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ABSTRACT 

 

We investigate two types altered Lucas numbers denoted  
   2

L n
G a  and  

   2

L n
H a  defined by adding 

or subtracting a value  a  from the square of the 
thn  Lucas numbers. We achieve these numbers form 

as the consecutive products of the Fibonacci numbers. Therefore, consecutive sum-subtraction 

relations of altered Lucas numbers and their Binet-like formulas are given by using some properties of 

the Fibonacci numbers. Also, we explore the gcd sequences of r–successive terms of altered Lucas 

numbers denoted  
    2

,L n r
G a  and  

    2

,L n r
H a , 1,2r  ,  1,9a  according to the greatest common 

divisor (gcd) properties of consecutive terms of the Fibonacci numbers. We show that these sequences 

are periodic or Fibonacci sequences. 

 

Keywords: Altered Lucas numbers, Greatest common divisor (gcd) sequences, Fibonacci sequence. 

 

1. INTRODUCTION 

 

One can produce the Lucas sequence by using a recurrence relation 1 2n n nL L L    2n   with initial 

conditions 0 2L   and 
1 1L  . The Lucas sequence  

0n n
L




 consists of the numbers 

 2,1,3,4,7,11,18,... (Lucas numbers are sequence number A000032 in OEIS [1]). Also, the 
thn  Lucas 

number can be presented with the Binet formula n n

nL    ,  , 1 5 / 2    , n Z  . The Binet 

formula is used to generalize indices from n Z   to n Z  such as  1
n

n nL L   , and to prove 

some properties of the Lucas numbers, such as the Cassini identity  
12

1 1 5 1
n

n n nL L L


     , subscript 
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sum 
1 1m n m n m nF L F L L    , and subscript subtraction    1 11

n

m n m n m nF L F L L      identities. 

Similarly, let 
0 0F   and 

1 1F   be initial conditions, then a 
thn  Fibonacci number is defined by the 

recurrence relation 
1 2 ,n n nF F F n Z    . The Fibonacci sequence  nF




 consists of numbers 

 ..,2, 1,1,0,1,1,2,,..  (A147316). The 
thn  Fibonacci number is given with the Binet formula 

  5n n

nF    ,  , 1 5 / 2    , n Z . In addition, the following equations that can act as 

any bridge between the Fibonacci 
nF  and Lucas 

nL  numbers, 
1 1n n nF F L   , 2 n m m n n mF F L F L   , 

1 1 5n n nL L F   , 2 5n m m n n mL L L F F    are valid as well-known properties in the literature. The 

proof of many equations belonging to the Fibonacci and Lucas numbers can be given by using the 

Fibonacci and Lucas Binet formulas [2].  

 

Now, we give a lot of sum properties as examples of sequences produced from the Lucas numbers. A 

sum of the Lucas numbers is 2

1

3
n

i n

i

L L 



   (Concerned with sequence A027961 in OEIS [1]). A 

sum of single-indices Lucas numbers is found as 2 1 2

1

2
n

i n

i

L L



   (A004146). A sum of the even-

indices Lucas numbers is 2 2 1

1

1
n

i n

i

L L 



  . A sum of the square of the Lucas numbers is 

2

1

1

2
n

i n n

i

L L L 



   (A005970) [2]. In [3,4], the authors consider these results as any sequence, and 

these sequences are studied as altered Lucas sequences.  

 

In [3], the author defined the shifted Lucas numbers  
0n n

L a


  derived from the Lucas sequences 

and established a gcd sequence denoted      10 0
,n n nn n

l a gcd L a L a 
    by taking their greatest 

common divisor of them. The sequence   
0n n

l a


 is bounded by its values  2 5a   as 

  2

2 1 5nl a a   ,   2

2 5 .nl a a   When 1a  , the sequence   
0

1n n
l


 is a periodic sequence that 

appears to take the following values    4 1 1 3,1,6,1,3,2nl   , 
6n Z ;    4 1 1,4,1nl  , 

   4 1 1 2,1,1nl   ,    4 2 31 1,1,4 ,nl n Z   . He compared the bounded inequalities according to the 

values found for the sequence   1nl .  

