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Abstract: This paper introduces a new algebraic structure called dimodule. This structure is similar to

a module. A dimodule occurs on a semigroup and a dimonoid in place of an additive abelian group and

a ring, respectively. This paper presents some algebraic properties of the dimodules and supplies some of

their examples. We suggest a definition of a distributive dimonoid. This paper includes examples of this

notion that a distributive dimonoid does not have to be a commutative and idempotent dimonoid. We

also have examples of dimonoids and dimonoid homomorphisms.
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1. Introduction

Jean-Louis Loday introduces the concept of dimonoid [4] as a tool to investigate Leibniz algebras.

Dimonoids are nonempty sets with two associative operations providing some axioms. The di-

monoid becomes a semigroup if the operations are the same.

Anatolii V. Zhuchok has made many contributions to the topics related to dimonoids. Some

of these are to give some properties of commutative dimonoids and examples of commutative di-

monoids, to introduce the notion of the diband of dimonoids, to construct different samples of

dimonoids, to demonstrate that dimonoids are embedded into some dimonoid formed by a semi-

group isomorphically, to set a free commutative dimonoid [5, 6, 8, 9].

This paper introduces a dimodule as a new algebraic structure on a semigroup and a

dimonoid. This structure inspires by the algebraic form of modules. The dimodules are an algebraic

expansion by processing with the dimonoid and semigroups under certain conditions. In this paper,

there are studies of some algebraic properties of dimodule concepts and some dimodule examples.

We have the definition of a distributive dimonoid. We show with examples that a distributive

dimonoid does not have to be a commutative or an idempotent dimonoid. We also have some
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examples of dimonoid and dimonoid homomorphism.

2. Preliminaries

This section contains basic definitions of the semigroups and the modules [1–3]. In this section,

there are definitions of the dimonoids and some concepts of them [4–6, 8, 9]. Moreover, this section

includes the definition of a distributive dimonoid and some new examples of dimonoids.

2.1. Semigroups

Let S be a nonempty set and “ ⋅” be a binary operation on S . Then the algebraic structure

(S, ⋅) is called a semigroup if and only if, for all k, l,m ∈ S , k ⋅ (l ⋅m) = (k ⋅ l) ⋅m . Let P (S) denote

the set of all the subsets of S and K,M ∈ P (S) . If K = ∅ or M = ∅ , then K ⋅M = ∅ . If otherwise,

K ⋅M is the set {k ⋅m ∣ k ∈K,m ∈M} .

If, for all s ∈ S , 0 ⋅ s = 0 (s ⋅ 0 = 0), then an element 0 ∈ S is a left (right) zero element. If

an element 0 ∈ S is both the left and right zero elements, it is a zero element. A semigroup S in

which each element is a left (right) zero element is a left (right) zero semigroup. Let there is an

element 0 ∈ S in a semigroup (S, ⋅) such that x ⋅y = 0 for all x, y ∈ S . Then the semigroup is a zero

semigroup. Let (S, ⋅) and (Y,∗) be semigroups. Then a mapping f ∶ S → Y is a homomorphism

of semigroups if, for all k, l ∈ S , f(k ⋅ l) = f(k)∗f(l) . Let {Si ∣ i ∈ I} be a family of the semigroups.

Then ∏i∈I Si denotes the Cartesian product of the family {Si ∣ i ∈ I} and ∏i∈I Si is a semigroup.

2.2. Dimonoids

Jean-Louis Loday presented the concept of dimonoid in 2001.

Definition 2.1 [4] An arbitrary set D ≠ ∅ on which there are two associative operations “∗” and

“○” is a dimonoid if, for all k, l,m ∈D , provide the axioms in below:

(1) (k ∗m) ∗ l = k ∗ (m ○ l) ,

(2) (k ○m) ∗ l = k ○ (m ∗ l) ,

(3) (k ∗m) ○ l = k ○ (m ○ l) .

