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Abstract

In this study, random ordinary differential equations obtained by randomly choosing the
coefficients or initial conditions of the ordinary differential equations will be analyzed by
the Adomian Decomposition Method. The initial conditions or coefficients of the
equations will be converted to random variables with normal and exponential
distribution. Probability characteristics such as expected value, variance and confidence
interval of the obtained random ordinary differential equations will be calculated.
Obtained results will be drawn with the help of MATLAB (2013a) package program and
random results will be interpreted.

Keywords: Adomian decomposition method, fractional derivative, nonlinear ordinary
differantial equation

Kesir mertebeden rastgele adi diferansiyel
denklemlerin Adomian Ayristirma Y ontemi ile
analizi

Oz

Bu ¢alismada, adi diferansiyel denklemlerin katsayilarinin veya baslangi¢ kosullarinin
rasgele secilmesiyle elde edilen rasgele adi diferansiyel denklemler, Adomian Ayristirma
Yontemi ile analiz edilecektir. Denklemlerin baslangi¢ kosullari veya katsayilari, normal
ve tistel dagilima sahip rasgele degiskenlere doniistiiriilecektir. Elde edilen rastgele adi
diferansiyel denklemlerin beklenen degeri, varyansi ve giiven araligi gibi olasilik
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ozellikleri hesaplanacaktir. Elde edilen sonuglar MATLAB (2013a) paket programi
yvardimiyla ¢izilecek ve rastgele sonucglar yorumlanacaktir.

Anahtar Kelimeler: Adomian ayristirma yontemi, kesirli tiirev, lineer olmayan adi
diferansiyel denklem

1. Introduction

Application of nonlinear differential equations in physics, engineering etc. It has many
applications in fields. Such equations often do not have analytical solutions. Many
problems, such as physics and engineering, can be modeled mathematically. Since these
models are expressed with the help of nonlinear differential equations, there are methods
developed in the literature to obtain approximate analytical solutions of these equations.
One of these methods is the Adomian Decomposition Method.

ADM was first introduced by Adomian in the early 1980s. Adomian applied this method
to find approximate solutions of deterministic, linear and nonlinear problems with
boundary and initial conditions. The method is constructed by decomposing nonlinear

Ny terms. Ny:ZAnis defined as. Here, A, are Adomian polynomials. Each
n=0
A,, depends on the arguments vy, ¥4, V5, ..., ¥, for n > 0. The formulas to obtain these
polynomials were developed by Adomian [1-4]. In recent years, more and more
researchers have applied this method to solving nonlinear systems [5-22]. We firstly
study the algorithm and convergence analysis of ADM, and then apply ADM to
constructing approximate solutions for nonlinear equations with initial data, including
algebraic equations, fractional ordinary differential equations and fractional partial
differential equations.

In recent years [27-33], many studies have been carried out on random differential
equations, random partial differential equations and random integral equations. The
deterministic model assumes that the parameters are fixed quantities, while the disease
dynamics represented by the parameters may be random in nature. Therefore, we will
use a random system of differential equations to represent this randomness. In our study,
we transformed the parameters of the deterministic model into random variables to
analyze the coefficients or initial conditions random transmission dynamics. The
deterministic model assumes that the parameters are constant quantities, while the disease
dynamics represented by the parameters can be random in nature. So we will use a
random differential equation to represent this randomness.

The motivation for this study is the previous literature on random modeling of various
diseases. Exponential and Normal (Gaussian) distributions will be used for the
distributions of random parameters. In addition to expected values, random models and
equations enable analysis of other numerical properties of the results. Results for
expected values, variations, standard deviations, coefficients of variation, and confidence
intervals provide analysis of changes in deterministic results. This analysis cannot be
done using the deterministic model. Therefore, the random model offers much more than
the random model. In recent years, the relationship of the mentioned method with the
literature and the comparison results of the proposed articles are included in the
literature[34-40].
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The rest of this present paper is arranged as follows: Basic idea of Adomian
Decomposition Method are introduced in Section 2. An attractive applications with
graphical results to verify the effectiveness and reliability of our technique, along with
the methodology of the proposed method, tables and discussions are given in Chapter 3.
Finally, Chapter 4 concludes the output of the entire article.

1.1.Preliminaries
Definition 1. We define the Caputo fractional order derivative of the function f(t) [41-
42]

1

DELFO1 = rg =y | (€= P )Py

Where, B = [a] + 1 and [a] represents the integral parts of a.