 

F. Koken study on the altered sequences  
0n n

L


and  

0n n
L


; these consist of numbers 

nL  and 
nL , 

are defined as when n  is odd, 1n nL L    and 1n nL L   ; when n  is even, 3n nL L    and 

3n nL L   . Let nL
 be the 

thn  altered numbers, 
4 2 1 2 15k k kL F F

  , 
4 1 2 1 25k k kL F F

  , 
4 2 2 2 2k k kL L L

   

https://oeis.org/A147316
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and 
4 3 2 2 2 1k k kL L L

    are given. The entities of the  nL
 have shown the numbers 

4 2 1 2 1k k kL L L

  , 

4 1 2 1 2k k kL L L

  , 
4 2 2 2 25k k kL F F

   and 
4 3 2 2 2 15k k kL F F

   . In addition, let  , ,n r n n rL L L  

  denote r-

successive gcd numbers, the sequence  4 ,1 1k k
L


 is equal to the subsequence  2 1 1

5 k k
F  

, and the

 4 2,1 1k k
L  

 is equal to the subsequence  2 1k k
L


. Also, the numbers ,1nL

 has been given with 

equalities 4 ,1 2 1k kL L

  and 4 2,1 2 25k kL F

  . Also, according to values 2,3,4r  , the gcd numbers 

,n rL
 and ,n rL

 are obtained in [4]. 

 

We establish this paper as follows. In Section 2, we give a brief overview of necessary definitions and 

identities. In Section 3.1, we define two altered sequences, and explore properties of sums, difference, 

Binet's formula and closed forms for the numbers  
   2

L n
G a  and  

   2

L n
H a . In Section 3.2, we 

establish two types r -successive altered Lucas gcd sequences denoted with  
   2

,L n r
G a  and 

 
   2

,L n r
H a  for the values  

   2

L n
G a  and  

   2

L n
H a , and investigate these sequences according to the 

cases 1,2r  . 

 

2. MATERIAL AND METHOD 

 

The gcd property of integer sequences can be given as    , ,m n n rF F F F  for m qn r   all 

, , ,m n r q N , where nF  is the 
thn  Fibonacci number. Thus, it is seen that the greatest common 

divisor of two Fibonacci numbers is a Fibonacci number such as    ,
,m n m n

F F F . For example, two 

successive Fibonacci numbers are relatively prime,    1 2, , 1n n n nF F F F    in [1,2]. 

 

According to whether n is odd or even in Lucas identities known as the Cassini identity 

 2

1 15 1
n

n n nL L L     and  2 24 1 5
n

n nL F   , we can obtain the equations 2

2 1 2 2 25k k kL L L   , 

2

2 2 1 2 15k k kL L L   , 2 2

2 1 2 14 5k kL F    and 2 2

2 24 5k kL F   [2]. We inspire by these equations for this 

question, "Can any altered Lucas sequences such as  2

nL a  be defined?".  

 

Also, in the literature, there have been a great many papers studying sums of 1-consecutive products 

of the Lucas numbers; 
2

2

1 2 1

1

1
n

i i n

i

L L L 



   or 
2

2

1 2 1

0

1
n

i i n

i

L L L 



   and 
2 1

2

1 2 2

1

6
n

i i n

i

L L L


 



   or 

2 1
2

1 2 2

0

4
n

i i n

i

L L L


 



   [2,5,6]. We can consider the results of these sums as altered Lucas numbers 

motivated by these sums. 
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Now, we will develop a theory using the following equations: 

 
2 2

1 2 1 2 15m n m n m nL L F F      , 

 

(1) 

 2 2

2 25m n m n m nL L F F   . (2) 

 

The identities in Eq. 1 and Eq. 2 can be proved using Binet’s formula. We have mainly used the 

identities in Eq. 1 and Eq. 2 to obtain the following equations, but one can use Binet’s formula for 

their proofs. 

