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Abstract. The cross section for scattering neutron  on the density of  fluctuations of the  thin films is obtained in the 

framework of the quantum theory of multiple scattering  in the quasielastic approximation. Inhomogeneity can be caused 

by dynamic density fluctuations, and be statistical in nature. Fluctuations in the density of the scattering material cause 

neutron scattering wave. The probability of a collision between a neutron and an atomic nucleus depends on the number of 

neutrons and on their velocity. The formulas have been obtained under the assumption that the imaginary part of the optical 

potential is a local operator. It was determined that the scattering in density fluctuations does not contribute to the attenuation 

of the coherent neutron wave. In the approximation of a thin target the solution of the equation for the total scattering 

amplitude is identical to the expression obtained in the usual eikonal approximation and differs significantly, at least 

functionally, from the solution for the case of a thick target. There have been detailed investigations of the reflection and 

refraction of neutron waves in matter, and the details of their dispersion law have been studied. The results are  hown  also, 

that  the total cross section for scattering by the complete target becomes universal and does not depend on cross section for 

scattering by one nucleus. 
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1. INTRODUCTION 

Nuclear processes with neutrons make up the most-studied field of physics of nuclear interactions. It is 

well known that neutron scattering can provide a rigorous testing ground for nuclear wave functions. 

This is due mainly to the critical dependence of the cross section on the coherent interference of terms 

with different principal quantum number for the c.m. motion of the neutron. Neutrons undergo extremely 

weak electromagnetic interactions, therefore pass through matter largely unimpeded, only interacting 

with atomic nuclei. Therefore, the atomic characteristics of the medium do not play any role in the 

spread of neutrons in matter. This is purely a nuclear process. Because of its neutrality the neutron has 

a great penetrating power and it could be detected indirectly by ionization measurements of recoiling 

nuclei, i.e. by collision of neutrons in passage through the matter with an atomic nucleus. The intensity 

of these microscopic processes ultimately determines all the macroscopic properties of matter, such as 

slowing, diffusion, absorption, and etc.  

2. PASSAGE OF THE NEUTRONS THROUGH A MATTER 

In fact collisional processes are described quantitatively in terms of cross sections and to study them one 

needs the quantum mechanics. One can distinguish between elastic and nonelastic collisions depending 

on whether or not translational momentum and energy are conserved. Among the many processes of the 

interaction of neutrons with nuclei, which occur multiple scattering effects most important is the elastic 

scattering. Hence in its passage through the matter the neutron is deflected from its path because of the 

internal field of the nucleus. The struck nucleus recoils and acquires energy to produce ions which can 

be detected by a ionization chamber connected to an amplifier and oscillograph. The probability of a 

collision between a neutron and an atomic nucleus depends on the number of neutrons and on their 

velocity.  
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When neutron are scattered by matter, the process can change the momentum and energy of the neutrons. 

In a crystalline substance atoms are arranged in an orderly manner in space.  Neutron waves add up the 

point of observation in accordance with the laws of interference if the phase difference between the 

scattered waves is constant (coherent scattering), we can observe the pattern of alternating in the space 

diffraction minima and maxima. If the order in the arrangement of atoms is broken, scattering will not 

be coherent.  

Let a stationary flux of neutrons be incident on a target. Our problem is to find the amplitude for 

scattering of the particles by nuclei matter, therefore, the cross section and refractive indices for neutron.           

Refractive indices for neutron is close to unity and difficult to measure its. If the plate has a thickness d 

and refractive index n the neutron wave undergoes a phase shift and exits in the form of [1] 
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here  k  momentum  of neutron after scattering.   

Now suppose that there are two different types of randomly distributed scattering centers scattering 

lengths 
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2
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N - the second type, with the relative 

concentrations. The centers of the two types may be two isotopes of the same element, or more important 

for us to vary only the spin orientation. In such an analysis the relation (1) should be replaced by 
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When disclosed the square of the  ratio (2), the sums of the squares of each contribute to the coherent 

and incoherent parts, while the mixed terms contribute only to the coherent strength.  

The movement of neutrons in matter is fully described by frequency for each  wave vector. The resultant 

field of the scattered neutrons is a superposition of waves scattered by nuclei at all times prior to this 

moment t .  

