtained in the literature. 

 

 

Artık ve Yoğun Katmanlarla Değiştirilmiş UNet Kullanılarak Manyetik Rezonans 

Görüntülerinden Beyin Çıkarımı 
 

 

Anahtar Kelimeler 

Beyin çıkarımı, 

Kafatası soyma, 

Derin öğrenme, 

Yığın bağlantı, 

Artık bağlantı, 

UNet  

Öz: Beyin çıkarımının temel amacı, beyni beyin dışı kısımlardan ayırarak beyin bölgesi içindeki 

anormalliklerin doğru tespitini veya sınıflandırılmasını mümkün kılmaktır. Hassas beyin 

çıkarma işlemi, ardışık nörogörüntüleme analizlerinin kalitesini önemli ölçüde etkiler. Beyin 

çıkarımı, beyin ve beyin dışı yapılar arasındaki yoğunluk değerlerinin benzerliği nedeniyle zorlu 

bir görevdir. Bu çalışmada, Manyetik Rezonans Görüntüleme (MRG) görüntülerinden beyin 

çıkarımı için ResNet50 veya DenseNet121 özellik çıkarma katmanları ile geliştirilmiş bir UNet 

modeli önerilmiştir. Derin öğrenme modellerini eğitmek için IBSR, NFBS ve CC-359 adlı üç 

halka açık veri kümesi kullanılmıştır. UNet’e eklenen öznitelik çıkarma katman türleri 

arasındaki karşılaştırma sonuçları, ResNet50’den alınan artık bağlantıların tüm veri kümelerinde 

daha başarılı olduğunu göstermektedir. ResNet50 bağlantılarının, beyin sınır bölgelerindeki 

zayıf ancak önemli gradyan değerlerinin ayrımını artırmada etkili olduğu anlaşılmaktadır. 

Ayrıca, en iyi sonuçlar CC-359 için elde edilmiştir. CC-359 ile elde edilen gelişme, verisetinin 

daha fazla kesit ve örnek içermesinden dolayı modelin daha iyi öğrenmesinden kaynaklanmıştır. 

Önerilen modelin performansı, test verileri kullanılarak değerlendirildiğinde, literatürde elde 

edilen sonuçlarla karşılaştırılabilir bulunmuştur. 
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1. INTRODUCTION 

 

The non-invasive Magnetic Resonance Imaging (MRI) 

technique provides rich information about the examined 

anatomical structure due to its high spatial resolution. It is 

widely used in the early diagnosis and assessment of 

many diseases, since it provides the detection of changes 

in brain structures that may develop even in micro 

dimensions over time. However, due to its high 

resolution, it also causes the detailed presence of non-

brain structures such as skull, scalp and eyeballs in the 

MRI scans [1]. The removal of non-brain structures may 

have a significant impact on the subsequent analyses 

related to the brain.  

 

Brain extraction, also known as skull stripping, is the 

initial step in analyzing MRI and other neuroimaging 

data, involving the separation of the brain from non-brain 

parts [2-3]. Its primary goal is to remove the skull and 

provide leverage in obtaining high accuracy for the 

detection or classification of any abnormalities within the 

relevant brain region [3, 4]. Accurate brain extraction 

significantly impacts the quality of neuroimaging studies, 

including image registration, brain tumor or lesion 

segmentation, measurement of brain regions of interest 

for global and neurodegenerative diseases, detection of 

cortical thickness, and planning neurosurgical 

interventions [2]. 

 

Brain extraction is a challenging task mainly due to the 

similarity of intensity values between brain and non-brain 

structure [3]. The partial volume effect blurs the 

boundaries between two tissues, making it difficult to 

distinguish structures especially in low contrast brain 

images. Interpreting brain structures that lack sharp edges 

in brain images, and the presence of unwanted signals 

(artifacts) at air/tissue boundaries in brain images, further 

adds to the complexity. Moreover, motion artifacts from 

the patient and noise from the imaging environment can 

reduce image quality and increase the difficulty of brain 

extraction [1]. 