Definition 2. The Riemann-Liouville fractional derivative of order 0 < a <1 of a
function is defined as [43]

RLNpa — 1 d * -a
oD f(x) = mafo (x — )™ f()dt

where I'(.) denotes the Gamma function.

2.Adomian decomposition method

Let L(y) + R(y) + N(y) = f(t) be the ordinary differential equation. Here L is the
highest order inverse derivative operator, R is linear differential operator, N is nonlinear
operator and f is an independent term from y. y is the solution of the equation. The main
purpose of the Adomian Decomposition Method is to implement the inverse operator. If
L1 is applied to both sides of the expression

Ly(t) = () = Ry(t) = N(y(8))

giving the solution, then

y(t) = o) + L7 () = LT'Ry(t) = LT'N(y(1))

is obtained and 1, contains terms resulting from the use of initial conditions.

d

(v(0), L=—

¥(0) + ty'(0), 2=
IIJO(x) = < 1 d3

y(0) + ty'(0) +3%y" (0), =

[ Y(0) +ty' (@) +2e2y"(0) + 23y (), 1t=2
or
320 () = Yo(t) + L7 (6) = LR T3 Y () — L T2 An(0) 1)
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and A, (t) in (1) are the Adomian polynomials. If y,(t) is defined as 1, (t) + L~1f(¢)
the remaining components are determined by the following equations [6]:

yo(t) = Yo (t) + L7 (D),
Vi) = =L 'Ryp_1(t) — L A1 (D), k=1,2,..

Adomian polynomials can be obtained as follows [1-4]:

=19,
y
Alzy dy00|
_ af (yo) y_f d*f (o)
A2 =20 T ag
_ . df o) d*f(yo) , ¥i d3f(¥o)
A3—)’3d_yo+)’1YZ dy? 30 ae
_ . A0 | (1 2 d?fo) | 1 o d*f(o) , ¥id*f(yo)
Ay =y, 2o +(2!)’2 +3’13’3) & S ViY2 &3 o ayd

The authors of [44] also worked on ADM convergence analysis using the Cauchy-
Kowalevskaya theorem formalism, which guarantees that the solutions of initial value
problems for systems of ordinary differential equations with analytical vector fields are
analytical over time for small time intervals.

3.Application
In this Chapter, we provide attractive and interesting examples with graphical results to
demonstrate the effectiveness and simplicity of the method we proposed in Chapter 2.

Example 3. 1.
Consider the following random ordinary fractional differantial equation

1

dy _ _adz(-y)
a- Y ()

subject to the initial conditions

y(0)=8B

where B~N (u, 02) is parameter with Normal distribution. If L~ is applied to both sides
of the equation in equation (2), where L = %, equation (3) is obtained.

1
d dz(—
L_ld_:i — _L—l ( 1y) _ L—ly
dt2
d 2 -
Yn+1 = jAn —L 1yn (3)
dt 2

As Adomian Polynomials, f(y) = —y, f'(y) = —1, f"(y) = 0.
AO = B,
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1
Al = _yl :f/_;ta‘l'Bt,

A, = = Bt Be”
2= Y2 = 5
yO = B'
0z 0z 1 2B L
= — Ay — L 1y, = — B—-L"'B=——tz — Bt,
Y1 dt_% ° Yo dt_% v
1
d 2 B L Bt?
Yy, = — T A L_y —t 2+ Bt|+ L1 |—=tz + Bt —Bt+—
2 dt‘li v dt 2[ ] [\/E ]
dz d 2 Bt2
y3=——=A; — L1y, = — Bt—— + L7t (Bt —=—
3 dt_% 2 2 dt‘E( ) ( 2 )

In the equation y(t) = yo(t) + y.(t) + y,(t) + y3(t) + -+ instead of y,(t), y,(t),
y2(t), y;(t) values written and edited, the following (4) solution will be found.

25 .2 Bt? 4B 3 8B 5 Bt? Bt
Y(t)—B—ﬁtz—Bt—Bt+T—7t +Ft +2 -y
_ 2 L 2 3

The moment generating function of the Normal distribution is

My(t) = E[e¥¥] = p30 L HHE

The moments of the random variable B~N (u, a2) are calculated as

E[Bl=pun,  E[B?] =0?%+ u?

