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Abstract: In this study, we aim to solve Lane-Emden equations numerically by 

the Gegenbauer wavelet method. This method is mainly based on orthonormal 

Gegenbauer polynomials and takes advantage of orthonormality which reduces 

the computational cost. As a further advantage, Gegenbauer polynomials are 

associated with a real parameter allowing them to be defined as Legendre 

polynomials or Chebyshev polynomials for some values. Although this provides 

an opportunity to be able to analyze the problem under consideration from a wide 

point of view, the effect of the Gegenbauer parameter on the solution of Lane-

Emden equations has not been studied so far. This study demonstrates the 

robustness of the Gegenbauer wavelet method on three problems of Lane-Emden 

equations considering different values of this parameter. 

  

  

Lane-Emden Denklemlerinin Gegenbauer Dalgacık Çözümleri Üzerinde  

Gegenbauer Parametresinin Etkisi 
 

 
Makale Bilgileri 

 

Geliş: 20.07.2023 

Kabul: 22.11.2023 

Online Nisan 2024 

 

DOI:10.53433/yyufbed.1330540  

 

Anahtar Kelimeler 

Başlangıç değer problemleri, 

Gegenbauer dalgacıkları, 

Lane-Emden denklemleri, 

Sınır değer problemleri 

Öz: Bu çalışmada Lane-Emden denklemlerini Gegenbauer dalgacık yöntemi ile 

sayısal olarak çözmeyi amaçlıyoruz. Bu yöntem temel olarak ortonormal 

Gegenbauer polinomlarına dayanır ve hesaplama maliyetini azaltan 

ortonormallik avantajını kullanır. Diğer bir avantaj olarak, Gegenbauer 

polinomları, bazı değerleri için Legendre polinomları veya Chebyshev 

polinomları olarak tanımlanabilmelerini sağlayan reel bir parametre ile 

ilişkilendirilir. Bu durum, ele alınan problemi geniş bir bakış açısıyla analiz 

edebilmek için bir fırsat sağlasa da Gegenbauer parametresinin Lane-Emden 

denklemlerinin çözümü üzerindeki etkisi şimdiye kadar çalışılmamıştır. Bu 

çalışma, bu parametrenin farklı değerlerini dikkate alarak Gegenbauer dalgacık 

yönteminin Lane-Emden denklemlerinin üç problemi üzerindeki doğruluğunu 

göstermektedir. 

  

 

1. Introduction 

 

Lane-Emden equations which have been originated from the studies of the astrophysicists 

Jonathan Homer Lane and Robert Emden about understanding the structure of the stars, are nonlinear 

ordinary differential equations arising in interdisciplinary branches of the mathematical physics and the 

astrophysics such as thermal explosions, stellar structure, radiative cooling, isothermal gas spheres, the 

thermal behavior of a spherical cloud of gas and thermionic currents (Lane, 1870; Emden, 1907; 

Chambre, 1952; Davis, 1962; Chandrasekhar, 1967; Shawagfeh, 1993; Lima & Morgado, 2010). 
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These equations can be modelled as an initial value problem using the second-order differential 

equation 

 

𝑦′′(𝑥) +
𝑐

𝑥
 𝑦′(𝑥) + 𝐹(𝑥, 𝑦(𝑥)) = 𝑔(𝑥),     𝑥 ∈ (0,1], (1) 

 

with the initial conditions 

𝑦(0) = 𝛼1,   𝑦′(0) = 𝛽1 (2) 

 

or as a boundary value problem if the differential equation Eq.(1) is subject to boundary conditions of 

different types  

𝑦(0) = 𝛼2,      𝑦(1) = 𝛽
2
, (3) 

   

𝑦′(0) = 𝛼3,     𝑦′(1) = 𝛽3,  (4) 
 

𝑦′(0) = 𝛼4,     𝛾1𝑦(1) + 𝛾2𝑦′(1) = 𝛽
4
, (5) 

 

where 𝑐, 𝛼𝑗 , 𝛽𝑗 , for 𝑗 = 1,2,3,4; and  𝛾1, 𝛾2 are given real numbers, the nonlinear term 𝐹(𝑥, 𝑦(𝑥)) and 

𝑔(𝑥) are given real-valued functions.  

