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ABSTRACT

In this paper, first we study the harmonicity of the functions and forms on the twisted products,
and then we determine its sectional curvature. We explore some characteristics of static perfect
fluid and static vacuum spacetimes on twisted product manifolds by proving the existence and
obstructions on Ricci curvature. Finally, we study the problem of the existence static perfect fluid
spacetime associated with the twisted generalized Robertson-Walker and standard static spacetime
metrics.
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1. Introduction

In recent years, various properties of different kind of product manifolds have been studied in both
Riemannian and Lorentzian settings. While warped product manifolds are the most ideal example that
provides Einstein’s field equations and characterizes the universe, twisted products offer a much more realistic
characterization in this regard [3, 9, 19]. The most important reason for this, twisted products are introduced
as a generalization of warped products and their twisting functions are defined on the points of both base
and fiber. It was proved [20] that if D1 and D2 are two canonical foliations of the product manifold (M =
M1 ×M2, g), whose leaves intersect perpendicularly, the leaves of D1 are totally geodesic and the leaves of D2

are totally umbilic, then (M, g) is isometric to a twisted product M1 ×f M2. In [14], it was proved that a mixed
Ricci-flat twisted product semi-Riemannian manifold (i.e., the product manifold satisfying Ric(X,V ) = 0, for
all X ∈ χ(M1) and V ∈ χ(M2)) can be expressed as a warped product. Very recently, Chen proved that the
necessary and sufficient condition for the existence of the torqued vector field on an m-dimensional semi-
Riemannian manifold M is that the manifold M can be expressed as a twisted product I ×f M∗, where M∗

is an (m− 1)-dimensional manifold, [8]. Moreover, in [18], the Ricci tensor of the twisted product Robertson-
Walker and generalized Robertson-Walker spacetimes were characterized in terms of the stress-energy tensor
of an imperfect fluid. For more, see [7, 17, 16] In the present paper, we study the harmonicity of the functions
and arbitrary p-forms on the twisted products by proving the existence and obstructions on curvature. The
next purpose of this paper is to study and explore some characteristics of static perfect fluid spacetimes on
twisted product manifolds. Static perfect fluids spacetimes are special global solutions of Einstein’s equations
that show the relationship between matter content and spacetime in general relativity, [10, 11, 21].
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2. Preliminaries

Throughout the paper, all geometric objects of this paper are assumed to be smooth and connected. In this
section, we give the notation and basic formulas for the Levi-Civita connection, the Riemannian curvature
tensor and the Ricci tensor of the twisted products that will be used in the proofs of our main results.

Let (M1, g1) and (M2, g2) be two semi-Riemannian manifolds of dimensions mi, i = 1, 2. Let π : M1 ×M2 →
M1 and σ : M1 ×M2 → M2 be the canonical projections. Then twisted product manifold (M1 ×f M2, g) of
(M1, g1) and (M2, g2) is the product manifold M1 ×M2 equipped with the metric

g = π∗g1 + f2σ∗g2 (2.1)

where f : M1 ×M2 → (0,∞) is called the twisting function. If f only depends on the points of M1, then
M1 ×f M2 reduces to a warped product.
Notation 2.1. For the sake of simplicity, from now on, all relations will be written, without involving the
projection maps from M1 ×M2 to each component M1 and M2 as in g = g1 ⊕ f2g2. Moreover, all objects such as
Levi-Civita connection i∇, Riemannian curvature tensor Ri, Ricci tensor Rici etc. having the indices or powers
i denote the objects of the manifold (Mi, gi), where i = 1, 2. Also, all non-index and non-power objects are
considered to belong to the twisted product manifold.

Let L(M1) and L(M2) be the set of lifts of vector fields on M1 and M2 to M1 ×M2 respectively, and we denote
the same symbol for the vector fields and their lifts. Also, let k = ln f . By using the similar computations of [19,
p. 206–211], we find the components of the Levi-Civita connection, Riemannian tensor, Ricci tensor and the
scalar curvature of the twisted product (M1 ×f M2, g). We skip the proofs that are long but straightforward, as
is the case of warped product manifolds.

Lemma 2.1. [15] Let X,Y ∈ L(M1) and U, V ∈ L(M2). Then:

(1) ∇XY = 1∇XY ,

(2) ∇XV = ∇V X = X(k)V ,

(3) ∇UV = 2∇UV + U(k)V + V (k)U − g(U, V )∇k.