 

Lemma 1. Let 
nF  and 

nL  be the 
thn  Fibonacci and Lucas number, then 

 

 2

2 2 1 2 11 5k k kL F F   , 
(3) 

 

  
2

2 1 22 1
1 5k kk

L F F 
  , 

 

(4) 

 
2

2 1 2 3 2 19 5k k kL F F    ,  
 

(5) 

  

   
2

2 2 1 2 1
9 5k k k

L F F
 

  . 

 

 

(6) 

Proof: For 1m k   and n k  in Eq. 1, we have obtained 2 2

2 2 1 2 3 2 15k k kL L F F    . Let 2m k   

and n k  in Eq. 2, then we have achieved 2 2

2 2 2 2 4 25k k kL L F F   . The others are given in similar 

ways.    ■ 

 

In [7], [8], the identities in Eq. 3 and Eq. 4 given within the preliminary information section are again 

shown in Lemma 1 with a different proof method. In [7], [8], the authors have investigated solutions 

of the diophantine equation of the form 
1 2

2... 1
kn n n mA A A B  , where 

nA  and 
nB  are either the 

thn  

Fibonacci number or Lucas number.  

 

The problem of finding all integral solutions to this diophantine equation is known as the Brocard–

Ramanujan problem. These studies show that altered Lucas numbers  2 1nL   will play a significant 

part in the Diophantine equations applications of the numbers theory. That is, one can explore 

solutions of some diophantine equations of form 
1 2

2...
kn n n mA A A a L  . 
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3. ALTERED SEQUENCES OF LUCAS NUMBERS SQUARED 

 

In this section, let's define two types of altered numbers derived from the 
thn  Lucas number squared 

for a value  a  according to whether their indices are even or old, respectively. 

 

3.1.   
   2

L n
G a  and  

   2

L n
H a  Altered Lucas Numbers  

 

Let 
nL  be the 

thn  Lucas number. Altered Lucas numbers are defined as 

 

 
     2 2 1

n

nL n
G a L a   , (7) 

 

 
     2 2 1

n

nL n
H a L a   , 

 

(8) 

 

and also, the altered Lucas sequences are denoted as  
    2

0
L n

n
G a




 and  

    2

0
L n

n
H a




.  

 

For example, the numbers  
     

   2 2
1 1L Ln n

G H   and  
     

   2 2
9 9L Ln n

H G   are given in Table 1.  

 

Table 1.  
   2

1
L n

G  and  
   2

9L n
H , altered Lucas numbers. 

n  0 1 2 3 4 5 6 7 8 9 10 11 12 

 
   2

1
L n

G
 

5 0 10 15 50 120 325 840 2210 5775 15130 39600 103685 

 
   2

9L n
H

 
-5 10 0 25 40 130 315 850 2200 5785 15120 39610 103675 

 

Table 1 shows that they are any increasing sequences with special values except for the first values, 

and also, these numbers are divisible by the Fibonacci number 5 5F  . Thus, some sums of 1-

consecutive products of the Lucas numbers are divisible by 5 5F   such as  
   

2
2

1 2 1
1

1
n

i i L n
i

L L G 


 , 

 
   

2 1
2

1 2 2
2

9
n

i i L n
i

L L H


 


  and  
   

2 1
2

1 2 2
0

4
n

i i L n
i

L L H


 


 . It is clearly seen from the Fibonacci identities 

 2

1 15 1
n

n n nL L L     and  2 24 1 5
n

n nL F   , we have  

 

  
     

   2 2 24 4 5L L nn n
H G F   , (9) 
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  
     

   2 2

1 15 5L L n nn n
H G L L    . (10) 

 

But, we give the closed forms of the altered sequences 
 
    2

1L n
G  and 

 
    2

9L n
H  as follows.  

