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Abstract
In this paper, we prove an Ambarzumyan-type theorem for a Conformable fractional diffusion operator, i.e. we
show that q(x) and p(x) functions are zero if the eigenvalues are the same as the eigenvalues of zero potentials.

Keywords: Ambarzumyan-type theorem, Conformable fractional derivative, Diffusion operator, Inverse problem
2010 AMS: 34A55, 34B24

Department of Mathematics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey, ycakmak@cumhuriyet.edu.tr, ORCID:
0000-0002-6820-1322
Received: 11 April 2023, Accepted: 10 September 2023, Available online: 15 September 2023
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1. Introduction
Inverse problems of spectral analysis consist of recovering the coefficients of an operator from their spectral characteristics.

Such problems often appear in mathematics, mathematical physics, mechanics, and other branches of natural sciences.
The first result in inverse spectral problems for the Sturm-Liouville operator has been obtained by Ambarzumyan in 1929

(see [1]). He considered the boundary value problem{
−y′′+q(x)y = λy, 0 < x < π

y′(0) = y′(π) = 0
(1.1)

and proved that if the eigenvalues of (1.1) are λn = n2, n≥ 0, then q(x)≡ 0 a.e. on (0,π).
Until now, some Ambarzumyan-type theorems for the Sturm-Liouville, Dirac and diffusion operators including classical

derivatives have been studied by many authors (see [2]-[17]). Particularly, in [15], by considering a quadratic Sturm-Liouville
operator called the diffusion operator, it is shown that q(x) and p(x) functions are zero if the spectrum is the same as the
spectrum of zero potential.

In 2014, Khalil et al. gave a new fractional derivative definition called conformable derivative that extends the well-known
limit definition of the classical derivative (see [18]). The conformable fractional derivative has some advantages over fractional
derivatives. For instance, while some properties such as the derivative of the product of two functions, the derivative of the
quotient of two functions, and the chain rule are not satisfied in all fractional derivatives, these properties are satisfied in the
conformable fractional derivative. The basic properties and main results of this derivative were developed in the works in
[19]-[24].

In recent years, the direct and inverse problems for the various operators which include conformable fractional derivative
have been studied (see [25]-[33]). These problems appear in various branches of applied sciences (see [34]-[38]). In the current



Ambarzumyan-Type Theorem for a Conformable Fractional Diffusion Operator — 143/147

literature, there are no results related to the Ambarzumyan-type theorem for a diffusion operator with the conformable fractional
derivative.

We consider a conformable fractional diffusion operator (CFDO) with Neumann boundary conditions. The operator
Lα = Lα(p(x),q(x)) is the form{

−T α
x T α

x y+[2λ p(x)+q(x)]y = λ 2y, 0 < x < π

T α
x y(0) = T α

x y(π) = 0
(1.2)

where λ is the spectral parameter, α ∈ (0,1], q(x) ∈W 1
2,α [0,π], p(x) ∈W 2

2,α [0,π] are real-valued functions and T α
x y is a

conformable fractional derivative of order α of y at x.
The goal of this paper is to prove an Ambarzumyan-type theorem for the operator Lα . The result obtained can be considered

as a partial α−generalization of the result given in [15].

2. Preliminaries
Definition 2.1. Let f : [0,∞)→R be a given function. Then, the conformable fractional derivative of f of order α with respect
to x is defined by

T α
x f (x) = lim

h→0

f (x+hx1−α)− f (x)
h

, T α
x f (0) = lim

x→0+
T α

x f (x),

for all x > 0, α ∈ (0,1]. If f is differentiable that is f ′(x) = lim
h→0

f (x+h)− f (x)
h , then, T α

x f (x) = x1−α f ′(x).

We note that more detailed knowledge about conformable fractional calculus can be seen in [18]-[24].
Let ϕ (x,λ ;α) be the solution of equation (1.2) satisfying the initial conditions

ϕ (0,λ ;α) = 1, T α
x ϕ (0,λ ;α) = 0.

From [32], this solution can be shown with the α−integral representation for h = H = 0 as

ϕ (x,λ ;α) = cos
(

λ
xα

α
−θ(x)

)
+

x∫
0

A
(

x, tα

α

)
cosλ

tα

α
dα t +

x∫
0

B
(

x, tα

α

)
sinλ

tα

α
dα t, (2.1)

where the functions A
(

x, tα

α

)
and B

(
x, tα

α

)
satisfy the following system

T α
x T α

x A
(

x, tα

α

)
−q(x)A

(
x, tα

α

)
−2p(x)T α

t B
(

x, tα

α

)
= T α

t T α
t A
(

x, tα

α

)
T α

x T α
x B
(

x, tα

α

)
−q(x)B

(
x, tα

α

)
+2p(x)T α

t A
(

x, tα

α

)
= T α

t T α
t B
(

x, tα

α

)
.

Besides, the following relations are provided:

B(x,0) = 0, T α
t A
(

x, tα

α

)∣∣∣
t=0

= 0,

θ (x) =
x∫

0

p(t)dα t,

A(0,0) = 0,

A
(

x,
xα

α

)
cosθ (x)+B

(
x,

xα

α

)
sinθ (x) =

1
2

x∫
0

(
q(t)+ p2 (t)

)
dα t,

θ (x) = p(0)
xα

α
+2

x∫
0

[
A
(

s,
sα

α

)
sinθ (s)−B

(
s,

sα

α

)
cosθ (s)

]
dα s.