Example 2.2 [4] Let D be a nonempty set and let two binary operations “∗” and “○” be defined

by, respectively, k ∗ l = k and k ○ l = l for all k, l ∈D . Then (D,∗, ○) is a dimonoid.
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Example 2.3 Let D = {k, l} . Then (D,∗, ○) is a dimonoid with the following binary operations

“∗” and “○”:

∗ k l
k k k
l k k

○ k l
k k l
l k l

Definition 2.4 [8] If, for all k ∈D , k ∗ k = k = k ○ k , then a dimonoid (D,∗, ○) is an idempotent

dimonoid (or diband).

Example 2.5 Let D = {k, l} . Then (D,∗,∗) is an idempotent dimonoid with the “∗” binary

operation:

∗ k l
k k k
l l l

Example 2.6 Let D = {k, l} . Then (D,∗, ○) is an idempotent dimonoid with the binary operations

“∗” and “○” which are defined by the following table:

∗ k l
k k k
l l l

○ k l
k k l
l k l

Example 2.7 [5] Let (D,∗) be a zero semigroup including fixed elements with a ≠ b, b ≠ 0 and for

all k, l ∈D , a binary relation “○” on D be defined by

k ○ l =
⎧⎪⎪⎨⎪⎪⎩

a, k = l = b
0, otherwise.

Then (D,∗, ○) is a dimonoid.

Example 2.8 [9] Let (S, ⋅) be a semigroup with zero and A be a nonempty set. Then A is both

a left S -act and a right S -act with the following commutative actions:

S ×AÐ→ A ∶ (s, l) = s⊙ l = l,

A × S Ð→ A ∶ (l, s) = l ⊚ s = l.

Consider the S -act morphism ψ ∶ AÐ→ S,xz→ 0 . Then (A,∗, ○) is a dimonoid with the following

binary operations:

m ∗ n ∶=m⊚ ψ(n),

m ○ n ∶= ψ(m)⊙ n.
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Theorem 2.9 Let (D,∗, ○) be a dimonoid and S be a nonempty set. If ϑ ∶ D → S is a bijective

function, then (S,∗1, ○1) is a dimonoid with binary operations defined as follows:

s ∗1 v = ϑ(ϑ−1(s) ∗ ϑ−1(v)),

s ○1 v = ϑ(ϑ−1(s) ○ ϑ−1(v))

for all s, v ∈ S .

Proof For all s, p, z ∈ S ,

(s ∗1 p) ∗1 z = ϑ(ϑ−1(s) ∗ ϑ−1(p)) ∗1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ∗ ϑ−1(p))) ∗ ϑ−1(z))

= ϑ((ϑ−1(s) ∗ ϑ−1(p)) ∗ ϑ−1(z)) = ϑ(ϑ−1(s) ∗ (ϑ−1(p) ○ ϑ−1(z)))

= ϑ(ϑ−1(s) ∗ ϑ−1(ϑ(ϑ−1(p) ○ ϑ−1(z)))) = ϑ(ϑ−1(s) ∗ ϑ−1(p ○1 z)) = s ∗1 (p ○1 z),

(s ∗1 p) ∗1 z = ϑ(ϑ−1(s) ○ ϑ−1(p)) ∗1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ○ ϑ−1(p))) ∗ ϑ−1(z))

= ϑ((ϑ−1(s) ○ ϑ−1(p)) ∗ ϑ−1(z)) = ϑ(ϑ−1(s) ○ (ϑ−1(p) ∗ ϑ−1(z)))

= ϑ(ϑ−1(s) ○ ϑ−1(ϑ(ϑ−1(p) ∗ ϑ−1(z)))) = ϑ(ϑ−1(s) ○ ϑ−1(p ∗1 z)) = s ○1 (p ∗1 z),

(s ∗1 p) ○1 z = ϑ(ϑ−1(s) ∗ ϑ−1(p)) ○1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ∗ ϑ−1(p))) ○ ϑ−1(z))

= ϑ((ϑ−1(s) ∗ ϑ−1(p)) ○ ϑ−1(z)) = ϑ(ϑ−1(s) ○ (ϑ−1(p) ○ ϑ−1(z)))