Now, for a smooth function φ on a twisted product (M = M1 ×f1 M2, g), we define, hφ
1 (X,Y ) = XY (φ)−

(1∇XY )(φ) for all X,Y ∈ L(M1) and hφ
2 (U, V ) = UV (φ)− (2∇UV )(φ) for all U, V ∈ L(M2). Then using Lemma

1, the Hessian tensor hφ of φ on a twisted product (M = M1 ×f1 M2, g) satisfies [15]

hφ(X,Y ) = hφ
1 (X,Y ), (2.2)

hφ(U, V ) = hφ
2 (U, V )− U(k)V (φ)− V (k)U(φ) + g(U, V )g(∇k,∇φ) (2.3)

hφ(X,U) = −X(k)U(φ). (2.4)

The following formula is also useful.

hk = hln f =
1

f
hf − 1

f2
df ⊗ df. (2.5)

Let R1 and R2 be the lifts of curvature tensors of (M1, g1) and (M2, g2), respectively and R be the curvature
tensor of the twisted product (M1 ×f M2, g). Then by Lemma 2.1 and equations (2.2) − (2.4), we have the
following relations:

Lemma 2.2. [15] Let X,Y, Z ∈ L(M1) and U, V,W ∈ L(M2). Then:

R(X,Y )Z = R1(X,Y )Z, (2.6)
R(X,Y )U = 0, (2.7)
R(X,V )Y = [hk

1(X,Y ) +X(k)Y (k)]V, (2.8)
R(V,W )X = V X(k)W −WX(k)V, (2.9)
R(X,V )W = XW (k)V −X(k)g(V,W )∇k − g(V,W )Hk(X), (2.10)
R(U, V )W = R2(V,W )U + hk2(V,U)W − hk2(W,U)V

+ W (k)U(k)V − V (k)U(k)W − g(U,W )V (k)∇k (2.11)
+ g(U, V )W (k)∇k + g(U, V )Hk(W )− g(U,W )Hk(V ),

where hk(·, ·) = g(Hk(·), ·).
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Now, let Ric1 and Ric2 be the lifts of Ricci tensors of (M1, g1) and (M2, g2), respectively and Ric be the
Ricci tensor of the twisted product (M = M1 ×f M2, g). Then using the equations (2.2) − (2.11), we have the
following relations:

Lemma 2.3. [15] Let X,Y ∈ L(M1) and U, V ∈ L(M2). Then the components of the Ricci tensor of the twisted product
(M = M1 ×f M2, g) are:

Ric(X,Y ) = Ric1(X,Y )− m2

f
hf
1 (X,Y ) , (2.12)

Ric(X,V ) = (1−m2)XV (k) = 0 , (2.13)

Ric(U, V ) = Ric2(U, V ) +
(2−m2)

f
hf
2 (U, V ) (2.14)

+
2(m2 − 2)

f2
(df ⊗ df)(U, V )−

(
1

f
∆f − 1

f2
g(∇f,∇f)

)
g(U, V ) ,

where ∆ denotes the Laplacian on M and mi = dim(Mi).

3. Harmonicity of Functions on Twisted Products

In this section, we deal with harmonicity on twisted product manifolds. We recall that any smooth function
φ on a Riemannian manifold (M, g) is harmonic if its Laplacian ∆φ vanishes identically. If ∇ denotes the Levi-
Civita connection of g and {Ej}j is an orthonormal frame on M , then

∆φ = trace(Hessφ) = trace(∇dφ) = EjEj(φ)− (∇Ej
Ej)φ, (3.1)

where Hessφ(X,Y ) = g(∇X∇φ, Y ) denotes the Hessian of φ, for all X,Y ∈ χ(M). Equivalently, ∆φ =
div(gradφ). The divergence of a vector field X ∈ χ(M) is given by divX = g(∇̄Ej

X,Ej) and the gradient of
φ is defined by gradφ = ∇φ = (dφ)♯, where ♯ denotes the musical isomorphism with respect to g.

Also, note that for any function φ, the following relation holds:

m

φ
Hφ = Hm lnφ +

1

m
d(m lnφ)⊗ d(m lnφ), m ∈ R. (3.2)

For the next statement, we need the following:
Remark 3.1. If {ei}m1

i=1 and {ul}m2

l1
denote the orthonormal frames on the manifolds Mi with respect to gi (i = 1, 2)

respectively, then {ei}m1

i=1 and {ul

f }m2

l1
are respectively orthonormal frames on Mi (i = 1, 2) all with respect to g.