Using the basic properties of the expected value for the random variable, the expected

value of equation (4) is found as (5). If B~N(u = 2,02 = 5) special values are selected,
equation (6) is obtained.

_ 2 1 5 8

E[y(t)]—(l——%tj+t —2t——_t +F_t ——+ )E[B]
— (12702 _op_ 2 8 St

E[y(t)]—(l Sttt 2t \/_t +15\/_t + )M (5)
— 2 2 2 8 _

E[y(t)]—Z(l—ﬁt2+t —2t—3\/_t +15\/_t + ) (6)

If the expected value is plotted with MATLAB (2013a) for the given parameter values,
the graph in Figure 1. is obtained.
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Expected Value
T

E(Y(®)

Figure 1. The solution behavior of the expected value of equation (4) for special values
B~N(u = 2,062 =5).

Using the basic properties of the variance, the variance of equation (4) is calculated as
follows:

Var(B) = E(B?) — [E(B)]? = 0% + u? — u® = o*
2 1, 4 3 g 5 3 2
Var[y(t)]=(1—ﬁtz+t —2t——nt2+—t2—;+~-) Var[B]

3Wrm 15V
- 2 2 2 4 3 g 5 3 2 )
Var[y(t)]—(l_\/_ﬁtz'Ft —zt—ﬁt2+mtz—?+...)0

Specifically, if B~N(u = 2,02 = 5) is selected,

Varly(t)] 5<1 IE S SRPURN I S S0 )2
ar t)| = ——t2 4+t — 2t — t2 + t2 ——+ .-
y(® Vi 3T 15vm 6

variance value. If the variance is plotted with MATLAB (2013a) for the given parameter
values, the graph in Figure 2. is obtained.

Variance
12 T

10

r r r r r
0 0.5 1 1.5 2 25 3
t

Figure 2. The solution behavior of the variance of equation (4) for special values
B~N(u = 2,062 =5).

78



MERDAN M., ATASOY N.

Confidence intervals for expected values of random variables,

(E(y() — K.std(y(6)), E(y(1)) + K. std(y(1))

is equal to and this can be obtained through standard deviations. For K = 3, this formula
gives approximately 99% confidence interval for the approximate expected value of the
normally distributed random variable [23]. If the 99% confidence interval is plotted with
MATLAB (2013a), the graph in Figure 3. is obtained.

Confidence Interval
10 T T T T T

10F o -
E(Y)-3std(Y) o

E(Y) T _—
E(Y)+3*std(Y)

-15 t
0 0.5 1 15 2 2.5 3

Figure 3. The solution behavior of the confidence interval of equation (4) for special
values B~N(u = 2,02 = 5).

Table 1. Table for the expectation value, variance and 99% confidence interval

t E(y(®) Var(y@®))  E(y(®)—3std(y) E(y(D)) + 3std(y)
0.0 2 5 -4.708203931 8.708203931
0.1 0.8603434431 0.9252385486 -2.025336189 3.746023075
0.2 0.1442786213  0.02602040111 -0.3396465896 0.6282038322
0.3 -0.4826270769 0.2911611188 -2.101407503 1.136153349
0.4 -1.048347668 1.373791039 -4.564612639 2.467917304
0.5 -1.562974221 3.053610517 -6.805349128 3.679400685
0.6 -2.031493046 5.158704992 -8.845327860 4782341770
0.7 -2.456887690 7.545371395 -10.69753951 5.783764134
0.8 -2.841217533 10.09064634 -12.37095084 6.688515773
0.9 -3.186073332 12.68882909 -13.87248816 7.500341494
1.0 -3.492795001 15.24952115 -15.20798558 8.222395574
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The expected value, variance and confidence interval for K = 3 values are given in Table
1. It can be seen that the results for t € [0,1] values are obtained similarly to the results
for the case with Normal parameters.

Example 3. 2.
We will then consider the following random ordinary fractional differantial equation

yi:]_—yz (7)

Let equation (7) have initial conditions y(0) = A. Where A~exponential(A) is
parameter with exponential distribution.

1
LY = 1—y2 )

dtz
1
As in the previous example if L™z is applied to both sides of the equation in equation (7),
1

where L = d—il, equation (8) is obtained.
dtz

1 1 1 1
L™ (d—y) =L7(1) - L2(?)
dtz
d_% -1
Yuer = =1y +L72(1)
dat 2

The terms 4,, and y,, are obtained as f(v) = y2, f' (y) = 2y and f"' (y) = 2.