 

Theorem 1. Let  
   2

1L n
G  and  

   2
9L n

H  denote the 
thn  altered numbers of the Lucas numbers 

squared, then they are valid: 

 

  
   2

1 11 5L n nn
G F F  , (11) 

  

 
   2

2 29 5L n nn
H F F  . 

 

(12) 

 

Proof: If we use the identity given in Eq. 3 for 1a   and 2n k  at the definition in Eq. 7 then 

 
   2

2
1L k

G  is given as  
   2

2 1 2 12
1 5L k kk

G F F  , and if we use the Eq. 4 for 1a   and 2 1n k   in Eq. 7, 

 
   2

2 1
1L k

G


 is given  
     
2

22 1 2 1
1 5L kk k

G F F
 

 . Therefore, the number  
   2

1 11 5L n nn
G F F   is obtainedby 

considering according to 2n k  and 2 1n k   situations. If we use the Eq. 5 for 9a   and 

2 1n k   at the definition in Eq. 8, then  
   2

2 1
9L k

H


 equal 2 3 2 15 k kF F  . And if we use the identity in 

Eq. 6 for 9a   and 2n k  in Eq. 8,  
   2

2
9L k

H  equal    2 1 2 1
5

k k
F F

 
. We have  

   2

2 29 5L n nn
H F F   is 

seen from 2n k  and 2 1n k   situation.    ■ 

 

Now, let's research about some sum and subtraction identities of the numbers  
   2

1L n
G  and  

   2
9L n

H   

 

Theorem 2.   
   2

1L n
G  and  

   2
9L n

H  are the 
thn  altered numbers of the Lucas numbers squared, then 

 

  
     

     
     

   2 2 2 2

2 11 1
1 1 9 9 5L L L L nn n n n

G G H H F  
    , (13) 

 

  
     

     
     

   2 2 2 2

21 1 1 1
1 1 9 9 5L L L L nn n n n

G G H H F
   

    , 
(14) 

 

  
     

     
   2 2 2

2 21 1
2 1 1 1 5L L L nn n n
G G G F  

   , 
(15) 

 

  
     

     
   2 2 2

1 11 1
2 9 9 9 5L L L n nn n n
H H H F L  

   . 
(16) 
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Proof  If we have rewritten identities in Eq. 13 and Eq. 14 using the identities in Eq. 11 and Eq. 12, 

then,  
 

 
    2 2 2

1 1 2 11
5 5n n n n nL n L n

G G F F F F F  
      and  

 
 
   2 2

1 11 1
5 5L L n n n n nn n

H H F F F F L  
     

are obtained by the identities 2 2

1 2 1n n nF F F    and 
2n n nF L F . Since the other relations are made 

similarly, they are not given for brevity. If we sum identities in Eq. 13 and Eq. 14 side-to-side 

collection, we get identities in Eq. 15 and Eq16.       ■ 

 

As a result, the sum of two successive altered Lucas numbers equals the Fibonacci number. Using the 

Fibonacci Binet formula, a Binet-like formula for the numbers  
   2

1L n
G  and  

   2
9L n

H  can be 

obtained. 

 

Theorem 3.  Let  
   2

1L n
G  and  

   2
9L n

H  be the 
thn  altered numbers of the Lucas numbers squared, 

then 

 

  
      2 1 1 1 11 n n n n

L n
G          , (17) 

 

  
      2 2 2 2 29 n n n n

L n
H          .  

(18) 

 

Proof: They appear as an application of the Fibonacci Binet formula from closed forms in Eq. 11 and 

Eq. 12.       ■ 

 

The identities in Eq. 16 and Eq. 17 are referred to as Binet-like formulas for the numbers  
   2

1L n
G  

and  
   2

9L n
H . They can be utilized to establish various properties of the numbers  

   2
1L n

G  and 

 
   2

9L n
H . Additional information and applications of these formulas in sequences 

2( ) n na n F F   and 

4( ) n nb n F F   can be found in the sequences (A059929) and (A192883). 