Therefore, {Ej}nj1 = {ei}m1

i=1

⋃
{ul

f }m2

l1
is an orthonormal frame on the twisted product manifold M = M1 ×f M2

with respect to g.
Now, we deal with the Laplacian, which is one of the most used operator in both PDE and Differential

Geometry.

Proposition 3.1. Let (M = M1 ×f M2, g) be a twisted product manifold. Then for any smooth function φ on M , one
has:

∆φ =∆1φ+
1

f2
∆2φ+

(
m2 −

2

f2

)
g(∇k,∇φ). (3.3)

Proof. Remark 3.1 and (3.1) yield

∆φ =EjEj(φ)− (∇EjEj)φ (3.4)

=[eiei(φ)− (∇eiei)φ] +
1

f2
[ulul(φ)− (∇ul

ul)φ].

From Lemma 2.1, we obtain

∆φ =∆1φ+
1

f2
[ulul(φ)− (∇2

ul
ul)φ]−

2

f2
ul(k)ul(φ) +m2∇k(φ).

which gives (3.3) by straightforward computation, that complete the proof.
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As consequences of (3.3), we obtain the following:

Proposition 3.2. If (M = M1 ×f M2, g) is a twisted product manifold, then for any smooth function φ1 on M1, one has:

(i) φ1 is harmonic on (M, g) if and only if ∆1φ1 =
(
m2 − 2

f2

)
g(∇k,∇φ);

(ii) Any two of the following assertions imply the third one:
(a) φ1 is harmonic on (M, g); (b) φ1 is harmonic on (M1, g1);
(c) ∇k is orthogonal to ∇φ1.

Remark 3.2. Note that if for any smooth function φ1 on M1, ∇k is orthogonal to ∇φ1, then by Lemma 2.1,
k ∈ C∞(M2). Thus the metric g becomes g = g1 ⊕ g̃2, where g̃2 is a conformal metric f2g2 on M2. Therefore the
twisted product M reduces to the direct product of (M1, g1) and (M2, g̃2).

Proposition 3.3. If (M = M1 ×f M2, g) is a twisted product manifold, then for any smooth function φ2 on M2, one has:

(i) φ2 is harmonic on (M, g) if and only if ∆2φ2 = (2−m2f
2)g(∇k,∇φ2).

(ii) Any two of the following assertions imply the third one:
(a) φ2 is harmonic on (M, g); (b) φ2 is harmonic on (M2, g2);
(c) ∇k is orthogonal to ∇φ2.

Remark 3.3. Note that if for any smooth function φ2 on M2, ∇k is orthogonal to ∇φ1, then by Lemma 2.1,
k ∈ C∞(M1). Therefore the twisted product M reduces to the warped product of (M1, g1) and (M2, g2).

Now, we study harmonic forms on a twisted product manifold (M = M1 ×f M2, g) for which we recall the
following:

Definition 3.1. On a Riemannian manifold (M, g), we say that a p-form ω ∈ Ap(M) is co-closed if its co-
differential δgω given by

δgω(X1, . . . , Xp−1) = (∇·ω)(·, X1, . . . , Xp−1), ∀X1, . . . , Xp−1 ∈ χ(M) (3.5)

vanishes identically. Moreover, a p-form on (M, g) is harmonic if it is both closed and co-closed.

Proposition 3.4. The co-differential operator δg of the twisted product manifold (M = M1 ×f M2, g) is related to the
co-differential operators δgj of (Mj , gj), j = 1, 2, by:

δgω = δg1ω +
1

f2
δg2ω +

(
m2 −

2

f2

)
w(∇k); ∀ω ∈ A1(M), (3.6)

Proof. With the notations of Remark 3.1, we express the co-differential operator δg by

δgω =(∇Ej
ω)(Ej) = Ej(ω(Ej))− ω(∇Ej

Ej) (3.7)

=ei(ω(ei))− ω(∇eiei) +
ul

f
(ω(

ul

f
))− ω(∇ul

f

ul

f
).

By using Lemma 2.1 in (3.7), we complete the proof.

