http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 73, Number 1, Pages 147–152 (2024) DOI:10.31801/cfsuasmas.1265768 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: March 15, 2023; Accepted: October 9, 2023

NORMAL AUTOMORPHISMS OF FREE METABELIAN LEIBNIZ ALGEBRAS

Zeynep ÖZKURT

Department of Mathematics, Çukurova University, Adana, TÜRKİYE

ABSTRACT. Let \mathfrak{M} be a free metabelian Leibniz algebra with generating set $X = \{x_1, ..., x_n\}$ over the field \mathfrak{K} of characteristic 0. An automorphism ϕ of \mathfrak{M} is said to be normal automorphism if each ideal of \mathfrak{M} is invariant under ϕ . In this work, it is proven that every normal automorphism of \mathfrak{M} is an IA-automorphism and the group of normal automorphisms coincides with the group of inner automorphisms.

1. INTRODUCTION

Leibniz algebras were discovered in 1965 by A. Bloh [2] and forgotten for nearly thirty years. In the early 1990s Leibniz algebras were rediscovered by Loday as a generalization of Lie algebras [8]. In 1993, Loday and Pirashvili studied these algebras and they described the free Leibniz algebras [9]. In 2001, Mikhalev and Umirbaev obtained some important results on subalgebras of free Leibniz algebras [11]. Then automorphisms of free Leibniz algebras of rank two were described by Abdykhalykov at.al. [1]. In [13], the author studied on automorphic orbits of free Leibniz algebras of rank two. In [16], Hall bases of free Leibniz algebras were defined by Shahryari. In 2002, it was given a description of free metabelian Leibniz algebras by Drensky and Cattaneo [3]. Let \mathfrak{M} be a free metabelian Leibniz algebra of rank n. Denote by \mathfrak{M}' , the commutator ideal of \mathfrak{M} . We write Aut(\mathfrak{M}) for the automorphism group of \mathfrak{M} . Let

$$\pi : \operatorname{Aut}(\mathfrak{M}) \to \operatorname{Aut}(\mathfrak{M}/\mathfrak{M}')$$

be the canonical homomorphism with kernel consisting of automorphisms that induce the identity mapping on $\mathfrak{M}/\mathfrak{M}'$. The kernel of π is called the IA-automorphism group and denoted by IAut(\mathfrak{M}). In [17,18], the author and Taş Adıyaman described a generating set for IAut(\mathfrak{M}) of rank three and n, respectively. Recently, symmetric

©2024 Ankara University Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 17A32; 17A36; 17A50.

Keywords. Leibniz algebra, normal automorphism, inner automorphism.

[□] zyapti@cu.edu.tr; □0000-0001-9703-3463.

¹⁴⁷

Z. ÖZKURT

polynomials of \mathfrak{M} were considered in [7]. An automorphism θ of \mathfrak{M} is said to be a normal automorphism if $\theta(I) = I$ for each ideal I of \mathfrak{M} . Normal automorphism group $\operatorname{Aut}(\mathfrak{N})$ is a normal subgroup of $\operatorname{Aut}(\mathfrak{M})$. For an element u of \mathfrak{M}' the adjoint operator

$$\mathrm{ad} u:\mathfrak{M}\longrightarrow\mathfrak{M}$$

defined by $\operatorname{ad} u(v) = [v, u]$, for every $v \in \mathfrak{M}$ is nilpotent since $\operatorname{ad}^2 u = 0$. Hence $\exp(\operatorname{ad} u) = 1 + \operatorname{ad} u$ is an automorphism of \mathfrak{M} called an inner automorphism. Denote by $\operatorname{Inn}(\mathfrak{M})$, the inner automorphism group of \mathfrak{M} . It is known that $\operatorname{Aut}(\mathfrak{N})$ contains $\operatorname{Inn}(\mathfrak{M})$. There exist many groups whose normal automorphisms are inner. See the papers [5, 10, 14, 15, 19]. In [4], Endimioni studied normal automorphisms of a free metabelian nilpotent group. Normal automorphisms are important for algebras. In [6], normal automorphisms of free metabelian nilpotent Lie algebras were considered. In [12], Öğüşlü proved that each normal automorphism of the metabelian product of abelian Lie algebras is an IA-automorphism and acts identically on the commutator algebra. It is natural to generalize results of Lie algebras to Leibniz algebras.

In this work, an analogue of the result in [12] is established for Leibniz algebras over a field of characteristic 0 and it is proven that each normal automorphism of \mathfrak{M} is an IA-automorphism. Then it is proven that $\operatorname{Aut}(\mathfrak{N}) = \operatorname{Inn}(\mathfrak{M})$.