 

In the literature, manual segmentation is considered the 

“gold standard” for brain extraction [5-6]. However, this 

method is not only labor intensive and time consuming, 

but also exhibits significant inter-individual variability, 

potentially introducing analysis bias and thus impeding 

the reproducibility of clinical studies [2]. Therefore, in 

recent years, many semi-automatic or fully automatic 

brain extraction techniques have been proposed with the 

aim of overcoming the drawbacks encountered in manual 

segmentation [1]. 

 

In the morphological and intensity-based initial brain 

extraction methods, selecting the most appropriate 

threshold value(s) to separate foreground and background 

is often challenging [1, 3]. Brain Extraction Tool (BET) 

and BET2 techniques developed by Smith [5] and 

Jenkinson et al. [7], define an initial sphere by 

determining the center of gravity of the head and 

deforming it until it reaches the brain edge. Brain Surface 

Extraction (BSE) technique developed by Shattuck et al. 

[8] uses an edge-based approach with anisotropic 

diffusion filtering. It has been reported that BET works 

poorly on neck-intense images and BSE has lower 

performance on low-resolution images [1]. Moreover, 

BET and BSE techniques require parameters to be 

optimized for each image, making them challenging to 

use in large-scale studies [1, 6]. 

 

Atlas/template-based brain extraction methods involve 

adapting an atlas/template MRI brain image to reveal 

relationships between brain regions, thereby separating 

structures with no relationship into brain and non-brain. 

The widely used atlas-based Brain Extraction using 

Nonlocal Segmentation Technique (BEaST) is fast and 

achieved successful performance on T1-weighted MRI 

images of both healthy individuals and Alzheimer's 

patients [9]. However, this method requires parameter 

optimization depending on the dataset used. 

 

Hybrid techniques for brain extraction involve combining 

the results of multiple methods. Souza et al. [6] prepared 

a dataset called Calgary-Campinas-359 (CC-359), which 

contains 359 T1-weighted MRI images of healthy 

individuals. In their study, the images were segmented 

with eight different methods, and the segmentation error 

was reduced by evaluating the results of multiple methods 

using the expectation-maximization technique. However, 

the hybrid technique benefits from results of techniques 

like BEaST, BET, and BSE, which require parameter 

optimization [6]. 

 

Recently, deep learning (DL) techniques, which have 

achieved successful results in medical image analysis and 

imaging, have demonstrated the potential to outperform 

medical experts in solving specific problems [4, 10-12]. 

DL models proposed for brain extraction are also 

available in the literature [13]. Kleesiek et al. [14] 

developed a deep convolutional neural network (CNN) 

model for brain extraction from MRI images in three 

different open datasets and achieved high-performance 

results. Isensee et al. [2] developed a 3D-UNet-based 

method called HD-BET, which performed brain 

extraction by examining brain images of healthy 

individuals as well as those with various pathologies, 

apart from MRI images of healthy individuals. They 

trained the DL model with images obtained from different 

sequences (T1, T2, and FLAIR) and MRI devices, and 

tested it on open brain image datasets, achieving 

successful results. Similarly, Hwang et al. [15] used a 

modified 3D-UNet model from a 2D-UNet model for 

brain extraction from T1-weighted MRI images. The 

developed DL model achieved high performance 

compared to traditional models, but its performance on 

MRI images obtained from different devices is uncertain. 

Zhang et al. [16] modified the 3D-UNet model and 

developed the FRNET model, in which residual layers 

were added between encoder and decoder blocks, and a 

new boundary loss function was used during model 

training. FRNET was tested only on infant MRI dataset 

and achieved high dice score values for brain extraction. 

Similarly, Dasgin and Gurkahraman [17] showed the 

effectiveness of the 3D-UNet model modified with 

residual connections in brain extraction. Hoopes et al. [18] 

used generative DL model to synthesize medical images 
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and then generalized real brain images from these 

synthesized images using a 3D-UNet model, which they 

called SynthStrip. SynthStrip significantly improved 

performance values obtained by traditional methods for 

different datasets. 