The initial value problem of the differential equation Eq.(1) and the initial conditions in Eq.(2) 

when 𝑐 = 2, 𝑔(𝑥) = 0, and 𝐹(𝑥, 𝑦(𝑥)) = 𝑦𝑛 , for a physical parameter 𝑛 in the range 0 ≤ 𝑛 ≤ 5 , is 

one of the very well-known cases studied by many researchers and the analytical solutions for 𝑛 = 0,1,5 

and the numerical solutions for other values of 𝑛 are obtained (Chandrasekhar, 1967; Shawagfeh, 1993; 

Wazwaz, 2001; Parand et al., 2010; Kumar et al., 2011; Pandey & Kumar, 2012; Singh & Kumar, 2014; 

Gümgüm, 2020). Another most studied problem is a similar initial value problem with a nonlinear term 

𝐹(𝑥, 𝑦(𝑥)) = 𝑒𝑦 which is also known as isothermal gas spheres equation (Davis, 1962) and solved by 

Adomian decomposition method (Wazwaz, 2001), quasilinearization methods (Mandelzweig & 

Tabakin, 2001; Krivec & Mandelzweig, 2008), Lagrangian based analytical method (Khalique & 

Ntsime, 2008), Homotopy Analysis method (Liao, 2003; Van Gorder & Vajravelu, 2008), Variational 

Iteration method (Yildirim & Öziş, 2009), Bernstein Polynomial operational matrix of integration and 

differentiation methods (Kumar et al., 2011; Pandey & Kumar, 2012). 

It is known that the analytical solutions exist for some types of the Lane-Emden equations. For 

the other cases, approximate solutions have been obtained by numerical techniques some of which are 

mentioned above. Especially the collocation methods based on the polynomials such as the very well-

known Chebyshev polynomials and the Legendre polynomials are efficiently used to solve these 

problems, due to their easy implementation and accurate results (Yousefi, 2006; Adibi & Rismani, 2010; 

Yüzbaşı, 2011; Doha et al., 2013; Yüzbaşı & Sezer, 2013; Gürbüz & Sezer, 2014; Öztürk & Gülsu, 

2014; Shiralashetti & Kumbinarasaiah, 2017; Öztürk, 2018; Ahmed, 2023; İdiz et al., 2023). In this 

sense, the proposed method provides a wider point of view. Since the Gegenbauer wavelet method is 

based on the Gegenbauer polynomials and these polynomials are associated with a parameter giving the 

Chebyshev polynomials and the Legendre polynomials for some values. Thus, this method enables to 

obtain more accurate solutions by investigation of the best value of the Gegenbauer parameter.  

In this study, we deal with the implementation of the Gegenbauer wavelets and finding the best 

value of Gegenbauer parameter to solve the problems of the Lane-Emden equations through the residual 

error analysis. The paper is organized as follows. In Section 2, we define Gegenbauer polynomials and 

how to construct Gegenbauer wavelets. In Section 3, the method is implemented to solve the Lane-

Emden equations with the given initial conditions. In Section 4, we illustrate the use of Gegenbauer 

wavelets for finding the solutions of several differential equations modelling different physical 

phenomena. In order to prove the efficiency of the method we first solved problems with analytical 

solutions and verify that the method produces either analytical solutions or accurate numerical solutions. 

Afterwards, we solved problems without analytical solutions and compared our results with the existing 

ones. 
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2. Gegenbauer Polynomials and Gegenbauer Wavelets 

 

The Gegenbauer polynomials or ultraspherical polynomials, 𝐺𝑚
𝜈 (x), are the eigensolutions of 

the following Sturm Liouville equation defined on the interval [-1,1] as follows (Kumar et al., 2019) 

 
ⅆ

ⅆ𝑥
[(1 − 𝑥2)𝜈+

1

2
ⅆ𝑦

ⅆ𝑥
] + 𝑚(𝑚 + 2𝜈)(1 − 𝑥2)𝜈−

1

2𝑦 = 0, 

 

where 𝜈 >  −
1

2
 is the Gegenbauer parameter and 𝑚 ∈ ℤ+is the order of the polynomial. For 𝜈 = 0,  𝜈 =

1 and 𝜈 =
1

2
, Gegenbauer polynomials generate very well-known Chebyshev polynomials of the first 

and second kind 𝑇𝑚(𝑥),  𝑈𝑚(𝑥) and Legendre polynomials 𝑃𝑚(𝑥), respectively. That is 

 

𝐺𝑚

1

2 (𝑥) = 𝑃𝑚(𝑥),    𝐺𝑚
1 (𝑥) = 𝑈𝑚(𝑥)  and  lim

𝜈→0

1

𝜈
𝐺𝑚

𝜈 (𝑥) = 𝑇𝑚(𝑥), 𝑚 ∈ ℕ. 

 

The Gegenbauer polynomials can be obtained recursively by the relation 

 
(𝑚 + 1)𝐺𝑚+1

𝜈 (𝑥) = 2𝑥(𝑚 + 𝜈)𝐺𝑚
𝜈 (𝑥) − (𝑚 + 2𝜈 − 1)𝐺𝑚−1

𝜈 (𝑥), 
 

with the first two values 𝐺0
𝜈(𝑥) = 1 and 𝐺1

𝜈(𝑥) = 2𝜈𝑥. As the basic property, these polynomials are 

orthogonal on [−1,1] with respect to the weight function 𝑤(𝑥) = (1 − 𝑥2)𝜈−
1

2 that is 

 

∫(1 − 𝑥2)𝜈−
1

2𝐺𝑚
𝜈 (𝑥)𝐺𝑛

𝜈(𝑥) ⅆ𝑥

1

−1

= 𝐿𝑚
𝜈 𝛿𝑚𝑛 , 

 

where 𝛿𝑚𝑛  is Kronecker delta and 𝐿𝑚
𝜈 =

𝜋21−2𝜈𝛤(𝑚+2𝜈)

𝑚!(𝑚+𝜈)[𝛤(𝜈)]2  is the normalization factor and hence they 

constitute an orthogonal basis in Hilbert space 𝐿2[−1,1]. Further information about the properties of the 

Gegenbauer polynomials can be found in (Reimer, 2003; Kim et al., 2012). 