 

Theorem 4. Let  
   2 2

L tn
G L  and  

   2 2

L tn
H L  be the 

thn  altered numbers of the Lucas numbers squared, 

then 

 

  
   2 2 5 ,L t n t n tn

G L F F t isodd  ,     (19) 

 

  
   2 2 5 ,L t n t n tn

H L F F t iseven  , 
    (20) 

 

where 
2

tL  is the square of the 
tht  Lucas numbers used in place of  a . 
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Proof. If we have rewritten values of  1 / 2m k t    and  1 / 2n k t    in Eq. 1 for t  is odd, 

then  
   2 2

2 1 2 12 1
5L t k t k tk

G L F F   
  is given with according to 2

ta L  and 2 1n k   in Eq. 7. Also, if 

they are taken  1 / 2m k t    and  1 / 2n k t    in Eq. 2, the  
   2 2

2 22
5L t k t k tk

G L F F   is 2

ta F  

and 2n k  in Eq. 7.  

 

Similarly, if we consider values of / 2m k t   and / 2n k t   in Eq. 1 and Eq. 2 when t  is even, 

according to 2

ta L  in Eq. 8, they are obtained as the  
   2 2

2 1L tk
H L


 and  

   2 2

2L tk
H L , which are 

produce the identity in Eq. 20.    ■ 

 

Also, the general terms of the altered sequences 
 
    2 2

2L n
G L  and 

 
    2 2

1L n
H L  can be given by the 

Fibonacci identities as  
     22

3 19 5 1
n

nL n
FG     and  

      3

2 25 3 11 n mn mL

n
H F F F     (A047946). 

But, they are the form of other altered Fibonacci sequences. In addition, they could not be generalized 

as the product of Fibonacci or Lucas numbers.  

 

3.2.   
   2

,
1L n r

G  and  
   2

,
9L n r

H  Altered Lucas Gcd Sequences  

 

We have examined properties related to the greatest common divisor (gcd) of two numbers whose 

indices differ r  from the altered sequences, definitions of whose are given 

 

 
 
     

     
    2 2 2

,
,L L Ln r n n r

G a G a G a


 , (21) 

 

 
     

     
    2 2 2

,
,L L Ln r n n r

H a H a H a


 , 

 

(22) 

 

where  
   2

L n
G a  and  

   2

L n
H a  be the 

thn  altered Lucas numbers. The sequences 
 
    2

,L n r
G a  and 

 
    2

,L n r
H a  formed by these numbers are called the r -successive altered Lucas gcd sequences. 

 

Now, the numbers  
   2

,1
1

L n
G  and  

   2

,1
9L n

H  are sampled in Table 2.  

 

Table 2.  
   2

,1
1

L n
G  and  

   2

,1
9L n

H , 1-successive altered Lucas gcd numbers. 

n  0 1 2 3 4 5 6 7 8 9 10 11 12 

 
   2

,1
1L n

G
 

5 10 5 5 10 5 5 10 5 5 10 5 5 
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 
   2

,1
9L n

H
 

5 10 25 5 10 5 5 50 5 5 10 5 25 

 

The special values in Table 2 show that the sequences 
 
    2

,1
1L n

G  and 
 
    2

,1
9L n

H  are not increasing 

or decreasing. But, they can be periodic. Thus, we have studied whether or not the 1-successive 

altered Lucas gcd sequences take special values in certain periods. 

 

Theorem 5.  Let  
   2

,1
1L n

G  and  
   2

,1
9L n

H  be the 
thn  1-successive altered Lucas gcd numbers, then 

 

 
   

 2

,1

10, 1 mod3
1

5,
L n

n
G

otherwise


 


,  (23) 

 

 
   

 

 

 
2

,1

50, 7 mod15

25 2,12 mod15
9

10, 1,4,10,13 mod15

5,

L n

n

k
H

k

otherwise





 





. 
(24) 

 

Proof: We have rewritten the number 
 
     

