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Abstract
In this paper, we study the problem of parameter estimation of the stochastic Lomax
diffusion process, this process was introduced in [A. Nafidi, I. Makroz, and R. Gutiérrez
Sánchez, A stochastic lomax diffusion process: Statistical inference and application, Math-
ematics, 2021][14], and the authors suggested the method of simulated annealing to find
the maximum likelihood estimators of this process. In this work, we propose alternative
methods for finding the maximum likelihood estimators, namely Genetic algorithm and
Nelder-Mead, we also investigate the use of Markov Chain Monte Carlo method to deter-
mine the model parameters. Finally, an example of application through the simulation of
paths for the process is suggested. Then, a comparison is made between the application
of three algorithms based on their accuracy and time of execution.
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1. Introduction
The difficulty of using statistical inference to estimate the parameters of stochastic

diffusion processes has attracted widespread attention in the last few years. In most
cases, statistical inference is based on the maximum likelihood function. This latter is the
product of the probability transition densities functions (ptdfs) of the process. There are
few cases when ptdf of the process are known. Hence the exact likelihood estimation is
usually infeasible. Consequently, the inference is based on approximating the likelihood
function with continuous sampling. An extensive bibliography with more details on this
subject can be found, for example, in [1,3,8,11]. Other works focused on other alternative
methodologies, such as a nonparametric method, for example, in [2,4,9] and the references
therein. Without overlooking the works based on the Bayesian methods by [6] and [19]
and others.

In several situations, even though the ptdf of the process is known, it is not possible
to obtain the explicit forms of the maximum likelihood estimators. Therefore, we must
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solve nonlinear equations. Then, the issue boils down to a nonlinear optimization problem,
whose solution cannot be obtained by classical numerical procedures. Hence various meta-
heuristic algorithms appear to overcome this problem. For a particular diffusion process,
the algorithm often used is simulated annealing (SA). Various researches emerge in this
topic, including those by [7] for the three-parameter stochastic lognormal diffusion model,
[12] for Weibull diffusion process, and [13] for LundqvistKorf and [17] for the Gompertz
diffusion process. Another algorithm is the variable neighborhood search for the stochastic
Richards diffusion process [18].

For a Lomax diffusion process, we used the SA algorithm in the case of [14]. In this
work, we suggest three different algorithms to those mentioned before, to get the likelihood
estimators for the parameters of this process, and who are Genetic algorithm (GA) [20]
and Nelder-Mead (NM) [10], and Markov Chain Monte Carlo (MCMC) [15].

We organized this paper as follows. In Section 2, we gave a brief overview of the
stochastic Lomax diffusion process. Then we formulated the problem of the likelihood
estimation of the parameters in this process using the maximum likelihood method. In
Section 3, we proposed a computational methodology that represents the necessary tools
to solve the problem of parameter estimation. In Section 4, we gave a simulation study,
where we treat the problem. Then, we illustrated the results obtained. Finally, we gave a
conclusion.

2. Problem formulation
2.1. A brief overview of the Lomax stochastic diffusion process

The Lomax stochastic diffusion process is the one-dimensional inhomogeneous diffu-
sion process {x(t) : t ∈ [t1, T ], t1 ≥ 0} taking values on (0, ∞) and satisfying the following
stochastic differential equation (SDE):

dx(t) = − α

t + β
x(t)dt + σx(t)dw(t) (2.1)

where σ > 0, β > 0 and α are real parameters. w(t) is the one-dimensional standard
Wiener process and xt1 is fixed in R∗

+.
The analytical expression of the process is given by (see [14]) :

x(t) = xs

(
s + β

t + β

)α

exp
[
−σ2

2
(t − s) + σ (w(t) − w(s))

]
(2.2)

The transition density of the process is given by (see [14]) :

f(x, t | xs, s) = 1
x
√

2π(t − s)σ2 exp

−

[
log

(
x
xs

)
+ αlog

(
t+β
s+β

)
+ σ2

2 (t − s)
]2

2σ2 (t − s)