Gegenbauer wavelets are a family of functions, constructed from Gegenbauer polynomials 

𝐺𝑚
𝜈 (𝑥), together with five arguments 𝑘, 𝑚, 𝑛, 𝜈, 𝑥 as 

 

𝜓
𝑛𝑚

(𝑥) = {

1

𝐿𝑚
𝜈 2𝑘 2⁄ 𝐺𝑚

𝜈 (2𝑘𝑥 − 2𝑛 + 1), 𝑥 ∈ [
𝑛 − 1

2𝑘 − 1
,

𝑛

2𝑘−1
]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

 ,  (6) 

 

where 𝑘 = 1, 2, 3, … is the level of resolution, 𝑛 = 1, 2, … , 2𝑘−1 is the translation parameter and 𝑥 ∈ 

[0,1]. 

Any function 𝑢(𝑥) ∈ 𝐿2[0,1] can be expressed in terms of Gegenbauer wavelet coefficient 

obtained by the inner product  

 

𝑎𝑛𝑚 = ⟨𝑢(𝑥), 𝜓𝑛𝑚(𝑥)⟩𝜔𝑛
= ∫ 𝜔𝑛(𝑥)𝑢(𝑥)𝜓𝑛𝑚(𝑥) ⅆ𝑥

1

0

 , 

 

for a shifted weight function 𝜔𝑛(𝑥) = 𝑤(2𝑘𝑥 − 2𝑛 + 1). For an approximation, we truncate the series 

above as  

 

𝑢(𝑥) ≈ ∑ ∑ 𝑎𝑛𝑚
𝑀−1 
𝑚=0

2𝑘−1

𝑛=1
𝜓𝑛𝑚(𝑥) = 𝒂𝑻𝝓(𝒙) , (7) 

 

where 𝒂 and 𝝓(𝒙) are 2𝑘−1𝑀 × 1 matrices in the form 
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𝒂 = [𝑎10, 𝑎11, 𝑎12, … , 𝑎1(𝑀−1), 𝑎20, 𝑎21, 𝑎22, … , 𝑎2(𝑀−1), … , 𝑎2𝑘−10 , 𝑎2𝑘−11, … , 𝑎2𝑘−1(𝑀−1)], 

𝝓(𝒙) = [𝜓10, 𝜓11, 𝜓12, … , 𝜓1(𝑀−1), 𝜓20, 𝜓21, 𝜓22, … , 𝜓2(𝑀−1), … , 𝜓2𝑘−10 , 𝜓2𝑘−11, … , 𝜓2𝑘−1(𝑀−1)]. 

 

Theorem 1: The Gegenbauer wavelet series expansion ∑ ∑ 𝑎𝑛𝑚
𝑀−1 
𝑚=0

2𝑘−1

𝑛=1
𝜓𝑛𝑚(𝑥) converges to 𝑢(𝑥), as 

2𝑘−1 and 𝑀 approache to ∞. 
Proof: Let 𝐿2[0,1] denote the Hilbert space. Since the Gegenbauer wavelets form an orthonormal basis 

in 𝐿2[0,1] any function 𝑢(𝑥) can be expanded by the series 𝑢(𝑥) = ∑ 𝑎𝜌𝑗𝜓𝜌𝑗(𝑥)
𝑀−1 

𝑗=0
 for a fixed 𝑛 =

𝜌, where 1 < 𝜌 < 2𝑘−1 and  𝑎𝜌𝑗 =< 𝑢(𝑥), 𝜓𝜌𝑗(𝑥) >. 

  

A partial sum 𝑆𝑛 of the sequence {𝑎𝜌𝑗𝜓𝜌𝑗}𝑗=0
𝑛 , for some 𝑚 < 𝑛 < 𝑀 − 1, is defined in the form 

𝑆𝑛 = ∑ 𝑎𝜌𝑗𝜓𝜌𝑗(𝑥)
𝑛 

𝑗=1
. Here, the main goal for verifying the convergence is to show that 𝑆𝑛  is a 

Cauchy sequence in Hilbert space. It is clear that 𝑆𝑛 − 𝑆𝑚 = ∑ 𝑎𝜌𝑗𝜓𝜌𝑗(𝑥)
𝑛 

𝑗=𝑚+1
 for 𝑚 < 𝑛 < 𝑀 − 1. 