The function

∆α (λ ) = T α
x ϕ (π,λ ;α) (2.2)
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is entire function in λ and is called as the characteristic function of operator Lα . It is well-known that the roots of ∆α (λ ) = 0
are coincide with the eigenvalues of operator Lα .

From (2.1) and (2.2), we have easily that

∆α (λ ) = −(λ − p(π))sin
(

λ
πα

α
−θ(π)

)
+A

(
π, πα

α

)
cosλ

πα

α
+B

(
π, πα

α

)
sinλ

πα

α

+

π∫
0

(
T α

x A
(

π, tα

α

))
cosλ

tα

α
dα t +

π∫
0

(
T α

x B
(

π, tα

α

))
sinλ

tα

α
dα t.

(2.3)

With the help of (2.3), the following theorem for the eigenvalues λn of operator Lα can be proved as in [32]:

Theorem 2.2. The operator Lα has a countable set of eigenvalues {λn} and the following asymptotic formula holds:

λn =
nα

πα−1 + cα,0 +
cα,1

n
+o
(

1
n

)
, |n| → ∞, (2.4)

where

cα,0 =
α

πα

π∫
0

p(x)dα x, cα,1 =
1

2π

π∫
0

(
q(x)+ p2 (x)

)
dα x.

3. Main Result
In this section, we prove an Ambarzumyan-type theorem for the operator Lα , i.e. we show that q(x) and p(x) functions are

zero if the eigenvalues are the same as the eigenvalues of zero potentials.

Theorem 3.1. If the eigenvalues of the operator Lα are λn =
nα

πα−1 , n ∈ Z, then for each fixed α , q(x) = 0, p(x) = 0 a.e. on

(0,π) and θ (π) = 0.

Proof. It follows from (2.4) that for each fixed α, cα,0 = 0, cα,1 = 0, i.e.

π∫
0

p(x)dα x = 0 = θ (π)

and
π∫

0

q(x)dα x =−
π∫

0

p2 (x)dα x. (3.1)

Let y0 (x;α) = y(x,0;α) be an eigenfunction corresponding to the eigenvalue λ0 = 0 of the operator Lα . Then we can write{
−T α

x T α
x y0 (x;α)+q(x)y0 (x;α) = 0, 0 < x < π

T α
x y0 (0;α) = 0, T α

x y0 (π;α) = 0
. (3.2)

It is clear that y0 (0;α) 6= 0 and y0 (π;α) 6= 0. Otherwise, y0 (0;α) = T α
x y0 (0;α) = 0 or y0 (π;α) = T α

x y0 (π;α) = 0. In both
cases, we get y0 (x;α) = 0 through the uniqueness of the solution of an initial value problem, which contradicts the fact that
y0 (x;α) is an eigenfunction.

Taking into account the relation

T α
x T α

x y0 (x;α)

y0 (x;α)
= T α

x

(
T α

x y0 (x;α)

y0 (x;α)

)
+

(
T α

x y0 (x;α)

y0 (x;α)

)2

,

we obtain from (3.2) that

T α
x

(
T α

x y0 (x;α)

y0 (x;α)

)
+

(
T α

x y0 (x;α)

y0 (x;α)

)2

= q(x).
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By α−integrating of both sides of the above equation from 0 to π

π∫
0

T α
x

(
T α

x y0 (x;α)

y0 (x;α)

)
dα x+

π∫
0

(
T α

x y0 (x;α)

y0 (x;α)

)2

dα x =
π∫

0

q(x)dα x

is obtained. From (3.1) and (3.2), we get

T α
x y0 (x;α)

y0 (x;α)

∣∣∣∣π
0
+

π∫
0

(
T α

x y0 (x;α)

y0 (x;α)

)2

dα x =−
π∫

0

p2 (x)dα x

or

π∫
0

[(
T α

x y0 (x;α)

y0 (x;α)

)2

+ p2 (x)

]
dα x = 0.

Thus, for each fixed α, (T α
x y0 (x;α))2 + p2 (x)y2

0 (x;α)≡ 0, i.e. p(x) = 0 a.e. on (0,π) and y0 (x;α)≡ k, where 0 6= k−const.
Hence, it is concluded from (3.2) that

−T α
x T α

x k+q(x)k = 0

then q(x) = 0 a.e. on (0,π). Therefore, the theorem is completed.

4. Conclusion
As known, the inverse problems of spectral analysis consist in recovering operators from their spectral characteristics, and

the first result in this direction belongs to Ambarzumyan for the Sturm-Liouville operator. Until today, many studies have been
done on the Ambarzumyan theorem for various operators including classical derivatives. In this paper, the Ambarzumyan
theorem is proved for the diffusion operator with Neumann boundary value conditions including fractional derivatives. This
study will make an important contribution to the inverse problems of spectral analysis. This theorem can be proved in the future
for various operators with different derivatives.
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