 

In summary, DL-based automatic brain extraction 

techniques are faster than traditional methods and do not 

require parameter optimization. However, the selection of 

the brain extraction method depends on the problem and 

is influenced by the characteristics of MRI images. 

Therefore, when choosing a brain extraction technique, 

factors such as the model of the MRI scanner and 

magnetic field intensity (Tesla) should be taken into 

account. In image segmentation studies, previous studies 

have shown that the 3D- UNet model outperformed CNN 

models and that enriching the latent layer of the 3D- UNet 

model with residual and dense connections between 

encoder and decoder blocks improved accuracy 

performance. Therefore, this study aims to perform brain 

extraction on MRI images obtained from different MRI 

scanners with different magnetic field intensity values by 

adding feature extraction layers of ResNet and DenseNet 

architectures to the UNet model. 

 

2. MATERIAL AND METHOD 

 

In this study, a UNet model improved with residual and 

dense connections was proposed for brain extraction from 

MRI images. In the following subsections, the details of 

the datasets used and the developed method are presented. 

 

2.1. Datasets 

 

In this study, three different publicly available datasets, 

The Internet Brain Segmentation Repository (IBSR) [19], 

The Neurofeedback Skull-stripped (NFBS) [20], and CC-

359 [6], were utilized for training and testing the 3D-DL 

model.  

 

The IBSR dataset [19] includes 3D-T1 weighted gray 

images acquired from 18 healthy subjects using a 1.5 

Tesla Siemens Magnetom MRI scanner, along with 

manually segmented brain mask images by experts.  

The NFBS dataset [20] consists of images from 125 

participants with various clinical and psychiatric histories, 

acquired using a 3T Siemens Magnetom TIM Trio 

scanner with a resolution of 1 × 1 × 1 mm³. The brain 

mask images were also manually segmented by experts.  

 

The CC-359 dataset [6] includes brain images with a slice 

thickness of 1 × 1 × 1 mm³ from 359 healthy individuals 

aged between 29 and 80 years, acquired using 1.5/3.0 

Tesla Philips, Siemens, and GE MRI scanners. In this 

study, the images were saved in NIfTI (.nii) format 

without data loss, and both gray and mask images were 

created. Note that not all images in the dataset have 

manual segmentations available. Thus, the brain mask 

images recommended as the silver standard by Souza et 

al. [6], using the Simultaneous Truth and Performance 

Level Estimation (STAPLE) technique, were used as 

ground truth in this study.  

 

2.2. UNet-based 3D Deep Learning Model 

 

Autoencoder is a data compression algorithm that 

automatically perform compression and decompression 

functions specific to the data, and the autoencoder in the 

DL model implements these functions using neural 

networks. To create an autoencoder, a coding function, a 

decoding function, and an error function showing the 

information loss between the compressed and 

uncompressed representations of the data are required 

[21]. The UNet model, fundamentally an autoencoder, 

consists of an encoder that encodes the input image into 

low-level features at multiple levels and a decoder that 

reflects these features into pixel space. With its 

symmetrical structure, UNet uses skip connections 

between the encoder and decoder to preserve image 

information in greater detail [22, 23]. 

 

Figure 1 shows the 3D UNet model modified with the 

feature extraction layers of the ResNet50 [24] and 

DenseNet121 [25] models proposed for ImageNet. The 

model consists of two different blocks, encoder, and 

decoder, each containing convolution and deconvolution 

layers. In the middle part of this general structure, the 

residual/dense blocks of ResNet50 and DenseNet121 

models were adapted to achieve better compression of 

information, and the brain extraction results were 

compared. 