= ϑ(ϑ−1(s) ○ ϑ−1(ϑ(ϑ−1(p) ○ ϑ−1(z)))) = ϑ(ϑ−1(s) ○ ϑ−1(p ○1 z)) = s ○1 (p ○1 z),

(s ∗1 p) ∗1 z = ϑ(ϑ−1(s) ∗ ϑ−1(p)) ∗1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ∗ ϑ−1(p))) ∗ ϑ−1(z))

= ϑ((ϑ−1(s) ∗ ϑ−1(p)) ∗ ϑ−1(z)) = ϑ(ϑ−1(s) ∗ (ϑ−1(p) ∗ ϑ−1(z)))

= ϑ(ϑ−1(s) ∗ ϑ−1(ϑ(ϑ−1(p) ∗ ϑ−1(z)))) = ϑ(ϑ−1(s) ∗ ϑ−1(p ∗1 z)) = s ∗1 (p ∗1 z),

(s ○1 p) ○1 z = ϑ(ϑ−1(s) ○ ϑ−1(p)) ○1 z = ϑ(ϑ−1(ϑ(ϑ−1(s) ○ ϑ−1(p))) ○ ϑ−1(z))

= ϑ((ϑ−1(s) ○ ϑ−1(p)) ○ ϑ−1(z)) = ϑ(ϑ−1(s) ○ (ϑ−1(p) ○ ϑ−1(z)))

= ϑ(ϑ−1(s) ○ ϑ−1(ϑ(ϑ−1(p) ○ ϑ−1(z))))ϑ(ϑ−1(s) ○ ϑ−1(p ○1 z)) = s ○1 (p ○1 z).

◻

Definition 2.10 [5] Let (D1,∗1, ○1), (D2,∗2, ○2) be dimonoids. Then a mapping f ∶ D1 → D2

is called a homomorphism of dimonoids if, for all k, l ∈ D1 , f(k ∗1 l) = f(k) ∗2 f(l) and

f(k ○1 l) = f(k) ○2 f(l) .
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Example 2.11 Let D1 and D2 be dimonoids in Example 2.5 and Example 2.6, respectively. Then

all the homomorphisms of dimonoids from D1 to D2 are the functions f(a) = k and g(a) = l for

all a ∈D1 .

Definition 2.12 [8] Let ∅ ≠ T ⊆ D . Then T is called a subdimonoid, if for all k, l ∈ T implies

k ∗ l ∈ T , k ○ l ∈ T .

Definition 2.13 [5] Let (D,∗, ○) be a dimonoid. Then D is called a commutative dimonoid if

both operations are commutative.

Example 2.14 [5] Let A be an arbitrary set such that 0, k, l,m,n ∈ A and k ≠ l , l ≠ m , m ≠ n ,

n ≠ k . The operations “∗” and “○” on the set A be defined as follows:

x ∗ y =
⎧⎪⎪⎨⎪⎪⎩

l, x=y=k
0, otherwise

, x ○ y =
⎧⎪⎪⎨⎪⎪⎩

n, x=y=m
0, otherwise

for all x, y ∈ A . So (A,∗, ○) is a commutative dimonoid.

Theorem 2.15 [5] In a commutative dimonoid (D,∗, ○) , for all k, l,m ∈ D , the following

equalities hold:

(k ∗ l) ∗m = k ∗ (l ○m) = (k ○ l) ∗m = k ○ (l ∗m) = (k ∗ l) ○m = k ○ (l ○m).

Theorem 2.16 [5] Let (D,∗, ○) be a commutative dimonoid with an idempotent operation “∗”.

Then its operations coincide.

Definition 2.17 (D,∗, ○) is a distributive dimonoid if and only if

k ○ (l ∗m) = (k ○ l) ∗ (k ○m),

(l ∗m) ○ k = (l ○ k) ∗ (m ○ k)

for all k, l,m ∈D .

Example 2.18 Let (D,∗, ○) be the dimonoid in Example 2.2. Then (D,∗, ○) is a distributive

dimonoid.