As a consequence, we obtain the following results:

Theorem 3.1. Let (M = M1 ×f M2, g) be a twisted product manifold. For each ω ∈ A1(M), any of the following three
assertions imply the fourth one:

(i) ω is co-closed with respect to g;
(ii) ω restricted to M1 is co-closed with respect to g1;

(iii) ω restricted to M2 is co-closed with respect to g2;
(iv) ω(∇k) = 0 holds.

Corollary 3.1. Let (M = M1 ×f M2, g) be a twisted product manifold. For each ω ∈ A1(M), any of the following three
assertions imply the fourth one:

(i) ω is harmonic with respect to g;
(ii) ω restricted to M1 is harmonic with respect to g1;

(iii) ω restricted to M2 is harmonic with respect to g2;
(iv) ω is closed and ω(∇k) = 0 holds.

Remark 3.4. The above Proposition 3.4, Theorem 3.1 and Corollary 3.1 can be generalized to arbitrary p-forms.
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4. Sectional Curvature of Twisted Products

By using Remark 3.1, we express the sectional curvature K(σ) = K(E,F ) = ḡ(R̄(E,F )F,E) of any 2-plane σ
spanned by a basis {E,F}, orthonormal with respect to g. From a long calculation, we obtain:

Theorem 4.1. For any 2-plane σ, tangent to the twisted product manifold (M = M1 ×f M2, g), the sectional curvature
K of the metric g can be calculated from the following three cases, involving the sectional curvatures Kj of gj , j = 1, 2:

(i) If σ is tangent to M1, then
K(σ) = K1(σ); (4.1)

(ii) If σ is tangent to M2 spanned by the vector fields U, V ∈ χ(M2), then

K(σ) =
1

f2
[K2(σ)− hk

2(U,U)− hk
2(V, V ) + U(k)2 + V (k)2 − ||∇f ||2]; (4.2)

(iii) If σ is spanned by arbitrary vector fields A ∈ χ(M1) and U ∈ χ(M2), then

K(σ) = − 1

f2
[A(k)2 + hf

1 (A,A)]; (4.3)

Proof. By Lemma 2.2 and Remark 3.1, we have the following three cases:

(i) For any 2-plane spanned by arbitrary unit vector fields X,Y ∈ χ(M1), K(X,Y ) = g(R(X,Y )Y,X) =
K1(X,Y ).

(ii) For any 2-plane spanned by arbitrary unit vector fields U ,V ∈ χ(M2),

K(U ,V) =g(R(U ,V)V,U) = 1

f4
g(R(U, V )V,U) (4.4)

=
1

f2
[R2(U, V, V, U)− hk

2(V, V ) + V (k)−U(k)2 − hk(U,U)],

where U = U
f and V = V

f . Using (2.1) and Lemma 2.1, the last equation yields (4.2).
(iii) At last, for any unit vector field X ∈ χ(M1) and U ∈ χ(M2), we have K(X,U) = g(R(X,U)U , X) =

1
f2 g(R(X,U)U,X) yields (4.3).

As a consequence of Theorem 4.1, we obtain the following:

Corollary 4.1. For a twisted product manifold (M = M1 ×f M2, g):

(i) If the sectional curvature of M is of constant sign, then K1 is of constant sign on M1;
(ii) If the sectional curvature of M is positive, then Hess1f(A,A) is always negative, for all unit vector field

A ∈ χ(M1).

5. Static Perfect Fluid Spacetimes on Twisted Products

Let (M, g) be an n-dimensional Riemannian manifold. Then (M, g) is said to be a static perfect fluid space if
it admits a nontrivial solution φ of the static equation

φRic− hφ =
1

n
(τφ−∆φ)g, (5.1)

where Ric is the Ricci tensor, τ is the scalar curvature, h is the Hessian tensor and ∆ is the Laplacian operator
[11, 21]. The concept of static perfect fluid space plays an important role in both general relativity and
differential geometry.

If for some smooth function φ
Ric + hφ = λg (5.2)

holds, then the triple (M, g, φ, λ) satisfying (5.2) is called a gradient Ricci soliton. Here λ is usually a real
constant. But, sometimes λ can be smooth function on M and in this case, (M, g, φ, λ) is called a gradient
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almost Ricci soliton, [6] There are also several related notions, such as almost η-Ricci and almost η-Yamabe
solitons [4, 5]: The manifold satisfying the condition

Ric + hφ = γg + µη ⊗ η, (5.3)

for some smooth functions φ, γ and µ and the corresponding non-zero 1-form η, is called the gradient almost
η-Ricci soliton.