AOZAZ,

1
A, = %Azm — A2)¢t3,
1

A, = (—4A4 +2a- A2)> (1—A)t+ 212
2 - \/E )

yO = A' 1
d 2 _1 2 1
7= =+ 1750 = (- 6
o2, +L7E(1) = —24%(1 — At + 2 t2
Y2 = az B v

o2, +173(1) = (4,44 ~fa- A2)> (1- A"tz — 28t + 2t
C I - n 3V vz

As y(t) = yo(t) +y,(t) + y2(t) + y3(t) + --- the values y,(t), y1(t), y.(t), y5(t)
are written instead of and if edited,

1 3
y(t)=A+(—\/%t5—4t+%t5)A2+
16 10,3\ 4 16 32 o 6 1 16 3
(2e+5z(1-7)e)at szt + 2o -t + o ©)
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solution is obtained.

My () = Ele™] = 1

The moments of the random variable A~exponential(A) can be calculated using the
moment generating function of the exponential distribution.

If A~ exponential(A = 5) special values are selected, the expected value is obtained as
equation (10).

= 2 = 4
EY(©)] = E[A]+ (—Jt: — 4t + 2=e) E[42] + (2t + 5 (1 - 1) ) El4*] -
16 (2E[4S E(—tZ)—E ° t%)+---
w_t 2E[A ]+ 7 j P 3 3
1 2 2! 4! 16 = 6!
-7 e Sym\ T 74 3= 76
E[y(t)]—l+( \/Etz 3 \/_ ) (2t+ \/‘(1 n) ),1 3\/Et2,1 +
KIS LRy~ S
\/E 37T\/El 3 3
1 2 32 2\ 2! 16 1 2\ 4!
Ey®] =5+ (-6 —at+26) S (20452 (1-7) ) 55—
16 58 6516 5 (10)
3Wam~ 56 Vm Ve

If the expected value is plotted with MATLAB (2013a) for the given parameter values,
the graph in Figure 4. is obtained.

Expected Value
13

E(Y(D)

E(Y)

0 r r r r r
0 0.5 1 1.5 2 2.5 3
t

Figure 4. The solution behavior of the expected value of equation (9) for the special
value A~exponential(A = 5).

The variance of random variable A is found as (10). If A~exponential (A = 5) is chosen
specifically, the variance is equal to (11).

Var[y(t)] = Var[A] + (—%tz at + tz) Var[A?] +

3n \/’
(26 +2% (1= 2) ) varta] + (250) Var(a®) + -
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2 2

1 2 1 32 3\“20 16 1\ . 3\“ 39744
Varly®] =5+ (- gt -4t +=t2) 2+ (2t +=(1-2)e2) 224
16 .3\? 478483200
(L) e
1 2 1 32 3\?20 16 1\ 3\? 39744
Varly®] =+ (- gt -4t +=t2) T+ (2t +5=(1-2)e2) 52+

16 3\? 478483200
(ﬁ 2) 512 (11)
The graph of the variance value of the random variable A is obtained as Figure 5. for the
special value A~exponential(A = 5).

Variance
600 T T T T T

500 -

400 [~

Var(Y(t))
w
3
T

200 -

100~

Figure 5. The solution behavior of the variance of equation (9) for the special value
A~exponential(A = 5).

As in the previous application, the solution behavior of the approximately 98%
confidence interval of the expected value of the random variable with exponential
distribution for K = 3 is Figure 6.

Confidence Interval
80 T T T T T

60 - ]

40 - e b

20+ _— i

(0] sp——— =
20 T~ .

40k T - -

E(Y)-3*std(Y)

-60 [~ E(Y) T
E(Y)+3*std(Y)
_80 r r r r r
0 05 1 15 2 2.5 3

t
Figure 6. The solution behavior of the confidence interval of equation (8) for the special
value A~exponential(A = 5).
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Table 2. Table for the expectation value, variance and 98% confidence interval

t E(y(®) Var(y(®))  E(y(®) —3std(y) E(y(®)) + 3std(y)
0.0 1/5 1/25 -0.4000000000 0.8000000000
01 1193926410  0.08039504659 0.3433058014 2.044547018
02 1557886374  0.2576957253 0.03497418607 3.080798560
0.3 1808657407  0.6807656305 -0.6665982720 4.283913085
0.4 1997120377  1.459717504 -1.627442705 5.621683459
05 2143449284  2.704849520 -2.790478734 7.077377300
0.6 2258219152  4.526504006 -4.124455526 8.640893829
0.7 2347845506  7.035027282 -5.609242245 10.30493326
0.8 2416594627  10.34075571 -7.230518996 12.06370825
0.9 2467489460 1455401064 -8.977426262 13.91240518