With the help of orthogonality of Gegenbauer wavelets and Bessel's inequality (Arfken & Weber, 2005) 

 

‖𝑠𝑛 − 𝑆𝑚‖2 = ‖ ∑ 𝑎𝜌𝑗𝜓𝜌𝑗(𝑥)

𝑛

𝑗=𝑚+1

‖

2

=< ∑ 𝑎𝜌𝑗𝜓𝜌𝑗(𝑥)

𝑛

𝑗=𝑚+1

, ∑ 𝑎𝜌𝑖𝜓𝜌𝑖(𝑥)

𝑛

𝑖=𝑚+1

> 

= ∑ ∑ 𝑎𝜌𝑗𝑎𝜌𝑖

𝑛

𝑖=𝑚+1

𝑛

𝑗=𝑚+1

< 𝜓𝜌𝑗(𝑥), 𝜓𝜌𝑖(𝑥) > , 

 

for real 𝑎𝜌𝑖, then the inner product in the last equation gives 1 when 𝑖 = 𝑗. Hence the last summation 

equals to 

∑ |𝑎𝜌𝑗|2

𝑛

𝑗=𝑚+1

≤  ∑ |𝑎𝜌𝑗|2

𝑛

𝑗=1

≤ ‖𝑢(𝑥)‖2 . 

 

This implies that ∑ |𝑎𝜌𝑗|2
𝑛

𝑗=𝑚+1
is bounded and therefore, ‖𝑆𝑛 − 𝑆𝑚‖2 = ∑ |𝑎𝜌𝑗|2

𝑛

𝑗=𝑚+1
 is 

convergent as 𝑚, 𝑛 → ∞. Hence, 𝑆𝑛 is a Cauchy sequence in Hilbert space and therefore it converges to 

a sum 𝑢(𝑥). 
Theorem 2: Let 𝛺𝑛 = 𝑆𝑝𝑎𝑛{𝜓𝑛0, 𝜓𝑛1, 𝜓𝑛2, …𝜓𝑛(𝑀−1)} and 𝑓(𝑥) be a real valued function such that 

𝑓(𝑥) 𝜖 𝐶𝑀[0,1]. Assume that 𝑓(𝑥)=∑ 𝑓𝑛(𝑥)
2𝑘−1 

𝑛=1
 and if 𝑎𝑛

𝑇𝜙𝑛(𝑥) is the best approximation of 𝑓𝑛(𝑥) 

then 𝒂𝑻𝝓(𝒙) approximates 𝑓(𝑥) with the error bound: 

 

‖𝑓(𝑥) − 𝒂𝑻𝝓(𝒙)‖ ≤
𝜀

𝑀! 2 √2𝑀 + 1
𝑀(𝑘−1)  , 

 

where 𝜀 = max
𝑥𝜖[0,1]

|𝑓𝑀(𝑥)| . 

Proof: The proof is based on the Taylor series expansion of 𝑓𝑛(𝑥) about 
𝑛−1

2𝑘−1 

 

𝑓𝑛̃(𝑥) = 𝑓𝑛 (
𝑛 − 1

2𝑘 − 1
) + ⋯ +

1

(𝑀 − 1)!
𝑓𝑛

(𝑀−1)
(

𝑛 − 1

2𝑘−1
) (𝑥 −

𝑛 − 1

2𝑘−1
)

𝑀−1

, 

 

then since 
𝑛−1

2𝑘−1 < 𝑥 <
𝑛

2𝑘−1  
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|𝑓𝑛(𝑥) − 𝑓𝑛̃(𝑥)| ≤
1

𝑀!
𝑓𝑛

(𝑀)(𝑥) (𝑥 −
𝑛 − 1

2𝑘−1
)

𝑀

. 

 

Since 𝑎𝑛
𝑇𝜙𝑛(𝑥) is the best approximation of 𝑓𝑛(𝑥), 

 

‖𝑓𝑛(𝑥) − 𝒂𝑻𝝓(𝒙)‖
2

≤ ∑ || 𝑓𝑛(𝑥) − 𝑎𝑛
𝑇𝜙𝑛(𝑥)||2

2𝑘−1

𝑛=1

≤ ∑ || 𝑓𝑛(𝑥) − 𝑓𝑛̃(𝑥)||2

2𝑘−1

𝑛=1

≤
22𝑀𝜀2

(𝑀!)222𝑀𝑘(2𝑀 + 1)
 

 

gives the desired result. For more details, see Usman et al. (2019). 