Theorem 2.19 If (D,∗, ○) is a commutative idempotent dimonoid, then it is a distributive

dimonoid.

Proof Let (D,∗, ○) is a commutative idempotent dimonoid. Then according to Theorem 2.16,

“∗” and “○” are the same operations. So (k ○ l) ∗ (k ○m) = (k ∗ l) ∗ (k ∗m) = (k ∗ k) ∗ (l ∗m) =

40



Ertuğrul Akçay and Canan Akın / FCMS

k∗(l∗m) = k○(l∗m) for all k, l,m ∈D . Since (D,∗, ○) is a commutative dimonoid, then (D,∗, ○)

is distributive dimonoid. ◻

The dimonoid (D,∗, ○) in Example 2.2 is a distributive and non-commutative. In Example 2.7,

the dimonoid (D,∗, ○) is a distributive and commutative dimonoid but not idempotent since

b ∗ b = 0 ≠ b .

Example 2.20 Let D = {k, l,m} be the commutative dimonoid with the operation “∗” defined by

the following table:

∗ k l m
k k k k
l k l m

m k m l

Then (D,∗,∗) is not distributive since m∗(l∗l) ≠ (m∗l)∗(m∗l) . Also (D,∗,∗) is not idempotent

since m ∗m ≠m .

Example 2.21 Let D = {k, l,m} be an arbitrary set. (D,∗,∗) is a commutative with the operation

“∗”defined in table. Although (D,∗,∗) commutative dimonoid is distributive dimonoid, it is not

idempotent since m ∗m = l ≠m .

∗ k l m
k k k k
l k l l

m k l l

Theorem 2.22 Let (D,∗, ○) be an arbitrary dimonoid, and let S be the dimonoid generated from

D as in the Theorem 2.9. If (D,∗, ○) is distributive, then S is so.

Proof Let k, l,m ∈ S . Then k ○1 (l ∗1 m) = k ○1 (ϑ(ϑ−1(l) ∗ ϑ−1(m))) = ϑ(ϑ−1(k) ○ (ϑ−1(l) ∗

ϑ−1(m))) = ϑ((ϑ−1(k)○ϑ−1(l))∗(ϑ−1(k)○ϑ−1(m))) . Let (ϑ−1(k)○ϑ−1(l)) ∶= ϑ−1(a) and (ϑ−1(k)○

ϑ−1(m)) ∶= ϑ−1(b) . Then k○1(l∗1m) = ϑ(ϑ−1(a)∗ϑ−1(b)) = a∗1b = ϑ(ϑ−1(k)○ϑ−1(l))∗1ϑ(ϑ−1(k)○

ϑ−1(l)) = (k ○1 l) ∗1 (k ○1 m) . Thus S is left distributive since k ○1 (l ∗1 m) = (k ○1 l) ∗1 (k ○1 m) .

Similarly, S is right distributive. ◻

Theorem 2.23 [7] Let {Di ∣ i ∈ I} be a family of dimonoids. Then the Cartesian product of the

family {Di ∣ i ∈ I} , ∏i∈I Di , is a dimonoid.
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3. Dimodules

Let (D,∗, ○) be a dimonoid. A (left) D -dimodule is a semigroup (S, ⋅) together with a function

D×S → S (the image of (u,x) being denoted by ux) such that for all u, v ∈D and for all x, y ∈ S :

(1) u(x ⋅ y) = ux ⋅ uy ,

(2) (u ∗ v)x = ux ⋅ vx ,

(3) u(vx) = (u ○ v)x .

A right D -dimodule is defined similarly via function S×D → S denoted (x,u)↦ xu and satisfying

the obvious of (1) − (3) . In this paper, unless specified otherwise, a D -dimodule means a left D -

dimodule. All theorems about left D -dimodules also hold for right D -dimodules.