2. Preliminaries

Let \mathfrak{K} be a field of characteristic 0. The vector space \mathfrak{L} over \mathfrak{K} equipped with a bilinear map $[,]: \mathfrak{L} \times \mathfrak{L} \longrightarrow \mathfrak{L}$ is called a Leibniz algebra if it satisfies the Leibniz identity

$$[x, [y, z]] = [[x, y], z] - [[x, z], y]$$

for all $x, y, z \in \mathfrak{L}$. In the general case a Leibniz algebra \mathfrak{L} is a non-associtive and non-commutative algebra. If the condition [x, x] = 0 for all $x \in \mathfrak{L}$ is satisfied, then \mathfrak{L} is a Lie algebra. Every commutator is reduced to a linear combination of left normed commutators by the Leibniz identity. Denote by $\operatorname{Ann}(\mathfrak{L})$, the ideal of \mathfrak{L} generated by elements $\{[a, a] : a \in \mathfrak{L}\}$. It is known (see [9]) that $r_z = 0 \Leftrightarrow$ $z \in \operatorname{Ann}(\mathfrak{L})$, where $r_z = \operatorname{adz}$.

Let \mathfrak{F} be the free Leibniz algebra with a generating set $\{x_1, \ldots, x_n\}$ over the field \mathfrak{K} of characteristic 0 (see [9]) and let \mathfrak{F}' and \mathfrak{F}'' be the commutator subalgebras of \mathfrak{F} and \mathfrak{F}' , respectively. Then $\mathfrak{F}/\mathfrak{F}'$ and $\mathfrak{F}'/\mathfrak{F}''$ are abelian Leibniz algebras over \mathfrak{K} . We fix the notation $\mathfrak{M} = \mathfrak{F}/\mathfrak{F}''$ for the free metabelian Leibniz algebra over the field \mathfrak{K} . Then $\mathfrak{M}' = \mathfrak{F}'/\mathfrak{F}''$. Denote by $\langle \mathfrak{S} \rangle$, the ideal of \mathfrak{M} generated by a set \mathfrak{S} .

The generators of $\operatorname{Aut}(\mathfrak{M})$ are given in the following theorem from [18].

Theorem 1. Let \mathfrak{M} be the free metabelian Leibniz algebra with a generating set $\{x_1, \ldots, x_n\}$. Then $\operatorname{Aut}(\mathfrak{M})$ is generated by the general linear group together with the inner automorphisms and the following IA-automorphisms

$$\phi \quad : \quad x_1 \to x_1 + [z, x_1]$$

 $x_j \to x_j - [x_j, z]$

where $z \in \mathfrak{M}'$ and $z \in \langle x_2 \rangle \oplus \ldots \oplus \langle x_n \rangle$,

$$: \quad x_j \to x_j + [z, x_j]$$

where z is generated by the elements of the form [x, y] - [y, x] where $x, y \in \{x_1, \ldots, x_n\}$,

$$\tau : x_1 \to x_1 + u$$
$$x_i \to x_i$$

where $i \neq 1$, $u \in Ann(\mathfrak{M})$ depends on x_t 's, $t \in \{2, \ldots, n\}$,

 σ

$$\psi : x_1 \to x_1 + v$$
$$x_i \to x_i$$

where $v \in \langle [x_j, x_k] \rangle$, $j \neq k \neq 1, i \neq 1$.

3. Normal Automorphisms

Theorem 2. Let $\theta \in Aut(\mathfrak{N})$. Then $\theta \in IAut(\mathfrak{M})$.

Proof. Let \mathfrak{M} be a free metabelian Leibniz algebra with the generating set $\{x_1, \ldots, x_n\}$. Every automorphism θ of \mathfrak{M} is defined by

$$\theta : x_i \to k_{i1}x_1 + k_{i2}x_2 + \dots + k_{in}x_n + u_i,$$

where the linear part is invertible, $u_i \in \mathfrak{M}', i = 1, \ldots, n, k_{ij} \in \mathfrak{K}$ [18]. Let $\theta \in \operatorname{Aut}(\mathfrak{N})$. Consider the ideal $\langle x_i \rangle$ of \mathfrak{M} . We have $\theta(x_i) \in \langle x_i \rangle$. Then $k_{i1}x_1 + \ldots + k_{in}x_n + u_i \in \langle x_i \rangle$. By grading $k_{i1}x_1 + \ldots + k_{in}x_n + k_{in}x_n \in \langle x_i \rangle$ and $u_i \in \langle x_i \rangle$ are obtained. Since x_1, x_2, \ldots, x_n are free generators, we obtain $k_{ij} = 0$ for $i \neq j$. Hence we have

$$\theta : x_i \to k_{ii} x_i + u_i,$$

where $k_{ii} \in \mathfrak{K}$. Consider the ideal $\langle \sum_{i=1}^{n} x_i \rangle$ of \mathfrak{M} . We obtain $\theta(\sum_{i=1}^{n} x_i) \in \langle \sum_{i=1}^{n} x_i \rangle$. Clearly

$$\theta(x_1 + x_2 + \dots + x_n) = k_{11}x_1 + k_{22}x_2 + \dots + k_{nn}x_n + u_1 + u_2 + \dots + u_n$$

and

$$k_{11}x_1 + k_{22}x_2 + \ldots + k_{nn}x_n + u_1 + u_2 + \ldots + u_n \in \langle x_1 + x_2 + \ldots + x_n \rangle.$$