 

 

2.1. Operational matrix of derivative 

 

The derivatives of the vector 𝝓(𝒙) defined in Eq.(7) can be obtained by means of an operational 

matrix 𝐷 as 

ⅆ𝑖

ⅆ𝑥𝑖
𝝓(𝒙) = 𝐷𝑖𝝓(𝒙) , (8) 

 

where 𝝓(𝒙)  is the vector of Gegenbauer wavelets, 𝐷𝑖  is the 𝑖  -th power of the 2𝑘−1𝑀 × 2𝑘−1𝑀 

operational matrix for differentiation, derived in Usman et al. (2019) as 
 

𝐷 = (

𝐹 0 0 ⋯ 0

0 𝐹 0 … 0

⋮ ⋮ ⋮ …  ⋮

0 0 0 … 𝐹

) . (9) 

 

Here 𝐹 is a 𝑀 × 𝑀 submatrix whose (𝑟, 𝑠)-th component  

 

𝐹𝑟𝑠 = {

2𝑘+1(𝑠 + 𝜈 − 1)√(𝑟 − 1 + 𝜈)𝛤(𝑟)𝛤(𝑠 − 1 + 2𝜈)

√(𝑠 − 1 + 𝜈)𝛤(𝑠)𝛤(𝑟 − 1 + 2𝜈)
− ,  𝑟 = 2, … , 𝑀;  𝑠 = 1, … , (𝑟 − 1) and 𝑟 + 𝑠 𝑖𝑠 𝑜ⅆⅆ,

0, otherwise,

 

 

where 𝛤(. ) is the Gamma function. 

 

3. Application of Gegenbauer Wavelets to Lane-Emden Equations 

 

We assume that the solution of the differential equation Eq. (1) has the form 

 

𝑦(𝑥) = ∑ ∑ 𝑎𝑛𝑚
𝑀−1 
𝑚=0

2𝑘−1

𝑛=1
𝜓𝑛𝑚(𝑥) = 𝒂𝑻𝝓(𝒙), 

 

where 𝑎𝑛𝑚  are the unknown coefficients for 𝑛 = 1, … , 2𝑘−1; 𝑚 = 0, … , 𝑀 − 1;  𝒂 and 𝝓(𝒙) are vectors 

defined in Eq. (7). Our aim is to find these 2𝑘−1𝑀 unknown coefficients to obtain the solution. For this 

we need the derivatives  

 

𝑦′(𝑥) = ∑ ∑ 𝑎𝑛𝑚
𝑀−1 
𝑚=0

2𝑘−1

𝑛=1
𝜓′

𝑛𝑚
(𝑥) = 𝒂𝑻𝝓′(𝒙) = 𝒂𝑻𝑫𝝓(𝒙), 

𝑦′′(𝑥) = ∑ ∑ 𝑎𝑛𝑚
𝑀−1 
𝑚=0

2𝑘−1

𝑛=1
𝜓′′

𝑛𝑚
(𝑥) = 𝒂𝑻𝝓′(𝒙) = 𝒂𝑻𝑫𝟐𝝓(𝒙), 

 

in order to replace into the differential equation in Eq. (1) as 

 

𝒂𝑻𝑫𝟐𝝓(𝒙) +
𝒄

𝒙
 𝒂𝑻𝑫𝝓(𝒙) + 𝑭(𝒙, 𝒂𝑻𝝓(𝒙)) = 𝒈(𝒙). (10) 



YYU JINAS 29(1): 144-156 

Özdek / Gegenbauer Parameter Effect on Gegenbauer Wavelet Solutions of Lane-Emden Equations 

 

149 

 

This is an algebraic equation in terms of 𝑥 involving unknown coefficients. But in order to obtain all of 

these coefficients explicitly, we need 2𝑘−1𝑀 algebraic equations. Two of these equations are provided 

by the initial or boundary conditions in Eq. (3) as 

 

𝑦(0) = 𝒂𝑻𝝓(𝟎) = 𝛼1, 𝑦′(0) = 𝒂𝑻𝑫𝝓(𝟎) = 𝛽1,  
 

or 

 

𝑦(0) = 𝒂𝑻𝝓(𝟎) = 𝛼2, 𝑦(1) = 𝒂𝑻𝝓(𝟏) = 𝛽2,  
𝑦′(0) = 𝒂𝑻𝑫𝝓(𝟎) = 𝛼3, 𝑦′(1) = 𝒂𝑻𝑫𝝓(𝟏) = 𝛽3, 

𝑦′(0) = 𝒂𝑻𝑫𝝓(𝟎) = 𝛼4, 𝛾1𝑦(1) + 𝛾2𝑦′(1) = 𝛾1𝒂𝑻𝝓(𝟏) + 𝛾2𝒂𝑻𝑫𝝓(𝟏) = 𝛽4 . 

 

The remaining 2𝑘−1𝑀 − 2 equations are provided by replacing the first 2𝑘−1𝑀 − 2 roots 𝑥𝑖  of very 

well-known Chebyshev polynomials as collocation points in Eq. (10) 

 

𝒂𝑻𝑫𝟐𝝓(𝒙𝒊) +
𝒄

𝒙𝒊
 𝒂𝑻𝑫𝝓(𝒙𝒊) + 𝑭 (𝒙𝒊, 𝒂𝑻𝝓(𝒙𝒊)) = 𝒈(𝒙𝒊), 

 

for 𝑖 = 1,2, … , 2𝑘−1𝑀 − 2. The obtained equations form a system of 2𝑘−1𝑀 algebraic equations to be 

solved for 𝑎𝑛𝑚 by Matlab tools. 