After solving the Schrödinger equation and Fourier - transform in some great period T we  obtain the 

amplitude [2] 
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where  - the neutron energy after scattering, rn - the distance from the center to the point where there 

is the neutron wave. 

In fact collisional processes are described quantitatively in terms of cross sections and to study them one 

need the quantum mechanics. One can distinguish between elastic and nonelastic collisions depending 

on whether or not translational momentum and energy are conserved. In this section we recall the main 

steps of the quantum collision theory in the case of two elastic interacting particles. The corresponding 

section is associated with this amplitude follows. The number of neutrons passing through the area dr



ABDULVAHABOVA, BARKHALOVA, BAYRAMOVA 

S3 
 

, there is the  ratio incident flux to the scattered flux. Then double differential scattering cross section is 

equal to  
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where  0tt  ,   0 , v velocity neutron after scattering,  v0  initial velocity of neutron and 

kkq  0 . 

It is useful to distinguish from the expression (4) the part that depends on the average values b

corresponding to different sets of identical atoms. This part of the section is called a section of coherent 

scattering. This cross section is obtained by summing (4) over all final states f and averaging over all 

initial states i. In this way, 
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of the section, which remains after the separation of the coherent,  is called incoherent scattering cross-

section:    
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Interference effects present in the incoherent scattering cross section depends only on the average length 

of the scattering nuclei. The amplitude of the incoherent scattering is of the order of several units at 10-

5. Thus, after the "intersection" of about 104 perfectly parallel atomic planes of the crystal beam incident 

neutrons will be very much weakened. In this case, the contribution to the reflected intensity from crystal 

planes of said internal thickness will not be as great as from outside, close to its surface.    

Consider the effect of the inhomogeneity of the crystal with the volume V on the distribution of coherent 

neutron wave. Inhomogeneity can be caused by dynamic density fluctuations, and be statistical in nature. 

Fluctuations in the density of the scattering material cause neutron scattering wave. 

We define the scattering cross-section of the fluctuation of the N localized impurity - scatterers. The 

discussion applies to the case where there is only one isotope of the element. In  those cases where the 

neutron wavelength is large compared to the size of the impurity following model can be used [3] 

                                                                       i
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where  - random density fluctuations, Ri  the radius vector of the centre of gravity of i impurity, and 

0  describes the action of one of the scattering centre. 

Neutron scattering wave can be taken into account by choosing the real part of the optical potential in 

the form of: 
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                                                         )0(Re)/2( 2 fUR    .  (8) 

Here brackets <...> denote averaging over the distribution of static states of the scattering system. 

Averaging over configurations of the scattering nuclei, ie, at the equilibrium position is an independent 

operation only in case of the crystal.  

Similar to (6), can select the imaginary part of the optical potential 

                                                         )0(Im)/2( 2 fU I    .                                         (9) 

The imaginary part of the potential is models the inelastic processes related to elastic scattering and 

determines the weakening of the coherent wave in the entrance channel. In general, optical potential is 

nonlocal and depends of neutron's energy. For thermal neutron the dependence of energy and 

nonlocalness of the optical potential is very little effect on the propagation of a neutron wave in the 

crystal. 

According to the optical theorem 

                                                           4/)()0(Im inelabskf                                    (10)  

 where  
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.el N V <( 2) ,                                        (12)           

abs  cross section of absorption and  
inel cross section of inelastic scattering. Elastic scattering related 

unitarily condition with all inelastic processes. Since the cross section of inelastic scattering in the 

approximation of a heavy target is proportional to the cross section of elastic scattering [4].                                            

Elastic scattering cross section is equal to 
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and expression (13) can be represented as a series expansion in the multiplicity of elastic scattering 
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here 1  a total scattering cross section, related to the scattering center: 
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where 
0V  - the volume per one scattering nucleus,  and i- the number of scattering nuclei per unit volume 

of the crystal. Parameterized optical potential in the form of the Woods-Saxon was chosen  
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Here, 
00

Im,Re VVVV
IR
 ,  V0 parameter is the depth of the optical potential. Here, six parameters 

are reliable and can be installed only three, two of which belong to the imaginary part of the OP, and 

one real. 

These cross sections (11), (12) and (13) describes the processes in which the number of particles in the 

scattering system remains the same, namely, elastic scattering, the scattering of particles with excitation 

and scattering the scattering system, accompanied by partial or total decay of the scattering system. 