Example 3.1 Let (D,∗, ○) be a dimonoid and (S, ⋅) be a semigroup with an idempotent element

a . Then S is a D -dimodule with the operation

D × S Ð→ S

(x, y)z→ a

Example 3.2 Let D = S = {a, b} . Then (D,∗, ○) is dimonoid and (S, ⋅) is a semigroup for the

operations “∗, ○, ⋅” in the following tables:

∗ a b

a a a
b a a

○ a b

a a b
b a b

⋅ a b

a a b
b b b

(i) Let a function D × S → S be defined as (d, s)→ ds = s . Then S is a D -dimodule.

(ii) Let a function D × S → S be defined as (d, s) → ds = d . Then S is not a D -dimodule since

(a ∗ b)a = a ≠ b = aa ⋅ ba .

Example 3.3 Let (D,∗, ○) be the dimonoid and let (N, ⋅) be the semigroup of natural numbers

with the multiplication. Let a function D ×N→ N be defined as follows:

dn =
⎧⎪⎪⎨⎪⎪⎩

0, 2 ∣ n
1, 2 ∤ n.

Then N is a D -dimodule.

Example 3.4 Let (D,∗) be the semigroup in Example 2.20. If the function D×D →D is defined

as (d, s)z→ ds = d∗s , then D is not a D -dimodule since (m∗m)m =m and mm∗mm = l∗ l = l .
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Example 3.5 Let (D,∗, ○) be a dimonoid in which (D,∗) is an idempotent semigroup and let a

function D ×D Ð→D defined as (x, y)z→ xy = y . Then D is a D -dimodule.

Proposition 3.6 Let S1, S2 be semigroups and f be a homomorphism of semigroup from S1 to

S2 . Then S1 is a D -dimodule if S2 is D -dimodule.

Proof Let the semigroup S2 be D -dimodule with the mapping D × S2 → S2 , (u, y) z→ uy .

Thus consider the mapping D × S1 → S1 , (u,x)z→ ux = uf(x) . Then S1 is a D -dimodule. ◻

Proposition 3.7 Let (D,∗, ○) be a distributive dimonoid and a function D ×D Ð→D be defined

as (x, y)z→ xy = x ○ y . Then (D,∗) is a D -dimodule.

Proof Straightforward. ◻

Example 3.8 shows that the Proposition 3.7 may not be correct if (D,∗, ○) is not a distributive

dimonoid, in general.

Example 3.8 Consider the dimonoid D in Example 2.20. Thus (D,∗) is not a D -dimodule

since m ∗ (l ∗ l) =m ≠ l = (m ∗ l) ∗ (m ∗ l) .

Proposition 3.9 Let {SiDi-module ∣ i ∈ I} . Then ∏i∈I Si is a ∏i∈I Di -module.

Proof Consider the mapping ∏i∈I Di ×∏i∈I Si → ∏i∈I Si , ((di)i∈I , (si)i∈I) z→ (di)i∈I .(si)i∈I =

(disi)i∈I . Then ∏i∈I Si is a ∏i∈I Di -module. ◻

Proposition 3.10 Let (D,∗, ○) be a dimonoid and a semigroup S be a D -dimodule with a bijective

mapping D × S → S . Then D is a distributive dimodule.

Proof Let k, l,m ∈ D and x ∈ S . Thus [k ○ (l ∗ m)]x = k[(l ∗ m)x] = k((lx)(mx)) =

(k(lx))(k(mx)) = ((k ○ l)x)((k ○m)x) = [(k ○ l)∗ (k ○m)]x and [(l ∗m) ○ k]x = [(l ○ k)∗ (m ○ k)]x

similarly. Hence D is distributive via bijectivity. ◻

Definition 3.11 Let (S, ⋅) be a D -dimodule and ∅ ≠ E ⊆ S . Then E is called a D -subdimodule

of S if, for all x, y ∈ E and u ∈D , x ⋅ y, ux ∈ E .

Example 3.12 Listed below are some examples of subdimodules:

(i) Each dimodule is a subdimodule of itself.

(ii) Let D be the D -dimodule in Example 3.5. Then each subsemigroup of D is a subdimodule

of D .
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(iii) Let (S, ⋅) be the D -dimodule in Example 3.2-(i) and E = {a} . Then E is a D -subdimodule

of S .