 

4. Numerical Examples 

 

This section illustrates the use of the current method to solve three problems. All of these 

problems are solved by a code, including fsolve function, written in Matlab R2021b and the 

computations are performed in Lenovo AMD Ryzen 7 3700U 8 GB RAM computer.  

In the first example, we consider a problem with analytical solution to examine the effectiveness 

of the current method. We show that when the exact solution is polynomial, the method produces the 

solution itself. In the second and third examples, we continue with problems without exact solutions. 

Compared the results with the ones in the literature and via the residual error analysis, we check the 

robustness of the method and present the effect of Gegenbauer parameter on the solution. 

 

4.1. Example 1 

 

The first example is a second order linear and nonhomogeneous problem (Mall & Chakraverty, 

2015) 

 

𝑦′′(𝑥) +
8

𝑥
 𝑦′(𝑥) + 𝑥𝑦(𝑥) = 𝑥5 − 𝑥4 + 44𝑥2 − 30𝑥,     𝑥 ∈ (0,1], 

𝑦(0) = 𝑦′(0) = 0. 
(11) 

 

This problem has an analytical solution of fourth degree polynomial 𝑦(𝑥) = 𝑥4
− 𝑥3, so we used a fourth 

order polynomial with randomly chosen 𝜈 = 2.5 and approximated the function and its derivatives as 

follows  

 

𝑦(𝑥) =
√30

4
𝑎10 +

3√5

2
𝑎11(2𝑥 − 1) + √1155𝑎12 (𝑥2 − 𝑥 +

3

14
) +

√2730

4
𝑎13(12𝑥3 −

18𝑥2 + 8𝑥 − 1) + √70𝑎14(
165

2
𝑥4 − 165𝑥3 +

225

2
𝑥2 − 30𝑥 +

5

2
)  , 

𝑦′(𝑥) = 3√5𝑎11 + √1155𝑎12(2𝑥 − 1) + √2730𝑎13(9𝑥2 − 9𝑥 + 2) +

√70𝑎14(330𝑥3 − 495𝑥2 + 225𝑥 − 30) , 

 

𝑦′′(𝑥) = 2√1155𝑎12 + √2730𝑎13(18𝑥 − 9) + √70𝑎14(990𝑥2 − 990𝑥 + 225) , 

(12) 
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where 𝑎10, 𝑎11, 𝑎12, 𝑎13, 𝑎14 are the unknown coefficients. To determine these coefficients, we firstly 

substitute Eq. (12) into Eq. (11) and insert the first three roots of the Chebyshev polynomial into the 

resulting equation. The obtained equations and the initial conditions form a system of five equations. 

This system is solved by fsolve function of Matlab to obtain 
 

𝑎10 = −0.0435, 𝑎11 = −0.0248, 𝑎12 = 0.0040, 𝑎13 = 0.0064, 𝑎14 = 0.0014, 

 

which results in the analytic solution. 

 

4.2. Example 2 

 

The second problem is used in modelling the oxygen diffusion in a spherical cell (Wazwaz, 

2011) as well as heat conduction through a solid (Lima & Morgado, 2010) 

 

𝑦′′(𝑥) +
2

𝑥
 𝑦′(𝑥) −

𝑛𝑦(𝑥)

𝑦(𝑥) + 𝑘
= 0,     𝑥 ∈ (0,1], 

𝑦′(0) = 0,                        5𝑦(1) + 𝑦′(1) = 5,  

 

 

where 𝑛 = 0.76129,  𝑘 = 0.03119 and 𝑓(𝑥, 𝑦)= 
𝑛𝑦(𝑥)

𝑦(𝑥)+𝑘
 is the heat generating function.  

This problem does not have an exact solution. In order to check the robustness of the proposed 

method, we define residual error function 𝐸𝑅(𝑥𝑖) in the form  

 

𝐸𝑅(𝑥𝑖) = 𝑦𝑀
′′ (𝑥𝑖) +

2

𝑥𝑖
 𝑦𝑀

′ (𝑥𝑖) −
𝑛𝑦𝑀(𝑥𝑖)

𝑦𝑀(𝑥𝑖) + 𝑘
= 0,  

 

where 𝑦𝑀(𝑥𝑖) is the approximate solution at the collocation points. First, the problem is solved for 

several values of Gegenbauer parameter 𝜈 then the best value of this parameter is investigated through 

the residual errors 𝐸𝑅(𝑥𝑖) at 𝑥𝑖 ∈ (0,1]. The parameter giving the smallest value of 𝐸𝑅(𝑥𝑖) for 𝑥𝑖 ∈
(0,1] is determined as the best parameter for the problem of the Lane-Emden equation.  