Lemma 5.1. Let (M = M1 ×f M2, g) be a non-trivial twisted product manifold. If (M, g) is a static perfect fluid
spacetime with the potential function φ, then we have

dφ(V ) = 0, (5.4)

for any V ∈ L(M2).

Proof. For the twisted product (M1 ×f M2, g), we have XV (k) = 0. From (2.4), (2.13) and (5.1), for any X ∈
L(M1) and V ∈ L(M2), X(k)V (φ) = 0. Hence, either X(k) = 0 or V (φ) = 0. In the first case, the function f only
depends on the points of M2. Hence, we can write g = g1 ⊕ g̃2, where g̃2 = f2g2. Namely, M1 ×f M2 can be
expressed as a usual product M1 ×M2, where the metric tensor of M2 is g̃2 given above. In the second case, we
immediately get (5.4).

Theorem 5.1. Let (M = M1 ×f M2, g) be a non-trivial twisted product manifold. Then (M, g) is a static perfect fluid
spacetime with the potential function φ if and only if the following conditions hold:

1. the relation given below holds on (M1, g1):

Ric1 + h−m2 ln f−lnφ
1 −m2d(ln f)⊗ d(ln f)− d(lnφ)⊗ d(lnφ) =

1

n
(τ − ∆φ

φ
)g1. (5.5)

2. (M2, g2) is the gradient almost η-Ricci soliton with the potential function is φ̃ = (2−m2)k − lnφ, associated 1-
form η = dk and the associated soliton functions µ = m2 − 2 and λ = f∆f − ||∇f ||2 + f2g(∇k,∇ lnφ) + f2

n (τ −
∆φ
φ ).

Proof. If (M = M1 ×f M2, g) is a non-trivial twisted product manifold admitting a static perfect fluid spacetime
structure with potential function φ, then by using Lemma 2.1-(1), (2.5) and (2.12) into the fundamental equation
(5.1) of static perfect fluid spacetime, we get the relation (5.9) on (M1, g1). This gives the assertion (1).

Similarly, using Lemma 2.1-(2) and (2.13) into the fundamental equation (5.1) of static perfect fluid spacetime,
we get

φ
[
Ric2(U, V ) +

(2−m2)

f
hf
2 (U, V ) +

2(m2 − 2)

f2
(df ⊗ df)(U, V ) (5.6)

−
(
1

f
∆f − 1

f2
g(∇f,∇f)

)
g(U, V )

]
− hφ

2 (U, V ) + U(k)V (φ) + V (k)U(φ)

−g(∇k,∇φ)g(U, V ) =
f2

n
(τφ−∆φ)g2(U, V ).

Using (5.4) and (2.5) into (5.6) and dividing both sides by φ ̸= 0, we get

Ric2 + hφ̃
2 + µdk ⊗ dk = λg2, (5.7)

where φ̃ = (2−m2)k − lnφ, η = dk and µ = m2 − 2 and λ = f∆f − ||∇f ||2 + f2g(∇k,∇ lnφ) + f2

n (τ − ∆φ
φ ).

If ∆φ = − τ
n−1φ holds in (5.1), then it turns into

φRic− hφ = −(∆φ)g, (5.8)

which is the equation of vacuum static space. Therefore, static perfect fluid spacetimes behave like a
generalization of static vacuum spaces which are an important subject of study in both differential geometry
and general relativity, [13]. From Theorem 5.1, we finally have:
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Theorem 5.2. Let (M = M1 ×f M2, g) be a non-trivial twisted product manifold. Then (M, g) is a vacuum static
spacetime with the potential function φ if and only if the following conditions hold:

1. the relation given below holds on (M1, g1):

Ric1 + h−m2 ln f−lnφ
1 −m2d(ln f)⊗ d(ln f)− d(lnφ)⊗ d(lnφ) =

1

n− 1
g. (5.9)

2. (M2, g2) is the gradient almost η-Ricci soliton with the potential function is φ̃ = (2−m2)k − lnφ, associated
1-form η = dk and the associated soliton functions µ = m2 − 2 and λ = f∆f − ||∇f ||2 + f2g(∇k,∇ lnφ) + f2τ

n−1 .