Proposition 3.13 Let S be a D -dimodule and {Ei ∣ i ∈ I} be a family of the D -subdimodules of

S .Then ⋂i∈I Ei is a D -subdimodule of S if ⋂i∈I Ei ≠ ∅ .

Proof Let x, y ∈ ⋂i∈I Ei and u ∈D . Thus x, y ∈ Ei for all i ∈ I . Hence, for all i ∈ I , x ⋅y ∈ Ei and

ux ∈ Ei since Ei is a D -subdimodule. Then x ⋅y ,ux ∈ ⋂i∈I Ei . Therefore ⋂i∈I Ei is a D -dimodule

of S . ◻
Example 3.14 shows that Proposition 3.13 may not be correct for the union of the families

of subdimodules.

Example 3.14 Let D = {a, b, c} and (D,∗) be the semigroup with the table below. If the function

D ×D Ð→D is defined as (u,x)z→ ux = x , then D is a D -dimodule.

∗ a b c
a a a a
b a b a
c a a c

The subsets A = {b} and B = {c} of D are D -subdimodules. However, A ∪B = {b, c} is not a

D -subdimodule since b ∗ c = a ∉ A ∪B .

Proposition 3.15 Let S be a D -dimodule and A ⊆ S .

(i) Let a ∈ A be idempotent element and (A ∶D S)a be the set {u ∈ D ∣ ux = a for all x ∈ A} .

Then (A ∶D S)a is a subdimonoid of D if it is nonempty.

(ii) Let A is a subsemigroup of S and (A ∶D S) = {u ∈ D ∣ uS ⊆ A} . Then (A ∶D S) is a

subdimonoid of D if it is nonempty.

Proof Straightforward. ◻

Proposition 3.16 Let {Si ∣ i ∈ I} be a family of the D -dimodules. Then ∏i∈I Si is a D -dimodule

and it is called direct product of the family {Si ∣ i ∈ I} .

Proof Let the mapping D ×∏i∈I Si → ∏i∈I Si , (d, (si)∈I) z→ d(si)i∈I = (dsi)i∈I . Then ∏i∈I Si

is a D -dimodule. ◻

Definition 3.17 Let S1, S2 be D -dimodules. A function f ∶ S1 Ð→ S2 is called a homomorphism

of D -dimodules if, for all x, y ∈ S1 and u ∈D , f(x ⋅ y) = f(x) ⋅ f(y) and f(ux) = uf(x) .
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Example 3.18 Let S1 be a D -dimodule and S1 be the D -dimodule in Example 3.1. Let a function

f ∶ S1 Ð→ S2 be defined by f(x) = a for all x ∈ S1 . Then f is a homomorphism of D -dimodules.

Example 3.19 Let two binary operations on Z5 be defined as follows:

x̄ ∗ ȳ =
⎧⎪⎪⎨⎪⎪⎩

2̄, x̄=ȳ=1̄

0̄, otherwise
, x̄ ○ ȳ =

⎧⎪⎪⎨⎪⎪⎩

4̄, x̄=ȳ=3̄

0̄, otherwise.

(Z5,∗, ○) is a dimonoid [5]. The semigroup (Z2, ⋅) is a Z5 -dimodule with the operation Z5×Z2 Ð→

Z2 , (ū, x̄) z→ 1̄ and the semigroup (Z4,+) is a Z5 -dimodule with the operation Z5 × Z4 Ð→ Z4 ,

(ū, x̄)z→ 0̄ . Then a function f ∶ Z4 Ð→ Z2 , x̄z→ f(x̄) = 1̄ is a homomorphism of Z5 -dimodules.

Example 3.20 Let D be the dimonoid in Example 3.2 and S be the D -dimodule in the case

(i). Then N is also a D -dimodule since D is an arbitrary dimonoid in Example 3.3. Consider

f ∶ N→ S ,

f(n) =
⎧⎪⎪⎨⎪⎪⎩

b, 2 ∣ n
a, 2 ∤ n.

Then f is a homomorphism of D -dimodules.