By grading we have

$$k_{11}x_1 + k_{22}x_2 + \ldots + k_{nn}x_n = k(x_1 + x_2 + \ldots + x_n)$$

for a coefficient $k \in \mathfrak{K}$. It implies

$$(k_{11} - k)x_1 + (k_{22} - k)x_2 + \ldots + (k_{nn} - k)x_n = 0,$$

by the linearly independence $k_{ii} - k = 0$, and $k_{ii} = k$ for i = 1, 2, ..., n. Therefore,

$$\theta : x_i \to kx_i + u_i.$$

149

Consider the ideal $\langle x_i + [x_i, x_i] \rangle$ of \mathfrak{M} ,

 $\theta(x_i + [x_i, x_i]) = kx_i + k^2 [x_i, x_i] + u_i + k[u_i, x_i] + k[x_i, u_i] \in \langle x_i + [x_i, x_i] \rangle.$

By Theorem 1, $u_i \neq [x_i, x_i]$. Clearly it yields

$$kx_i + k^2[x_i, x_i] + u_i + k[u_i, x_i + k[x_i, u_i] = c(x_i + [x_i, x_i]) + z$$

where $c \in \mathfrak{K}, z \in \langle x_i + [x_i, x_i] \rangle$. By this equality, we obtain $k = c, k^2 = c$. Then we see that $k = k^2$ and $0 = k - k^2 = k(1 - k)$. Hence k = 1.

Theorem 3. $\operatorname{Aut}(\mathfrak{N}) = \operatorname{Inn}(\mathfrak{M}).$

Proof. Let $\theta \in Aut(\mathfrak{N})$. Then θ is an IA-automorphism by Theorem 2. Hence, it can be defined by

$$\theta : x_i \to x_i + u_i$$

where $u_i \in \mathfrak{M}'$. Using the generating set of IA-automorphisms by Theorem 1, we can write the elements $u_i, i = 1, 2, ..., n$ as in the following forms;

Case 1. $u_i = [x_i, w]$ for i = 1, 2, ..., n and $w \in \mathfrak{M}'$. In this form, θ is an inner automorphism.

Case 2. $u_1 = [w, x_1], u_j = -[x_j, w]$, for j = 2, ..., n, where $w \in \mathfrak{M}'$ and $w \in \langle x_2 \rangle \oplus ... \oplus \langle x_i \rangle \oplus ... \oplus \langle x_n \rangle, i \neq 1$. Now take $[x_1, x_2] \in \mathfrak{M}'$. Consider the ideal $\langle [x_1, x_2] \rangle$ of \mathfrak{M} . Then

$$\theta([x_1, x_2]) = [x_1, x_2] + [u_1, x_2] + [x_1, u_2] = [x_1, x_2] + [[w, x_1], x_2] - [x_1, [x_2, w]].$$

Since $[[w, x_1], x_2] - [x_1, [x_2, w]] \notin \langle [x_1, x_2] \rangle$, then $\theta([x_1, x_2]) \notin \langle [x_1, x_2] \rangle$. This is a contradiction.

Case 3. $u_i = [w, x_i]$, for i = 1, 2, ..., n, where w is generated by the elements of the form [x, y] - [y, x], for $x, y \in \{x_1, ..., x_n\}$. Consider the ideal $\langle [x_1, x_2] \rangle$ of \mathfrak{M} . Then

$$\theta([x_1, x_2]) = [x_1, x_2] + [u_1, x_2] + [x_1, u_2] = [x_1, x_2] + [[w, x_1], x_2] + [x_1, [w, x_2]]$$

Since $[[w, x_1], x_2] + [x_1, [w, x_2]] \notin \langle [x_1, x_2] \rangle$, then $\theta([x_1, x_2]) \notin \langle [x_1, x_2] \rangle$. This is a contradiction.