5.1. Static Spacetimes with Twisted GRW Metric

In this section, we give some applications of twisted product manifolds.
An m-dimensional product manifold M = I ×f N equipped with the metric tensor

g = −dt2 ⊕ f2gN

is called a generalized Robertson-Walker spacetime (briely GRW), where I is an open interval in R, dt2 is the usual
Euclidean metric tensor on I and (N, gN ) be a Riemannian manifold and f is a positive smooth function on I .
This notion has been studied by many authors, such as [7, 17, 16, 22].

In [15], the authors generalized this notion by defining the relevant function f on the whole manifold
M = I ×f N and then give basic geometric formulas of this new spacetime, namely we call it as twisted
generalized Robertson-Walker spacetime (briefly say TGRW).

Let’s consider the Lorentzian manifold M = I ×f M2 endowed with the Lorentzian metric

g = −dt2 ⊕ f2g2, (5.10)

where I is a real open interval and f is a positive smooth function on M . Then (M = I ×f M2, g) is called the
twisted generalized Robertson-Walker spacetime (TGRW). Also, let denote the standard vector field on I by ∂t.
Then we can directly obtain the following lemmas, which are the direct applications of Lemma 2.1 and Lemma
2.2.

Lemma 5.2. [15] Let U, V ∈ L(M2). Then the components of the Levi-Civita connection of TGRW (M = I ×f M2, g)
are:

(1) ∇∂t
∂t = 0,

(2) ∇∂t
V = ∇V ∂t = k′V ,

(3) ∇UV = 2∇UV + U(k)V + V (k)U − g(U, V )∇k.

Lemma 5.3. [15] Let U, V,W ∈ L(M2). Then, the non-zero components of the Riemannian curvature tensor of TGRW
(M = I ×f M2, g) are given by:

R(V, ∂t)∂t = −[k′′ + (k′)2]V, (5.11)

R(V,W )∂t = V (k′)W −W (k′)V, (5.12)

R(∂t, V )W = ∂t(W (k))V − k′g(V,W )∇k − g(V,W )Hk(∂t), (5.13)

R(V,W )U = R2(V,W )U + hk2(V,U)W − hk2(W,U)V (5.14)
+W (k)U(k)V − V (k)U(k)W − g(U,W )V (k)∇k + g(U, V )W (k)∇k

+g(U, V )Hk(W )− g(U,W )Hk(V ),

where hk(·, ·) = g(Hk(·), ·).

Then by simple calculations, we have the following:
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Lemma 5.4. Let U, V,W ∈ L(M2). Then, the non-zero components of the Ricci tensor of TGRW (M = I ×f M2, g) are
given by:

Ric(∂t, ∂t) = −m2[k
′′ + (k′)2], (5.15)

Ric(V, ∂t) = (1−m2)V (k′) = 0,

Ric(U, V ) = Ric2(U, V ) + (2−m2)h
k
2(U, V )− (2−m2)(dk ⊗ dk)(U, V )−∆2kg(U, V ),

where ∆2 denotes the Laplacian on M2 and mi = dim(Mi).

Then using Lemma 5.2, the Hessian tensor hφ of φ on a TGRW (M = I ×f M2, g) satisfies

hφ(∂t, ∂t) = φ′′, (5.16)
hφ(U, V ) = hφ

2 (U, V )− U(k)V (φ)− V (k)U(φ) (5.17)
+g(U, V )g(∇k,∇φ)

hφ(∂t, V ) = −k′V (φ). (5.18)

Theorem 5.3. Let (M = I ×f M2, g) be a non-trivial TGRW. Then (M, g) is a static perfect fluid spacetime with the
potential function φ if and only if the following conditions hold:

1. the following second order ordinary differential equation between the potential function φ and the warping function
k holds:

φ′′ +m2[k
′′ + (k′)2] =

1

n
(τ − ∆φ

φ
). (5.19)

2. dφ(V ) = 0, for any V ∈ χ(M2).

3. (M2, g2) is the gradient almost η-Ricci soliton with the potential function is φ̃ = (2−m2)k − lnφ, associated 1-
form η = dk and the associated soliton functions µ = m2 − 2 and λ = f∆f − ||∇f ||2 + f2g(∇k,∇ lnφ) + f2

n (τ −
∆φ
φ ).

The proof of the above theorem is completely based on the proof of the Lemma (5.1) and Theorem (5.1). Thus
we may skip.