     
      2 2 2

2 1 2 1 2 2 22 ,1 2 2 1
1 1 , 1 5 ,k k k kL k L k L k

G G G F F F F  
  , 

according to the closed form in Eq. 11 and the definition in Eq. 21. By using the property 

 1, 1n nF F   , we have      2 1 2 2 2 1 2 2 1 2, , , 1k k k k k kF F F F F F      . So, we should examine the 

situation  2 1 2 2,k kF F  . By using the property 32 nF , if we have  2 1 0 mod3k    and 

 2 2 0 mod3k    then  2 mod3k      2 1 2 2, 2k kF F   . Otherwise,  2 1 2 2, 1k kF F   . It is seen 

that 

 

 
     

 2

2 1 2 1 2 2 22 ,1

10, 2 mod3
1 5 ,

5,
L k k k kk

k
G F F F F

otherwise
  


  


 . (25) 

 

Also, we have 
 
      2

2 2 1 2 32 1 ,1 2 1
1 5 ,L k k kk k

G F F F F  
 , according to the identities in Eq. 11 and Eq. 21. 

Since  1, 1n nF F   , we can write      2 2 2 3 2 2 2 1 2 2 1, , , 1k k k k k kF F F F F F       . So, we should 

examine the situation  2 2 3,k kF F  . So, if we have  2 0 mod3k   and  2 3 0 mod3k    then 

 0 mod3k      2 2 3, 2k kF F    by using the property 32 nF . Orherwise,  2 2 3, 1k kF F   . It is 

obtained as 
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 
        2

2 2 1 2 32 1 ,1 2 1

10, 0 mod3
1 5 ,

5,
L k k kk k

k
G F F F F

otherwise
  


  


. (26) 

 

Whether the index is even or odd from the identities found in Eq. 25 and Eq. 26, it is seen that 

 2 mod3k   for 2n k ; and  0 mod3k   for 2 1n k  . Thus, we find  
   2

,1
1 10L n

G   for 

 1 mod3n  . In the other cases, then  
   2

,1
1 5L n

G  .  

 

Similarly, we have 
 
     

     
      2 2 2

2 2 2 2 2 3 2 12 ,1 2 2 1
9 9 , 9 5 ,L L L k k k kk k k

H H H F F F F   
  , according to 

identity in Eq. 12 and the definition in Eq. 22. We consider  
      2

2 2 2 3 2 2 2 12 ,1
9 5 , ,L k k k kk

H F F F F     

since    2 2 2 3 2 2 2 1, , 1k k k kF F F F     . Using the property    ,
,x y x y x

F F F


 , we rewrite their 

identities 

 

        2 2 2 3 52 2,2 3 2 2,5
, , 2 2 0 mod5k k k k k

F F F F F k    
     , 

 

(27) 

        2 2 2 1 32 2,2 1 3,2 1
, , 2 1 0 mod3k k k k k

F F F F F k    
     . (28) 

 

It is seen if  1 mod5k  , then  2 2 2 3, 5k kF F   ; and if  2 mod3k   then  2 2 2 1, 2k kF F   . 

According to the Chinese remainder theorem, we obtain  
   2

2 ,1
9 50L k

H   for  11 mod15k  . The 

desired results for the products of the two expressions in their possible cases are obtained as 

 

 
 
      

 

 

 
2

2 2 2 3 2 2 2 12 ,1

50, 11 mod15

25 1,6 mod15
9 5 , ,

10, 2,5,8,14 mod15

5,

L k k k kk

k

k
H F F F F

k

otherwise

   





  





.

 

(29) 

 

Same way, according to identities in Eq. 12 and Eq. 22, we have  
     2

2 3 2 1 2 4 22 1 ,1
9 5 ,L k k k kk

H F F F F  


. Because of    2 3 2 4 2 1 2, , 1k k k kF F F F    , we can rewrite  
      2

2 3 2 2 1 2 42 1 ,1
9 5 , ,L k k k kk

H F F F F  
 . 