 (2.3)

The conditional trend function of the process is :

E(x(t) | x(s) = xs) = xs

(
s + β

t + β

)α

(2.4)

In addition, taking into account the initial condition P (x(t1) = xt1) = 1, the trend function
of the process is :

E(x(t)) = xt1

(
t1 + β

t + β

)α

(2.5)
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2.2. Problem of parameter estimation
In the present study, with discrete sampling, we estimate the parameters α, β and σ

of the process by applying maximum likelihood estimation methodology. Let us consider
a discrete sampling of the process x1, x2, xn for time t1, t2, . . . , n, we denote x(ti) = xi

moreover we set ti − ti−1 = h, and assume the initial condition P (x(t1) = x1) = 1, then
the associated likelihood function can be obtained by the following expression:

L(x1, x2, . . . , xn) =
n∏

i=2
f(xi, ti | xi−1, ti−1)

By using the expression of the transition density function in the Eq. 2.3, the log-likelihood
function leads us:

log(L(x1, x2, . . . , xn)) =
n∑

i=2
−log(xi) − 1

2
log(2πh) − 1

2
log(σ2)

− 1
2σ2h

[
log

(
xi

xi−1

)
+ αlog

(
ti + β

ti−1 + β

)
+ σ2

2
h

]2

= −n − 1
2

log(σ2) − n − 1
2

log(2πh)

−
n∑

i=2

[
log(xi) + 1

2σ2h

(
Ci,α,β + σ2

2
h

)2]
,

where Ci,α,β = log
(

xi
xi−1

)
+ αlog

(
ti+β

ti−1+β

)
.

By applying the MLE principal that is taking the derivatives of the log-likelihood func-
tion with respect to the parameters α, β and σ and equaling to zero those derivatives , we
obtain the following likelihood equations

∂log(L(x1, x2, . . . , xn))
∂α

= −
n∑

i=2

1
σ2h

(
Ci,α,β + σ2

2
h

)
log

(
ti + β

ti−1 + β

)
= 0

∂log(L(x1, x2, . . . , xn))
∂β

= −
n∑

i=2

1
σ2h

(
Ci,α,β + σ2

2
h

)(
α

ti + β
− α

ti−1 + β

)
= 0

∂log(L(x1, x2, . . . , xn))
∂σ2 = −n − 1

2σ2 − (n − 1)h
8

−
n∑

i=2

C2
i,α,β

2σ4h
= 0

After various operations which are not shown the maximum likelihood estimator of σ2

is given by:

σ̂2 = 2
h

(1 + 1
n − 1

n∑
i=2

C2
i,α,β

)1/2

− 1

 (2.6)

Therefore, the maximum likelihood estimators of α and β are the solutions to the
following non-linear equations

n∑
i=2

Ci,α,β +
(

1 + 1
n − 1

n∑
i=2

C2
i,α,β

)1/2

− 1

 log

(
ti + β

ti−1 + β

)
= 0 (2.7)

n∑
i=2

Ci,α,β +
(
1 + 1

n−1
∑n

i=2 C2
i,α,β

)1/2
− 1

(ti + β)(ti−1 + β)
= 0 (2.8)
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Obviously, this is a set of non-linear equations whose solutions may be difficult to find.
To address this problem we use numerical resolution methods. In [14], the simulated
annealing algorithm is used to solve this non-linear likelihood function. It is worth noting
here that a closed-form expression of α̂ can be obtained, in fact, let :

a =
n∑

i=2
log

(
ti + β

ti−1 + β

)
, b =

n∑
i=2

log

(
ti + β

ti−1 + β

)
log

(
xi

xi−1

)

c =
n∑

i=2

[
log

(
xi

xi−1

)]2
, d =

n∑
i=2

[
log

(
ti + β

ti−1 + β

)]2

Then, we can show that α̂ is given by:

α̂ =
−
[
2 bd

a2 − 2d
a − b

n−1

]
−
√(

2d
a − 2b

n−1

)2
+ 4d2c

a2(n−1)

(
1 − a2

(n−1)d

)
2
[

d2

a2 − d
n−1

] (2.9)

3. Computational methodology
Obviously, this is a set of non-linear equations whose solutions may be difficult to

find. As we have already mentioned, to address this problem we suggest three numerical
algorithms, that can be presented as follows

3.1. Nelder-Mead algorithm (downhill simplex method)
Nelder-Mead algorithm is a simplex algorithm which uses a simplex of n + 1 points for

n-dimensional vectors x. The algorithm makes a simplex around the initial guess x0. At
every iteration, it proceeds to move this simplex, one vertex at a time, towards an optimal
solution. During each step, it calculates the function value of one or more predetermined
combinations of the points in the current simplex, and chooses one that shifts it towards
a better region of the domain. After few iterations the simplex starts to shrink inwardly,
thus yielding an optimal solution [10].

• let us denote the current simplex with {xj}n+1
j=1 .

• the algorithm orders the points in the simplex according to their function value
in increasing order. At each iteration it discards the worst point xn+1 and accept
another point into the simplex.

• calculate the function value of the reflected point given by:

r = 2
n

n∑
i=1

xi − xn+1

• if f(x1) ≤ f(r) ≤ f(xn) accept r in the simplex.
• if f(r) < f(x1), calculate the function value of the expansion point whose expres-

sion is given by :

c = 3
n

n∑
i=1

xi − 2 × xn+1

• if f(c) < f(r) accept c in the simplex. Otherwise accept r.
• if f(r) ≥ f(xn).

3.2. Genetic algorithm
Genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of

natural selection, where the fittest individuals are selected for reproduction in order to
produce offspring of the next generation [5].
The algorithm begins by creating a random initial population, it then creates a sequence
of new populations. At each step the algorithm uses the current generation to create the
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next population, using mutation , which is achieved by making some random change to a
single parent, or crossover , which is achieved by combining the vector entries of a pair of
parents. In addition the next generation contains the members of the current generation
that have lowest fitness values, those members are called elite. The algorithm converges
after few generations.

• scores each member of the current population by computing its fitness value. These
values are called the raw fitness scores.

• scales the raw fitness scores to convert them into a more usable range of values.
These scaled values are called expectation values.

• select members, called parents, based based on their expectation.
• some of the individuals in the current population that have lower fitness are chosen

as elite. These elite individuals are passed to the next population.
• produces children from parents. Children are produced either by making random

changes to a single parent (mutation) or by combining the vector entries of a pair
parents (crossover).

• replaces the current population with children to form the next generation.

3.3. Markov Chain Monte Carlo algorithm
Direct calculation of a desired quantity from a model of interest, such as expected

probability, density, or other aspects of the probability distribution, is difficult for most
probabilistic models. Instead, different techniques must be used to estimate the expected
probability or density.

Drawing independent samples from the probability distribution and repeating this pro-
cess multiple times to estimate the target quantity is a common solution. This is referred to
as Monte Carlo sampling, which is a technique for randomly sampling a probability distri-
bution and approximating a desired quantity. Monte Carlo sampling has the drawback of
not working well in high-dimensions, on the other hands this technique assumes that each
random sample drawn from the target distribution is independent and can be indepen-
dently drawn, which is not always the case. One popular solution to sampling probability
distributions in high-dimensions is to use Markov Chain MonteCarlo (MCMC), which is
a method for obtaining information about distributions, especially for estimating poste-
rior distributions in Bayesian inference. MCMC rely on the idea of using the information
provided by the observed data to update prior beliefs about a set of parameters, that is
,by sampling from the a posterior distribution, we can estimate any statistic of this dis-
tribution. In order to obtain samples from the posterior distribution one popular MCMC
technique is Gibbs sampling. Suppose we want to estimate some random variables denoted
by X1, X2, X3 , we denote by xj

i the value of the variable xi at iteration j, we start by
setting those variables to their initial values x