Optical theorem relates the refractive index of substance with the scattering cross section of individual 

atoms and nuclei of which consist the material. It has been known for many years that, if the optical 

potential is parameterized by local analytical expression, then the parameters must be allowed to vary 

with the energy. It is usual to represent the real part of the potential by Saxon-Woods form and to allow 

only the potential depth to vary energy. Optical potentials obtained by analysis of elastic scattering are 

also widely used to generate the distorted waves used to analyse the cross-sections of many reactions, 

and these analyses have proved to be a powerful tool in determining nuclear structures 

Now suppose that the plate substance contains of N localized impurity - scatters and these centres 

scatters spherically symmetric wave with the scattering length al [5] 
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where l  scattering phase. Hence if the scattering potential field is small compared with the centrifugal 

force term, for r such that kr ~ i + 1/2 , for large n and the phase δi is small (δi ≪  1) hence one is in the 

validity regime of Born’s approximation.  

Then, for the  z>d the wave can be expressed as  
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This integral can be easily calculated using the coefficient convergence )0()exp(  r  
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so that 
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If (1) submit in the form  
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and compare with (20), we obtain 
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If the scattering is not spherically symmetric, which corresponds to the amplitude f (), we obtain: 
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where  f(0) forward scattering amplitude because the refractive index describes the propagation of waves 

in the forward direction. 

If the refractive index contains an imaginary part, it is necessary to divided (24) into two parts: real and 

imaginary: 

                                                                       0Re
2

1Re
2 к

f
k

N
n


 ;                                           (25) 

                                                                     0Im
2

Im
2 к

f
k

N
n


 .                                                     (26) 

Imaginary part of the refractive index determined by the condition of the decreasing the particle in the 

channel of elastic scattering. 

Determining the effective cross section  by the optical theorem (17) for the imaginary part of the 

refractive index obtain the following expression 

                                                                      

2

0

22
Im 
















k

N
n .                                            (27) 

At 1)0( kkf the imaginary part of the scattering amplitude is small and the refractive index can be 

considered real.  Thus, in this case, scattering in density fluctuations does not contribute to the 

attenuation of the coherent neutron wave. 

Knowing the effective wave number of the neutron wave in the medium and the refractive index can be 

calculated reflection and transmission coefficients for the neutron wave for the finite-volume substances. 

3. CONCLUSION  

These formulas have been obtained under the assumption that the imaginary part of the optical potential 

is a local operator. If do not resort to this hypothesis, have to deal with the time-consuming calculation 

of the sum of the vectors of the crystal lattice. 
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The above discussion applies to the case where there is only one isotope of one element present 

(especially an element with zero nuclear spin), however practically all real systems will have a 

distribution of both elements and isotopes of those elements. Moreover for thermal neutrons due to the 

shallow depth of penetration into the wall of the crystal must carefully consider the effect of the surface 

structure. The crystal surface is two-dimensional defect, distorting the frequency spectrum of vibrations 

of atoms located in the surface layer of the lattice. 

The results are shown also, that if the wavelength of the incident particles becomes much greater than 

the thickness d of the target and the total cross section for scattering by the complete target becomes 

universal and does not depend on cross section for scattering by one nucleus. 

Hence a study of the angular distribution of recoil tracks leads to important data for a theory of the field 

of the neutron. In fact the results of the experiments made to determine the field force consisting in the 

observations of the collisions of neutrons with material particles such as protons and electrons, have to 

be interpreted. All this requires the development of a theory of such collisions. The smallness of the 

field interaction between a neutron and a particle leads to the possibility of applying the approximate 

quantum theory of collisions of Born in elastic scattering of neutron with particles.  

At first glance it is not enough accurate knowledge of such quantities as the wave function of the ground 

state of the nucleus, making the results of theoretical calculations of the cross sections is model 

dependent. In fact, it turns out that only the uncertainties in the particle density distribution of nucleons 

in a nucleus can significantly affect the results of these calculations. The sensitivity of the cross sections 

to the more complex characteristics of nuclear structure, such as the correlation functions of different 

ranks, is so low that in practical calculations during processing of experimental data correlations exist 

or can be ignored at all, or at best considered in some fairly simple model. 
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