 

 In the encoder blocks, four convolution blocks with filter 

sizes of 8, 32, 64, and 64 were used, respectively. Each 

block consists of a 3x3x3 convolution operation, followed 

by batch normalization (BN) and ReLU activation. This 

process is repeated twice, and finally, the feature maps' 

dimensions are reduced using max pooling. In the decoder 

blocks, there are four upsampling blocks with filter sizes 

of 64, 64, 32, and 8, respectively. The operations in the 

decoder blocks consist of upsampling (transposed 

convolution), followed by two repetitions of Convolution, 

BN, and ReLU. The activation function used in the final 

block is sigmoid. 
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Figure 1. 3D-UNet model modified with feature layers of the DenseNet121 and ResNet50. 

 

For the experiments, due to the limited number of samples 

in the IBSR dataset (only 18 samples), the datasets were 

split into 80% for training and 20% for testing, with the 

test set also serving as the validation set. A dataset’s 

optimal train-test split ratio for DL applications is not 

clearly defined. In this study, we adopted the widely 

favored experimental train-test ratio of 80%-20%, as 

commonly seen in the DL medical image analysis 

literature [26-27]. The optimization technique used during 

training was ADAM, with a learning rate of 0.0002 and a 

momentum coefficient of 0.8. The number of epochs was 

set to 500 for IBSR and 100 for the other datasets, with 

early stopping as an option. The batch size was set to 4 

due to hardware limitations for training the 3D model. The 

3D-UNet model was implemented using the Keras library 

in Python 3.9 based on Tensorflow. The experiments were 

conducted on a PC with a NVIDIA RTX A6000 48 GB 

GPU, Intel i9 12900 KS @ 3.40 Hz CPU, and 64 GB 

RAM. 

 

To compare the performances of the dense and residual 

blocks in the latent layer of the model under the same 

conditions, the rest of the architecture was designed to be 

the same, and the traditional loss function, binary-cross 

entropy, was used. 

 

2.3. Performance Metrics 

 

The segmentation performance of the UNet model was 

assessed using the Dice coefficient, sensitivity, and 

specificity metrics. The Dice coefficient, as given in 

Equation 1, is calculated by dividing twice the 

intersection of the real (R) and predicted (P) masks by the 

sum of the areas of both masks. 

 

𝐷𝑖𝑐𝑒 =
2|𝑃∩𝑅|

|𝑃|+|𝑅|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
    (1) 

 

where TP, FP, and FN represent True Positive, False 

Positive, and False Negative, respectively. 

 

Sensitivity, also known as recall, assesses the proportion of 

brain tissue that is successfully included in the 

segmentation. Specificity gauges the proportion of non-

brain tissue that is accurately excluded from the 

segmentation (Equation 2). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TN

TN+FP
       (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TP

TP+FN
       (3) 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The experiments were performed by training and testing 

two separate UNet architectures modified with 

DenseNet121 and ResNet50 feature extraction layers. 

Both architectures were trained and tested on the IBSR, 

NFBS, and CC359 datasets. The training and testing 

datasets were randomly split to ensure the model was 

tested on data it had not seen during the training process. 

The training and testing procedures were repeated five 

times, and the average performance values were 

computed. 

 

The results of all experiments are presented in Table 1. 

Each cell in the table shows the average and standard 

deviation of five test results. When comparing the 

different feature extraction layer types added to the UNet 

architecture, the most successful results were achieved 

with ResNet50 across all datasets. However, when 

considering individual datasets, the most successful 

outcomes were obtained with CC-359. The residual 

connections in the ResNet50 architecture particularly 

improved the distinction of weak but important gradient 

values in the brain boundary regions. On the other hand, 

according to the datasets, the improvement can be 

attributed to the larger number of samples and more slices 

in the CC-359 dataset, indicating that the model learned 

better. 

  



 

Tr. J. Nature Sci. Volume 12, Issue 3, Page 144-151, 2023 
 

 

148 

Table 1. Average performance values of modified UNet models. 