Theorem 3.21 Let S and Y be D -dimodules, and f ∶ S Ð→ Y be a homomorphism of D -

dimodules. If E is a subdimodule of S , then f(E) is a subdimodule of Y .

Proof ∅ ≠ f(E) ⊆ Y since E is a subdimodule of S . Let u ∈ D and a, b ∈ f(E) . There

exist x, y ∈ E such that a = f(x), b = f(y) since a, b ∈ f(E) . a ⋅ b = f(x) ⋅ f(y) = f(x ⋅ y) and

ua = uf(x) = f(ux) since f is a homomorphism of D -dimodules. Hence a ⋅ b, ua ∈ f(E) since

x ⋅ y, ux ∈ E . Thus f(E) is a subdimodule of Y . ◻

Theorem 3.22 Let S and Y be D -dimodules, f ∶ S Ð→ Y be a homomorphism of D -dimodules

and X be a subdimodule of Y . Then f−1(X) is a subdimodule of S if f−1(X) ≠ ∅ .

Proof ∅ ≠ f−1(X) ⊆ S since X is a subdimodule of Y . Let u ∈ D and x, y ∈ f−1(X) . Thus

f(x), f(y) ∈ X . f(x) ⋅ f(y) = f(x ⋅ y) ∈ X and uf(x) = f(ux) ∈ X since f is a homomorphism of

D -dimodule. Hence x ⋅ y, ux ∈ f−1(X) . Thus f−1(X) is a subdimodule of S . ◻

Corollary 3.23 Let S and Y be D -dimodules, f ∶ S Ð→ Y be a surjective homomorphism of

D -dimodule and X be a subdimodule of Y . Then f−1(X) is a subdimodule of S .
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Proof X ≠ ∅ since X is a subdimodule of Y . Thus there exists y ∈ X . Hence there exists

x ∈ S such that f(x) = y since f is a surjective function. Hence f−1(X) ≠ ∅ . Thus f−1(X) is a

subdimodule of S as per Theorem 3.22. ◻

Theorem 3.24 Let S be a D -dimodule, a ∈ S and Da = {da ∣ d ∈D} . Then Da is a subdimodule

of S .

Proof ∅ ≠ Da ⊆ S . Thus let x, y ∈ Da and u ∈ D . Hence there exist d1, d2 ∈ D such that x =

d1a, y = d2a . x ⋅y = (d1a) ⋅(d2a) = (d1∗d2)a ∈Da since d1∗d2 ∈D and ux = u(d1a) = (u○d1)a ∈Da

since u ○ d1 ∈D . Therefore Da is a subdimodule of S . ◻

Theorem 3.25 Let (D,∗, ○) be a distributive dimonoid, S be a D -dimodule, a ∈ S and Da =

{da ∣ d ∈D} . Then the map f ∶D Ð→Da, f(d) = da is a surjective homomorphism of D -dimodule.

Proof The surjective map f is a homomorphism of D -dimodule since f(u) ⋅ f(v) = (ua) ⋅ (va) =

(u ∗ v)a = f(u ∗ v) and f(d ○ u) = (d ○ u)a = d(ua) = df(u) for all u, v, d ∈D . ◻

Theorem 3.26 Let D1 and D2 be two dimonoids and let f ∶D1 →D2 be a dimonoid homomor-

phism. Then S is a D1 -dimodule if S is a D2 -dimodule.

Proof Consider D1 × S → S , (u,x)z→ f(u)x . Let u, v ∈D1 and x, y ∈ S . Then

u(x ⋅ y) = f(u)(x ⋅ y) = (f(u)x) ⋅ (f(u)y) = (ux) ⋅ (uy),

(u ∗ v)x = f(u ∗ v)x = (f(u) ∗ f(v))x = (f(u)x) ⋅ (f(v)x) = (ux) ⋅ (vx),

u(vx) = u(f(v)x) = f(u)(f(v)x) = (f(u) ○ f(v))x = f(u ○ v) = (u ○ v)x

since S is a D2 -dimodule and f ∶D1 →D2 be a dimonoid homomorphism. ◻
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