5.2. Static Spacetimes on Twisted SSST Metric

Now, we recall the definition of standard static spacetimes. Let (F, gF ) be an s-dimensional Riemannian
manifold and f : F → (0,∞) be a smooth function. The (s+ 1)-dimensional product manifold fI × F endowed
with the metric tensor

g = −f2dt2 ⊕ gF

is called a standard static spacetime (briefly SSS-T) and is denoted by M =f I × F where I is an open,
connected subinterval of R and dt2 is the Euclidean metric tensor on I .

Standard static spacetime metrics play very important roles to find the solutions of the Einstein’s field
equations so that they have been studied intensively for many years. Some famous examples of standard static
spacetimes are the Minkowski spacetime, the Einstein’s static universe, the universal covering space of anti-de
Sitter spacetime and the Exterior Schwarzschild spacetime (for more details see [2, 1, 12]).

As a second application of twisted product, in [15], the auhors extend this notion by redefining the relevant
function f on the whole manifold M =f I × F and then give basic geometric formulas on this new product
and we call it as twisted standard static spacetime (briefly say TSSS-T).

We consider a semi-Riemannian manifold M =f I ×M2 endowed with the Lorentzian metric

g = −f2dt2 ⊕ g2, (5.20)

where I is a real open interval and f is a positive smooth function on M . Then (M =f I ×M2, g) is called the
twisted standard static spacetime (TSSS-T). Again by taking the standard vector field on I by ∂t, we can directly
obtain the following lemmas, which are the direct applications of the previous section.

Lemma 5.5. [15] Let U, V ∈ L(M2). Then the components of the Levi-Civita connection of TSSS-T (M =f I ×M2, g)
are:
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(1) ∇∂t∂t = 2k′∂t + f∇f ,

(2) ∇∂tV = ∇V ∂t = V (k)∂t,

(3) ∇UV = 2∇UV .

Lemma 5.6. [15] Let U, V,W ∈ L(M2). Then, the non-zero components of the Riemannian curvature tensor of TSSS-T
(M =f I ×M2, g) are given by:

R(V, ∂t)∂t = V (k′)∂t + V (f)∇f + f2∇V ∇k, (5.21)

R(V, ∂t)W = [hk2(V,W ) + V (k)W (k)]∂t, (5.22)

R(V,W )U = R2(V,W )U. (5.23)

Then again by simple calculations, we have the following:

Lemma 5.7. Let U, V,W ∈ L(M2). Then, the non-zero components of the Ricci tensor of TSSS-T (M =f I ×M2, g) are
given by:

Ric(∂t, ∂t) = f∆2f, (5.24)
Ric(V, ∂t) = 0,

Ric(U, V ) = Ric2(U, V )− hf2 (U, V )

f
,

where ∆2 denotes the Laplacian on M2.

Then using Lemma 5.5, the Hessian tensor hφ of φ on a TSSS-T (M = I ×f M2, g) satisfies

hφ(∂t, ∂t) = φ′′ − 2k′φ′ − fg(∇f,∇φ), (5.25)
hφ(U, V ) = hφ

2 (U, V ) (5.26)
hφ(∂t, V ) = −V (k)φ′. (5.27)

Theorem 5.4. Let (M =f I ×M2, g) be a non-trivial TSSS-T. Then (M, g) is a static perfect fluid spacetime with the
potential function φ if and only if the following conditions hold:

1. the potential function is of the form φ = α+ φ̃, where α ∈ R and φ̃ ∈ C∞(M2).

2. (M2, g2) is also a static perfect fluid spacetime with the same potential function φ.

3. The twisted function f and the potential function φ is related by:

φf∆2 + fg(∇f,∇φ) = −f2

n
(τφ−∆φ). (5.28)

Proof. To prove the necessary condition, first, we use (5.24) and (5.27) for any V ∈ L(M2) and get V (k)φ′ = 0.
Since TSSS-T is non-trivial, we may assume that V (k) ̸= 0. Otherwise, the metric reduces to the direct product.
Thus, φ′ = 0 that implies the assertion (1). By the TSSS-T metric, (5.24) and (5.26), the second assertion is
obvious. Finally, by using (5.24) and (5.25) into the fundamental equation of the static perfect fluid, the relation
(5.28) is obtained. The sufficient condition can be directly verified.
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