Using the properties    ,
,x y x y x

F F F


 , we have    2 2 3 32 ,3
,k k k

F F F F   ,  2 0 mod3k   and 

   2 4 2 1 55,2 1
,k k k

F F F F  
  ,  2 1 0 mod5k   . It is seen that if  0 mod3k   then  2 2 3, 2k kF F   ; 

and if  3 mod5k   then  2 4 2 1, 5k kF F   . According to the Chinese remainder theorem, we obtain 
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as  
   2

2 1 ,1
9 50L k

H


  for  3 mod15k  . The desired results for the products of the two expressions in 

their possible cases are obtained as 

 

 
      

 

 

 
2

2 2 3 2 4 2 12 1 ,1

50, 3 mod15

25, 8,13 mod15
9 5 , ,

10, 0,6,9,12 mod15

5,

L k k k kk

k

k
H F F F F

k

otherwise

  





  





.

 

(30) 

 

According to whether the indices are 2n k  and 2 1n k   even or odd from the values found in Eq. 

29 and Eq. 30, respectively we consider  
   2

2 ,1
9 50L k

H   for  11 mod15k   and  
   2

2 1 ,1
9 50L k

H


  

for  3 mod15k  . Thus, we find  
 2

,1
50

L n
H   for  7 mod15n  . When it's appropriate case in Eq. 

29 and Eq. 30, it is follow  1,6 mod15k   for 2n k  and  8,13 mod15k   for 2 1n k  , it is 

 
 2

,1
25L n

H  ,  2,12 mod15n  . If the other cases are written in their place, desired results are 

obtained similar way.    ■ 

 

For terms of the 2-successive altered gcd sequences, let's create Table 3: 

 

Table 3.  
   2

,2
1

L n
G  and  

   2

,2
9L n

H , 2-successive altered Lucas gcd numbers. 

n  0 1 2 3 4 5 6 7 8 9 10 11 12 

 
   2

,2
1L n

G
 

5 15 10 15 25 120 65 105 170 825 445 720 1165 

 
   2

,2
9L n

H
  

5 5 40 5 5 10 5 5 40 5 5 10 5 

 

In Table 3, it is seen that the 2-successive altered Lucas gcd sequence 
 
    2

,2
1

L n
G , 2n   takes values 

according to a specific increasing sequence. The sequence 
 
    2

,2
9L n

H  is periodic. Now let's give the 

properties of these sequences.  

 

Theorem 6. Let  
   2

,2
1L n

G  and  
   2

,2
9L n

H  be the 
thn  2-successive altered Lucas gcd numbers, then 

 

 
   

 2 1

,2

1

15 , 1 mod 4
1 ,

5 ,

n

L n

n

F n
G

F otherwise






 


     
   

 

 
2

,2

40, 2 mod6

9 .10, 5 mod6

5,

L n

k

H k

otherwise

 


 



 (31) 
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Proof: According to the identity in Eq. 11, we write 
 
     2

1 1 3,2
1 5 ,L n n nn

G F F F   . So, we have 

     1 3 41,4
, , 1 mod4n n n

F F F F n  
    by using the property    ,

,x y x y x
F F F


  and 

 
   2

4 1 1,2
1 5 15L n nn

G F F F    for  1 mod4n  . Otherwise,    1 3 21,4
,n n n

F F F F  
   or 

1F . Since 

1 2 1F F  , we have 
 
   2

1,2
1 5L nn

G F   for  1 mod4n  .  

 

According to the identity in Eq. 12, we write  
     2

2 2 4,2
9 5 ,n n n nL n

H F F F F   . Since 

     2 2 2 2 2 2 4 2 2 2, , , 1k k k k k kF F F F F F      , we can take as  
     2

2 4,2
9 5 ,n nL n

H F F  . Thus, we get 

 
     
2

6,2 2,6
9 5 5

L n n
H F F


  ,  2 mod6n  . Otherwise, the others are  

     
2

3,2 2,6
9 5 5

L n n
H F F


  , 

 5 mod6n  ; or  25 , 0,4 mod6F n  ; or  15 , 1,3 mod6F n  .    ■ 

 

Theorem 7. Let  
 2

,2L n
G  be the 

thn  2-successive altered Lucas gcd number, then 

 

 
     

   

   

 
1 2

2 2

31 ,2 ,2

3

5 , 1 mod 4

1 1 5 , 0 mod 4 .