Dataset Models Dice Coefficient Sensitivity Specificity 

IBSR 

  

ResNet50 0.9613 (±0.0036) 0.9590 (±0.0017) 0.9931 (±0.0010) 

DenseNet121 0.9473 (±0.0063) 0.9211 (±0.0230) 0.9955 (±0.0016) 

NFBS 

  

ResNet50 0.9875 (±0.0018) 0.9840 (±0.0048) 0.9990 (±0.0005) 

DenseNet121 0.9838 (±0.0067) 0.9812 (±0.0146) 0.9985 (±0.0010) 

CC-359 

  

ResNet50 0.9887 (±0.0028) 0.9899 (±0.0058) 0.9985 (±0.0009) 

DenseNet121 0.9872 (±0.0025) 0.9874 (±0.0069) 0.9985 (±0.0011) 

 

The sample results obtained with the IBSR, NFBS, and 

CC-359 datasets are presented in Figure 2-4. Upon 

examining the generated binary segmentation masks, they 

demonstrate consistency with the Dice scores given in 

Table 1. It is evident that the key factor influencing the 

segmentation performance is how well the model has 

learned the boundary regions. Across all cases, the most 

successful segmentation masks are produced by the model 

with residual connections. Comparing the results from all 

figures, the most promising outcomes are achieved for the 

CC-359 dataset, as shown in Figure 4. Our observation 

that the model learned better with the CC-359 dataset due 

to more samples and more slices is also supported by the 

segmentation results. 

 

 
Figure 2. IBSR results, a) original gray, b) binary ground-truth, c) 

UNet with ResNet binary result, d) UNet with DenseNet binary result 

 

 

 

 
Figure 3. NFBS results, a) original gray, b) binary ground-truth, c) UNet 
with ResNet binary result, d) UNet with DenseNet binary result 

 

 
Figure 4. CC-359 results, a) original gray, b) binary ground-truth, c) 
UNet with ResNet binary result, d) UNet with DenseNet binary result 
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Table 2 provides a comparison of our model with the 

studies from the literature which used DL architecture and 

the same datasets. The comparisons were performed using 

the results of the 3D-UNet model based on ResNet50, 

which yielded better results than the DenseNet-based 

architecture. Kleesiek et al. [14] achieved Dice scores, 

sensitivity, and specificity values of 0.9632, 0.9501, and 

0.9961, respectively, for the IBSR dataset using their 

proposed CNN model. Hwang et al. [15] compared their 

3D-UNet architecture results, obtained for the NFBS 

dataset, with traditional techniques such as BSE [8], 

Robust Brain Extraction (ROBEX) [28], and CNN 

model’s results [14], demonstrating superior performance 

values. As evident from Table 2, the performance values 

obtained in this study for the IBSR dataset are competitive 

with Kleesiek et al.’s [14] results. For the NFBS dataset, 

the average Dice and sensitivity values are comparable to 

those of Hwang et al. [15], while our specificity value is 

higher. Moreover, the Dice values obtained for the NFBS 

and CC-359 datasets are higher than those achieved by 

Isensee et al.’s [2] HD-BET method, which reported Dice 

coefficient values of 0.9820 for NFBS and 0.9690 for CC-

359 datasets. Although this study exclusively used NFBS 

and CC-359 datasets for testing, the model was trained on 

a large dataset consisting of 6586 samples collected from 

25 different institutions. 

 
Table 2. Literature comparison 

Study Model Dataset Dice Sensitivity Specificity 

Kleesiek et al. [14] CNN IBSR 0.9632 (±0.0100)  0.9501 (±0.0200) 0.9961 (±0.0030) 

Hwang et al. [15] 3D-UNet NFBS 0.9903 (±0.0016) 0.9853 (±0.0040) 0.9953 (±0.0022) 

Isensee et al. [2] HD-BET 
(3D-UNet) 

NFBS 0.9820(±0.0020) - - 
CC-359 0.9690(±0.0020) - - 

This study ResNet-based  

3D-UNet  

IBSR 0.9613 (±0.0036) 0.9590 (±0.0017) 0.9931 (±0.0010) 