1.0 2502774240  19.78509694 -10.84135827 15.84690675

The expected value, variance and confidence interval for K = 3 values are given in Table
2. It can be seen that the results for t € [0,1] values are obtained similarly to the results
for the case with exponential parameters.

Example 3. 3.
As a third example,

a2

=y 3y +1 (12)

let's take the equation. Let the initial conditions of equation (12) be y(0) = A and
y'(0) = B. Where A,B~N(u,d?), A and B being the random variable with normal
distribution.

3
As in the previous example if L™z is applied to both sides of the equation in equation (12),
3

where L = d—i, equation (13) is obtained.
datz
4 32 _3 3,
Yn+1=ﬁt2+3L 2(y) — L2(y?) (13)
A, = A? + 2ABt + B?t?,
2 3 5 2 7
A, = 2B(A + Bt) [(i+ﬁ_i)t5+( 8 16A3)t5— 3287 7

Vi Vm 3E 5Vm 15V 1osvr I
4 44 442\ 32 8 164B\ .2 3282 7
Y1 = (ﬁ-l_ﬁ_ﬁ)tz + (ﬁ_ 15\/E) 2~ Tosym 2
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4 3 9\/E<4 4A 4A2>t3 15\/E<8 16AB>t4 B? .

y2= t2 + +—=—— —_ ——t
3Vm 24 \3vn  m 3Vm 64 \5vm 15vVm 20
1 4 44  4A? 5B2Vm( 4 4A 442
__Am(_+___)ts_ W<_+___)t4
4 3o VJm 3Vm 32 \3vmr m 3Vm
5AB\/E( 8 16AB)t4+AB2t5 AB3t5 3194t6
32 \5ym 15Vm 20 30 20

Asy(t) = yo(t) + y1(t) + y,(t) ... the values y, (t), y1(t), y,(t) are written instead of
and if edited,

8 2 8 5 3 3, 4 2 3 4 (16 3 it
y(t)—ﬁt2+ﬁt2+7+gt +(1+\/—ﬁt2+5t )A+Bt (15\/Et2+?+
ENap (o e\ g2 (32 5 5.a\p2 (43 _ 5.4, ) g2
3)AB (3\/Et2+2)A (105\/Et2+20 8t )B +( t 8t +20)AB+
9t* o2 , t3 3 5 o3 3t0 4
—A“B“+—A°B+—AB° ——B* + --: (14)
24 3 30 20

solution is obtained. The parameters of the normally distributed random variable X are
A,B~N(u,a?). The moments of the random variable X with normal distribution are
found with the help of the moment generating function.

E(y(t) = ] t%+ 8 t%+t3+3t4+<1+ 4t%+3t3>E[A]+E[B]t
=3 w5y 2 8 Jr 2

4 3 3
_ ( 16 5.8, t—)E[A]E[B] _ (it% + t—)E[AZ]

15vVm 2 3 VT 2

32 3 t> 5 5 t>
— 5 o _+4 2 _+3 _ _+4 _ 2
(105\/Et2+20 8t >E[B ]+< t 8t +20>E[A 1E[B]
4 3

ot t £5 3
+ﬁE[AZ]E[BZ]+§E[A3]E[B]+%E[A]E[Bs]__E[B4]+W
E(y(®) = —=t? + — ANV (I AL B
P =30m Tsym 2 s THTHE I
_4 3 t? 32 3 t5 5§
_ tZ+— (02 + u?) — tZ4+———t%) (g2 + u2
<3\/E 2>( w) <105\/E 20 8 >( w)
4 3

3 5 4 tS 2 2 ot 2 2)2 t 2 3
H -t -5t t5; (o +u),u+ﬁ(a + u®) +§(30 p+pcu

8
t5 ) 3 3t6 . L Y
+%H(30' M+ll)_%(30' + 60°u* + u*) + -
E(y(®) = —=t? + — I INP P YPY (I L

5(4 t%+t3) 5< 32 t%+t5 5t4>

3Vm 2 105w 20 8

10f—p 5 oy t> N 225t% N 28t3 N 14t5 129t° N
8 20 24 3 15 20

If the expected value is plotted with MATLAB (2013a) for the given parameter values,
the graph in Figure 7. is obtained.
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Expected Value
10 T T

E(Y®)

r r
0 0.5 1 15
t

Figure 7. The solution behavior of the expected value of equation (14) for the special
value A,B~N(u = 2,62 = 1).