Case 4. $u_1 \in Ann(\mathfrak{M})$ depends on x_t 's, $t \in \{2, \ldots, n\}$, and $u_j = 0$ for $j = 2, \ldots, n$. We have

$$\theta([x_1, x_2]) = [x_1, x_2] + [u_1, x_2]$$

Since $[u_1, x_2] \notin \langle [x_1, x_2] \rangle$, this automorphism is not a normal automorphism. **Case 5.** $u_1 = \langle [x_j, x_k] \rangle$, $j \neq k \neq 1$, and $u_j = 0$, for j = 2, ..., n. We obtain

$$\theta([x_1, x_2]) = [x_1, x_2] + [u_1, x_2].$$

Since the element $[u_1, x_2] \notin \langle [x_1, x_2] \rangle$, then $\theta([x_1, x_2]) \notin \langle [x_1, x_2] \rangle$. This is a contradiction.

Therefore, the elements u_i are only as in Case 1. Hence θ is an inner automorphism.

150

Declaration of Competing Interests The author declares no competing interests.

Acknowledgements The author is very grateful to the anonymous referees for the careful reading of the manuscript and the valuable suggestions for the improvement of the exposition.

References

- Abdykhalykov, A. T., Mikhalev, A. A., Umirbaev, U. U., Automorphisms of two-generated free Leibniz algebras, Comm. Algebra, 29(7) (2001), 2953-2960. https://doi.org/10.1081/AGB-4998
- Bloh, A., A generalization of the concept of a Lie algebra, Dokl. Akad. Nauk SSSR, 165(3) (1965), 471-473. English translation: Sov. Math., Dokl., 6 (1965), 1450-1452.
- Drensky, V., Cattaneo, G. M. P., Varieties of metabelian Leibniz algebras, Journal of Algebra and Its Appl., 1(1) (2002), 31-50. https://doi.org/10.1142/S0219498802000033
- [4] Endimioni, G., Normal automorphisms of a free metabelian nilpotent group, Glasgow Math. J., 52 (2010), 169-177. https://doi.org/10.1017/S0017089509990267
- Jarden, M., Ritter, J., Normal automorphisms of absolute Galois groups of p-adic fields, Duke Math. J., 47 (1980). https://doi.org/10.1215/S0012-7094-80-04705-5
- [6] Fındık, Ş., Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Math. J., 36 (2010), 171-210.
- [7] Fındık, Ş., Özkurt, Z., Symmetric polynomials in Leibniz algebras and their inner automorphisms, *Turkish Journal of Mathematics*, 44 (2020), 2306-2311. https://doi.org/10.3906/mat-2006-44
- [8] Loday, J. L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math., 39 (1993), 269-293.
- [9] Loday, J. L., Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. https://doi.org/10.1007/BF01445099
- [10] Lubotzky, A., Normal automorphisms of free groups, J. Algebra, 63 (1980), 494. https://doi.org/10.1016/0021-8693(80)90086-1
- [11] Mikhalev, A. A., Umirbaev, U. U., Subalgebras of free Leibniz algebras, Communications in Algebra, 26 (1998), 435-446. https://doi.org/10.1080/00927879808826139
- [12] Öğüşlü, N. Ş., Normal automorphisms of the metabelian product of free abelian Lie algebra, Algebra and Discrete Mathematics, 30(2) (2020), 230-234. http://dx.doi.org/10.12958/adm1258
- [13] Özkurt, Z., Orbits and test elements in free Leibniz algebras of rank two, Communications in Algebra, 43(8) (2015), 3534-3544. https://doi.org/10.1080/00927872.2014.982806
- [14] Romankov, V. A., Normal automorphisms of discrete groups, Sib. Mat. Zh., 24(4) (1983), 138-149. English translation: Siberian Math.J., 24 (1983), 604-614.
- [15] Romanovskii, N. S., Normal automorphisms of free solvable pro-p-groups, Algebra Logika, 36(4) (1997), 441-453, English translation: Algebra Log., 36(4) (1997), 257-263. https://doi.org/10.1007/BF02261748
- [16] Shahryari, M., Hall bases for free Leibniz algebras, Bull. Iranian Math. Soc., 45(2) (2019), 617-625. https://doi.org/10.1007/s41980-018-0153-3
- [17] Taş Adiyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras of rank three, Turk. J. Math., 43(5) (2019), 2262-2274. https://doi.org/10.3906/mat-1903-104
- [18] Taş Adiyaman, T., Ozkurt, Z., Automorphisms of free metabelian Leibniz algebras. Comm. Algebra, 49(10) (2021), 4348-4359. https://doi.org/10.1080/00927872.2021.1919690

Z. ÖZKURT

[19] Timoshenko, E. I., Normal automorphisms of a soluble product of abelian groups, Sib. Mat. Zh., 56(1) (2015), 227-236. English translation: Siberian Math. J., 56(1) (2015), 191-198. https://doi.org/10.1134/S0037446615010188

152