Figure 1 and Table 1 show the values of the error 𝐸𝑅(𝑥𝑖) of the method for different values of 𝜈. One 

can see from this figure and this table that the errors are increasing when the parameter 𝜈 is increasing 

and the smallest errors are obtained for 𝜈 =-0.49. 
 

Table 1. Error 𝐸𝑅(𝑥𝑖) obtained from different values of  𝜈 at the points 𝑥𝑖 

𝑥𝑖 

𝐸𝑅(𝑥𝑖) with 𝜈 =
−0.49   

𝐸𝑅(𝑥𝑖) with 𝜈 =
2.5 

𝐸𝑅(𝑥𝑖) with 𝜈 =
5 

𝐸𝑅(𝑥𝑖) with 𝜈 =
10 

𝐸𝑅(𝑥𝑖) with 𝜈 =
30 

0 1.103257e-06 2.398957e-05 8.779339e-05 4.480180e-04 9.597005e-03 

0.1  5.843838e-07 2.156675e-06 1.304410e-06 1.878467e-05 8.856819e-04 

0.2 3.446693e-07 1.256834e-06 5.725870e-06 2.927864e-05 5.641982e-04 

0.3 7.557322e-07 1.953095e-06 2.625605e-06 2.222495e-07 1.831005e-04 

0.4 8.237166e-09 5.505205e-07 1.483441e-06 4.563612e-06 2.464657e-05 

0.5 1.019222e-06 2.249278e-06 3.376932e-06 5.843993e-06 1.757727e-05 

0.6 1.002441e-06 8.700669e-07 1.599169e-07 4.661690e-06 4.216164e-05 

0.7 6.384774e-07 4.731577e-06 8.729478e-06 8.988542e-06 5.150524e-04 

0.8  2.424914e-06 1.049723e-06 1.845242e-05 1.708220e-04 4.978212e-03 

0.9 6.172315e-07 4.710728e-05 1.816439e-04 9.517936e-04 2.070513e-02 

1  1.850748e-05 2.048626e-04 6.627298e-04 3.078282e-03 6.062056e-02 
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Figure 1. Error 𝐸𝑅(𝑥𝑖) obtained from different values of  𝜈 are shown. 

 

Hence, we solved this problem by taking 𝜈 = −0.49 and M = 7 which corresponds to a 6th 

order polynomial. Table 2 presents the results of the current method and other numerical methods. Here 

TWM (Gümgüm, 2020) and VIM (Wazwaz, 2011) are respectively Taylor wavelet method and the 

variational iteration method. Gümgüm (2020) and Wazwaz (2011) used 6th degree polynomials. Çağlar 

et al. (2009) used B-Spline method (BSM) with n = 40 collocation points and Mohsenyzadeh et al. 

(2015) used Bernoulli polynomials of 14th degree (BP). 

These results show that the first six decimal places in all numerical solutions are compatible. 

Taking into account of both the polynomial degrees and the amount of the utilized collocation points 

used, one can observe that the current method is as efficient as TWM and VIM and more powerful than 

BSM and BP. 

 

Table 2. Comparison of the current method with other numerical methods 

𝑥𝑖 GWM, 𝑦6(𝑥𝑖) TWM, 𝑦6(𝑥𝑖)  VIM, 𝑦6(𝑥𝑖) BSM, n = 40 BP, 𝑦14(𝑥𝑖)  

0 0.8284832928 0.8284835573  0.8284832761 0.8284832512 0.8284832818 

0.1 0.8297060995 0.8297063594 0.8297060781 0.8297060537 0.8297060924 

0.2  0.8333747216 0.8333750006 0.8333747193 0.8333746961 0.8333747335 

0.3 0.8394899053 0.8394901811 0.8394898996 0.8394898784 0.8394899139 

0.4 0.8480527944 0.8480530523 0.8480527701 0.8480527521 0.8480527849 

0.5 0.8590649470 0.8590651943 0.8590649108 0.8590648975 0.8590649271 

0.6 0.8725283313 0.8725285872 0.8725282997 0.8725282940 0.8725283199 

0.7 0.8884452986 0.8884455738 0.8884452781 0.8884452838 0.8884453056 

0.8 0.9068185356 0.9068188164 0.9068185095 0.9068185305 0.9068185480 

0.9 0.9276509944 0.9276512446 0.9276509392 0.9276509752 0.9276509883 

1 0.9509458010 0.9509459977 0.9509457539 0.9509457898 0.9509457984 

 

These results can be analyzed better in Figure 2. One can see that they all coincide. 
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Figure 2. Numerical results of the mentioned methods. 
 

4.3. Example 3 The final example is defined as in (Wazwaz, 2001) 
 

𝑦′′(𝑥) +
2

𝑥
 𝑦′(𝑥) + sinh(𝑦) = 0, 

𝑦(0) = 1,   𝑦′(0) = 0, 𝑥 ≥  0. 
 