-60

2

Var(y(t)) = (1 + %t% + ;t3) Var[A] + Var[B]t?
16 s t+ 3\’ 4 3 3\’ ,
(15\/_ 3> Var[AlVar[B] — <mt +?> Var[A®]

32 3 t5 5 \°
t2 +———t*| Var[B?
(105\/E 20 8 > [5°]
8

(o3 B Y (A2Var(B] + oot v ar(A®|Var([B?]
8 20 ar ar 576 ar ar

6 10 12

t t
- 3 R 3 4
+ 5 Var[A®|Var[B] + 900Var[A][/ar[B 1+ 200 Var[B*] +

4 3 3 .\2 16 5 t* 3\?
Var(y(t))=<1+\/—Eti+§t3> 02+02t2+<15ﬁt5+?+§> ot

2
+ ?> (20* + 402u?)

105v% 20 B

5 £5\ 81t
3 44 204 422 2
t t+20>(0+0u)0+576

8
(20* + 402 u?)?

2 3.5 2
< ——= t4> (20* + 402u?)
+ ( >
+6
+ 3(1506 + 360*u? + 90%u*)c?

£10
+ @02(150 + 360*u? + 952u*)

9t

+ 400
— (3o* + 60%u® + u*)?] +

[(10508 + 4200°u? + 2100*u* + 2852 u® + u®)
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—+

4‘ 3 3 2 16 5 t4 t3 2
WWU@D=(1+—;ﬂ+EF) t2+< t7+?+—)

15Vn 3
) (et en i)
—16(——=t2+—=] +16 t24+-——=t
Vi 2 105y 20 8
vrgf Bt ’ 729t°  101t° 101t%  3006t%
8 20 16 3 300 25

The graph of the variance value of the random variable A is obtained as Figure 8. for the
special value A, B~N(u = 2,02 = 1).

Variance

18000 T

T

16000

T

14000

12000 [~

10000 [~

8000 [~

Var(Y(t))

6000 -

4000 -

2000 [~

Var(Y)

) r
0 0.5 1 1.5

t
Figure 8. The solution behavior of the variance of equation (14) for the special value
AB~N(u=2,6%2=1).

The solution behavior of the 99% confidence interval of the expected value of the random
variable with normal distribution:
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Figure 9. The solution behavior of the confidence interval of equation (14) for the
special value A4, B~N(u = 2,02 = 1).
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Table 3. Table for the expectation value, variance and 99% confidence interval.

t E(y(®)) Var(y(t))  E((®) —3std(y) E(y(D) +3std(y)
0.0 2 1 -1, 5.

0.1 2.093158601  1.152122430 -1.126950383 5.313267585
0.2 2.069706384  1.439374512 -1.529511671 5.668924437
0.3 1.941382076  1.837539054 -2.125293652 6.008057803
0.4 1707439933 2.453023722 -2.991199606 6.406079469
0.5 1.357458313  3.715405887 -4.425158132 7.140074757
0.6 0.8585391406  6.878988042 -7.009808358 8.726886638
0.7 01365155453  15.28764316 -11.59330919 11.86634028
0.8  -0.9478719200  37.66267347 -19.35884856 17.46310474
0.9 -2.627591560  96.43865557 -32,08854708 26.83336396
1.0 -5.262648018  247.6525278 -52.47358690 41.94829086

The expected value, variance and confidence interval for K = 3 values are given in Table
3. It can be seen that the results for t € [0,1] values are obtained similarly to the results
for the case with Normal parameters.

4. Conclusions

In this study, the solutions of randomly selected ordinary differential equations were
found with the help of normal and exponential distributions using the Adomian
Decomposition Method. The initial conditions or coefficients of random ordinary
differential equations are chosen from the normal and exponential distribution, and the
expected value, variance and confidence intervals, which are probability properties for
the analysis of random effects, are obtained.
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