NFBS 0.9875 (±0.0018) 0.9840 (±0.0048) 0.9990 (±0.0005) 

CC-359 0.9887 (±0.0028) 0.9899 (±0.0058) 0.9985 (±0.0009) 

 

The process of refining brain images by eliminating non-

brain regions is crucial for improving the performance of 

artificial intelligence (AI) algorithms, particularly in 

medical applications like classification and disease 

analysis. It offers several advantages: Firstly, it enhances 

accuracy by ensuring AI algorithms focus exclusively on 

pertinent brain structures, minimizing diagnostic errors. 

Secondly, it boosts efficiency by simplifying data, 

enabling faster processing, which is vital for real-time 

healthcare applications. Additionally, it promotes better 

generalization, helping AI models perform well on new 

cases without being affected by irrelevant data. Its clinical 

value lies in facilitating precise and timely diagnoses, 

aiding healthcare professionals in informed decision-

making. Lastly, purified brain data advances neuroscience 

and medical research, allowing for a deeper understanding 

of neurological conditions. In essence, the purification of 

brain images by excluding non-brain regions is a critical 

preprocessing step that enhances AI algorithms’ 

performance in medical fields, benefiting clinical practice 

and scientific research. 

 

DL-based brain extraction has potential to improve the 

accuracy and efficiency of clinical applications 

significantly. It not only saves time but also reduces the 

risk of human error, making it a valuable tool in modern 

healthcare for diagnosing, monitoring, and researching 

neurological conditions and brain function. As DL 

algorithms continue to evolve, we can expect even greater 

advancements in the field of brain image analysis such as 

disease diagnosis and monitoring, functional brain 

imaging, and treatment planning. Disease diagnosis and 

monitoring includes such as tumor detection and analysis, 

stroke assessment, and neurodegenerative diseases. 

Accurate brain extraction helps in identifying and 

characterizing brain tumors. It can aid in tumor volume 

measurement and tracking changes over time, which is 

crucial for treatment planning and monitoring. In stroke 

diagnosis, it's important to accurately segment the brain to 

identify regions affected by ischemia or hemorrhage. This 

information assists in determining the extent of brain 

damage and guiding treatment decisions. DL-based brain 

extraction can improve the accuracy of identifying brain 

regions affected by neurodegenerative diseases like 

Alzheimer's and Parkinson's. It can facilitate early 

diagnosis and disease progression monitoring. For the 

treatment planning, in both neurosurgery and radiation 

therapy for brain tumors, accurate brain segmentation 

plays a pivotal role. Precise brain segmentation provides 

surgeons with a clear view of the brain’s structure, 

enabling them to plan the safest and most effective 

approach for tumor removal or other procedures in 

neurosurgical interventions. In radiation therapy, 

knowing the exact boundaries of the brain is essential to 

prevent damage to healthy tissue, and accurate brain 

extraction helps define the treatment target. 

 

4. CONCLUSION 

 

This study proposed an improved UNet architecture 

including residual and dense feature extraction layers to 

address the challenging problem of extracting brain from 

surrounding structures, primarily due to pixel intensity 

similarities. The obtained results demonstrate that the 

model's performance is particularly dependent on its 

ability to accurately segment the boundary regions of the 

brain and other structures. The superior performance of 

the architecture with residual connections can be 

attributed to its capability to preserve weak gradient 

values in deep layers. The findings also emphasize the 

importance of large-scale training data, as evidenced by 

the best results obtained for the CC-359 dataset. It 

highlights the significance of extensive training data for 

achieving improved performance. Comparing our 

proposed model to relevant literature studies utilizing the 

same dataset and UNet-based models, it yields 

comparable performance results. 

 

In conclusion, for future research in this domain, focusing 

on architectures and loss function selection that target the 

distinguishing ability of boundary regions could be a 
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realistic approach, given its significant impact on the 

model's performance. 
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