(0)
1 , x

(0)
2 , x

(0)
3 and then at each iteration the

values of xi are updated as follows until convergence:
• Sample x

(j)
1 ∼ P (X1 = x1 | X2 = x

(j−1)
2 , X3 = x

(j−1)
3 )

• Sample x
(j)
2 ∼ P (X2 = x2 | X1 = x

(j)
1 , X3 = x

(j−1)
3 )

• Sample x
(j)
3 ∼ P (X3 = x3 | X1 = x

(j)
1 , X2 = x

(j)
2 )

Where P (X | Y ) denotes the conditional probability of X given Y .
In this work we use the publicly available package in R, rjags (Just Another Gibbs

Sampler) [16] which contains several tools for assessing the convergence of the MCMC
method.

3.4. Estimated trend functions
The trend analysis in this study is based on the trend functions of the model, this

requires analysis to obtain fits and forecasts to real data by means of the estimated trend
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function (ETF) and the estimated conditional trend function (ECTF). The latter functions
are obtained.

Ê(x(t) | x(s) = xs) = xs

(
s + β̂

t + β̂

)α̂

(3.1)

With the initial condition P (x(t1) = xt1) = 1, the estimated trend function (ETF) of
the process leads us:

Ê(x(t)) = xt1

(
t1 + β̂

t + β̂

)α̂

(3.2)

4. Simulation study
The trajectory of the model can be obtained by simulating the exact solution of SDE

Eq.2.1 given in Eq.2.2. From this explicit solution, the simulated trajectories of the process
are obtained from the following equidistant discretisation of the interval [s, T ] with ti =
ti−1 + (i − 1)h for i = 2, ...., N , and taking into account that the random variable in the
latter expression σ (w(t) − w(t1)) is distributed as a one-dimensional normal distribution
N
(
0, σ2 (t − t1)

)
. Let (t1 = s) and assume a discretisation step h = T −s

N where N denotes
the size of the sample. The process was simulated, with s = 0, T = 1000 , xs = 100 and
N = 50, 100, 200, 1000 respectively. We reserve the last five values observed for comparison
with the corresponding prediction by each model.
Tables 1, 2, 3 summarize the results obtained, by estimating the parameters using NM,
GA and MCMC respectively. α̂, β̂ and σ̂ denotes the estimated values for α, β and σ
respectively, std(α), std(β) and std(σ) denotes the standard deviation of the estimated
value for each parameter, and time is the time needed by the algorithm to estimate the
parameters.

Table 1. NM estimates and time of execution.

N Time (s) α̂ β̂ σ̂ std(α) std(β) std(σ)
50 0.150 1.521339 78.605367 0.010663 0.771321 0.020752 0.633648
100 0.160 1.539675 81.807833 0.010183 0.149761 0.099701 0.044959
200 0.209 1.512123 84.010827 0.010090 0.019806 0.076053 0.016911
1000 0.316 1.507265 90.702883 0.010050 0.004417 0.034268 0.047670

Table 2. GA estimates and time of execution.

N Time (s) α̂ β̂ σ̂ std(α) std(β) std(σ)
50 2.368 1.436254 76.999654 0.0106290 0.612526 0.721755 0.291876
100 2.980 1.459240 83.586855 0.010212 0.458887 0.357288 0.271272
200 4.198 1.474833 86.356472 0.010034 0.028434 0.074668 0.134827
1000 14.292 1.499980 89.747662 0.010005 0.044183 0.043401 0.061777
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Table 3. MCMC estimates and time of execution.