 

This problem does not have an exact solution. In order to check the robustness of the current 

method, we define residual error function in the form 
 

𝐸𝑅(𝑥𝑖) = 𝑦𝑀
′′ (𝑥𝑖) +

2

𝑥𝑖
 𝑦𝑀

′ (𝑥𝑖) + sinh (𝑦𝑀(𝑥𝑖)) = 0, 

 

where 𝑦𝑀(𝑥𝑖) is the approximate solution at the collocation points. We solved the problem for different 

values of the Gegenbauer parameter 𝜈 then the best value of this parameter is investigated through the 

residual errors 𝐸𝑅(𝑥𝑖) at 𝑥𝑖 ∈ (0,1]. The parameter giving the smallest value of 𝐸𝑅(𝑥𝑖) for 𝑥𝑖 ∈ (0,1] 
is determined as the best parameter for the problem of the Lane-Emden equation. 

 

Table 3. Error 𝐸𝑅(𝑥𝑖) obtained from different values of  𝜈 

𝑥𝑖 𝐸𝑅(𝑥𝑖) with 𝜈 = −0.49 𝐸𝑅(𝑥𝑖) with 𝜈 = 2.5 𝐸𝑅(𝑥𝑖) with 𝜈 = 6 

0 2.635574e-17 1.481564e-17 2.616733e-17 

0.1  5.963773e-11 5.963773e-11 5.963773e-11 

0.2 5.585695e-11 5.585731e-11  5.585726e-11 

0.3 6.826894e-11 6.826894e-11 6.826889e-11 

0.4 7.205352e-11 7.205341e-11 7.205330e-11 

0.5 6.091321e-10 6.091326e-10 6.091327e-10 

0.6 2.464924e-10 2.464879e-10 2.464878e-10 

0.7 1.377397e-09 1.377369e-09 1.377369e-09 

0.8  2.255828e-09  2.255956e-09 2.255957e-09 

0.9 2.100228e-09 2.099742e-09 2.099742e-09 

1  3.012828e-08 3.012983e-08 3.012983e-08 
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Table 3 shows the values of the error 𝐸𝑅(𝑥𝑖) of the current method for different values of 𝜈. As 

one can see in Table 3 the errors do not much differ for several values of 𝜈 in this example. For this 

reason, we solved the problem with 𝜈 = −0.49, as we did in the previous example. As earlier studies, 

Parand et al. (2010) solved this problem by Hermite collocation method (HCM) and Wazwaz (2001) 

used Adomian Decomposition method (ADM) to obtain a series solution of the form 

 

𝑦(𝑥) = 1 −
𝑒2 − 1

12𝑒
 𝑥2 +

𝑒4 − 1

480𝑒2
𝑥4 −

2𝑒6 + 3𝑒2 − 3𝑒4 − 2

30240𝑒3
𝑥6 +

61𝑒8 − 104𝑒6 + 104𝑒2 − 61

26127360𝑒4
𝑥8. 

 

The results of the current method for 𝑀 = 9 which correspond to 8th degree polynomial, ADM 

in Wazwaz (2001) and HCM with 𝑀 = 10 in Parand et al. (2010) are given in Table 4. We present the 

comparison of the values at some points that we can find in (Parand et al., 2010) 

 

Table 4. Comparison of the current method with other numerical methods 

𝑥𝑖 GWM  ADM  HCM 

0 1.0000000000 1.0000000000  1.0000000000 

0.1  0.9980428414  0.9980428414 0.9981138095 

0.2  0.9921894348 0.9921894348 0.9922758837 

0.5  0.9519610927  0.9519611019 0.9520376245 

1  0.8182429284 0.8182516669 0.8183047481 

 

By Table 4, we observe that at least the first two decimal places in all numerical solutions are 

compatible while the results of the proposed method and Wazwaz (Wazwaz, 2001) match up to at least 

4  decimal places. For better comparison, the series solution of Wazwaz (Wazwaz, 2001) can be 

embedded into the residual error function in the place of 𝑦𝑀(𝑥). Figure 3 presents the comparison of 

the errors obtained by the current method with 𝜈 = −0.49 and by ADM (Wazwaz, 2001). 

 

 

Figure 3. The errors obtained by the proposed method and ADM in Wazwaz (2001) are shown. 

 

As one can observe in the tables and figures the proposed method is more efficient than the other 

two methods. 
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5. Conclusion  

 

In this study, several singular linear and nonlinear problems are treated by the proposed method. 

Error and convergence analysis of the method is given. Two main advantages of this method are that, 

unlike some numerical techniques, there is no need to linearize the nonlinear terms and to discretize the 

domain. Therefore, the computation cost is less and the method is quite easy to implement. We simply 

replace the unknown function and its derivatives with the approximating function and its derivatives and 

reduce the equation to a system of nonlinear algebraic equations. We observe that an analytical solution 

is possible to attain once the solution is a polynomial. Comparing the results to variants shows that the 

method is efficient, reliable and highly accurate. 
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