5

n n

nL n L n

n

F L n

G G L n

F otherwise

 





 


  



 (32) 

 

Proof: We know the number  
   2

1,2
1 15 nL n

G F   for  1 mod4n  , otherwise it is 
15 nF 
. Thus,  

 

 
     

   

   

   

 

2 1

2 2

2 11 ,2 ,2

1 2

5 3 , 1 mod 4

1 1 5 3 , 0 mod 4

5 ,

n n

n nL n L n

n n

F F n

G G F F n

F F otherwise

 

 

 

 


   
 

 (33) 

 

By using the identity 
1 1n n nF F L   , we have  

 

 
     

   

   

   
3 1

2 2

2 41 ,2 ,2

3

5 2 , 1 mod 4

1 1 5 , 0 mod 4

5 ,

n n

n nL n L n

n

F F n

G G F F n

F otherwise

 

 



 


   



. (34) 

 

The desired result is achieved.    ■ 
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We will continue our work according to the particular values of these numbers given in Table 4, since 

closed-form expressions cannot be found for the numbers  
     

   2 2
9 9L Ln n

G H   and 

 
     

   2 2
1 1L Ln n

H G   for the value of  9,1a   in identities given Eq. 7 and Eq. 8, respectively. 

 

Table 4.  
   2

9
L n

G  and  
   2

1L n
H , altered Lucas numbers. 

n  0 1 2 3 4 5 6 7 8 9 10 11 12 

 
   2

9
L n

G
 

13 -8 18 7 58 112 333 832 2218 5767 15138 39592 103693 

 
   2

1L n
H

 
3 2 8 17 48 122 323 842 2208 5777 15128 39602 103683 

 

Table 4 shows that the sequences  
     

     2 2

,1 ,1
9 1 1,2,1L Ln n

G H  , 
3n Z ;  

     2

,2
1 1,1,8,1,1,2L n

H  , 

6n Z ;  
     2

,3
9 1,2,2L n

G  , 
3n Z  and  

     2

,3
1 1,2,2,17,2,2,1,2,2L n

H  , 
9n Z  are periodic [9]. 

But, the proofs for these values have not been provided. Thus, these values have been determined 

through a computer program up to 100 for the numbers  
   2

,
9

L n r
G  and  

   2

,
1L n r

H , 1,2,3r  . In [9], it 

is the numbers  
     2

24,2
9 1,1,2,7,1,16,1,1,2,1,1,56,1,1,2,1,1,16,1,7,2,1,1,8 ,L n

G n Z  . 

 

4. CONCLUSION AND RECOMMENDATIONS 

 

In our study, two types of altered Lucas numbers denoted  
   2

L n
G a  and  

   2

L n
H a are derived with 

values  a . We have shown that the numbers  
   2

1L n
G  and  

   2
9L n

H  equal some consecutive 

products of the Fibonacci numbers. Thus, r-successive altered Lucas gcd sequences 
 
    2

,
1L n r

G  and 

 
    2

,
9L n r

H  are studied for 1,2r  . We have obtained these sequences are either periodic and 

bounded or primefree and unbounded. Also, we have generalized the value  a  as the square of Lucas 

number such as  

 

  
   2 2 5 ,L t n t n tn

G L F F t isodd  , (35) 

 

  
   2 2 5 ,L t n t n tn

H L F F t iseven  . 
(36) 

 

Other properties of these sequences and their r-successive gcd sequences are left to the interested 

readers for future research. Nevertheless, we will consider some matrix and graph theory applications 

in the next articles. 
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