N Time (s) α̂ β̂ σ̂ std(α) std(β) std(σ)
50 1.7003 1.375296 64.982110 0.000655 0.513138 0.650397 0.601039
100 3.5665 1.39675 77.903970 0.000905 0.402612 0.260824 0.454324
200 8.5425 1.432963 92.247471 0.010167 0.063847 0.018092 0.060140
1000 39.19377 1.494277 90.767567 0.010261 0.011398 0.082868 0.004690

Figures 1, 2, 3, 4 illustrate the ETFs obtained using NM, GA and MCMC respectively
for each N along with simulated data.
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Figure 1. Simulated data vs trend functions for N = 50
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Figure 2. Simulated data vs trend functions for N = 100
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Figure 3. Simulated data vs trend functions for N = 200
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Figure 4. Simulated data vs trend functions for N = 1000

Figures 5 and 6 are given as an example of the ECTFs obtained using NM, GA and
MCMC respectively for N = 50 and N = 1000 along with simulated data.
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Figure 5. Simulated data vs conditional trend functions for N = 50
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Figure 6. Simulated data vs conditional trend functions for N = 1000

In order to assess the accuracy of the model we compared the results obtained by each
model with the actual last five values of the simulated data. The results for sample sizes
N = 50 and N = 1000 are summarized in Tables 4 and 5 respectively.

Table 4. Forecasts for N = 50 .

Simulated data ETFMCMC ETFGA ETFNM ECTFMCMC ECTFGA ECTFNM

2.805834 2.446418 2.601532 2.157235 2.880933 2.878333 2.873422
2.665839 2.378362 2.526908 2.091850 2.727780 2.725349 2.720790
2.437297 2.313512 2.455843 2.029685 2.593150 2.590867 2.586617
2.451054 2.251656 2.388102 1.970523 2.372132 2.370069 2.366254
2.204117 2.136172 2.261754 1.860430 2.325344 2.321375 2.314114

Table 5. Forecasts for N = 1000.

Simulated data ETFMCMC ETFGA ETFNM ECTFMCMC ECTFGA ECTFNM

1.435982 2.451653 2.379925 2.371553 1.431848 1.431839 1.431831
1.439926 2.448283 2.376638 2.368264 1.434008 1.433999 1.433991
1.435080 2.444920 2.373358 2.364983 1.437948 1.437939 1.437931
1.434452 2.441566 2.370086 2.361710 1.433111 1.433102 1.433094
1.416012 2.434879 2.363565 2.355186 1.430523 1.430505 1.430489

Furthermore we calculated the mean absolute percentage error (MAPE) and the sym-
metric mean absolute percentage error (SMAPE) for the model obtained by each method
and for different N . The results are shown in Tables 6 and 7.

Table 6. MAPE values for different values of N .

N = 50 N = 100 N = 200 N = 1000
MCMC 7.977993 16.961279 10.866985 70.657774

GA 3.687408 9.312534 8.516675 65.662444
NM 19.313886 13.533037 19.849990 65.077682
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Table 7. SMAPE values for different values of N .

N = 50 N = 100 N = 200 N = 1000
MCMC 8.381328 15.569057 10.253368 52.210942

GA 3.769672 8.830660 8.945266 49.432045
NM 21.432644 14.579248 22.083891 49.099897

5. Summary and conclusions
In this work we provided three methods to address the problem of parameter estima-

tion of the stochastic Lomax diffusion process. In terms of speed, we conclude that NM
algorithm is by far superior to GA and MCMC, however NM method require a lucky
guess of the initial value, as the convergence is highly dependent on that initial value. In
terms of complexity, we can see clearly that MCMC scales badly with large values of N ,
In particular each time we double the sample size N execution time doubles. In addition
the values obtained for the MAPE and SMAPE suggests that forecasted values for the
model obtained using GA method gives the best accuracy when the sample size is less than
N = 200, and that the NM is slightly better for N = 1000, however further investigations
are needed to determine if this holds for larger values of N .
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