

RESEARCH ARTICLE

Homological objects of min-pure exact sequences

Yusuf Alagöz¹, Ali Moradzadeh-Dehkordi^{*2,3}

¹Siirt University, Department of Mathematics, Siirt, Turkey. ²Department of Science, Shahreza Campus, University of Isfahan, Iran. ³School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Abstract

In a recent paper, Mao has studied min-pure injective modules to investigate the existence of min-injective covers. A min-pure injective module is one that is injective relative only to min-pure exact sequences. In this paper, we study the notion of min-pure projective modules which is the projective objects of min-pure exact sequences. Various ring characterizations and examples of both classes of modules are obtained. Along this way, we give conditions which guarantee that each min-pure projective module is either injective or projective. Also, the rings whose injective objects are min-pure projective are considered. The commutative rings over which all injective modules are min-pure projective are exactly quasi-Frobenius. Finally, we are interested with the rings all of its modules are min-pure projective. We obtain that a ring R is two-sided Köthe if all right R-modules are min-pure projective. Also, a commutative ring over which all modules are min-pure projective is quasi-Frobenius serial. As consequence, over a commutative indecomposable ring with $J(R)^2 = 0$, it is proven that all R-modules are min-pure projective if and only if R is either a field or a quasi-Frobenius ring of composition length 2.

Mathematics Subject Classification (2020). 16E10, 16E30, 16D40, 13C10, 16D50, 13C11

Keywords. (min-)purity, Köthe rings, universally mininjective rings, quasi-Frobenius rings

1. Introduction

Throughout, R will stand for associative ring with identity, and R-modules will be unitary modules unless otherwise specified. A_R ($_RA$) stands for any module A considered as a right (left) R-module.

As a generalization of injectivity, the concept of min-injectivity is introduced by Harada (see [22]). $_{R}A$ is called *min-injective* provided that $Ext_{R}^{1}(R/S, A) = 0$ for any minimal left ideal S. A_{R} is called *min-flat* provided that $\operatorname{Tor}_{1}^{R}(A, R/S) = 0$ for any minimal left ideal S (see [29]). By the natural equivalence $\operatorname{Ext}_{R}^{1}(R/S, A^{+}) \cong \operatorname{Tor}_{1}^{R}(A, R/S)^{+}$ for any

^{*}Corresponding Author.

Email addresses: yusuf.alagoz@siirt.edu.tr (Y. Alagöz), a.moradzadeh@shr.ui.ac.ir (A. Moradzadeh-Dehkordi)

Received: 05.11.2022; Accepted: 25.04.2023

minimal left ideal S, we can conclude a right module A is min-flat provided that A^+ is min-injective.

Min-injective rings and min-injective modules are the most important and most studied subjects of homological algebra along with module and ring theory. The main reason for this is that min-injective rings are naturally occurring in characterizing quasi-Frobenius (QF) rings. The importance of finite (quasi-Frobenius) rings has increased with the study of the rings of algebraic coding theory (see [21, 24, 38]).

In [28], Mao introduced the concept of min-purity and min-pure injectivity, to give further homologic characterizations of min-injective modules and to investigate the existence of min-injective covers. In the literature, purity has a considerable impact on module-ring theory, and several crucial generalizations of this notion are given since it was firstly introduced (see, [1, 5, 6, 8, 10, 31, 35, 36]). In accordance with the terminology of Mao [28], a sequence $0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0$ of right *R*-modules is called *min-pure exact* if Hom $(R/aR, E) \rightarrow$ Hom $(R/aR, F) \rightarrow 0$ is epic for any $a \in R$ such that *Ra* is simple. A_R is called *min-pure injective* provided that *A* has injective property relative to all min-pure exact sequences. So far, min-purity, min-injectivity, min-pure injectivity and their homological objects are studied by many authors (see [22, 28, 29, 33]).

Motivated by min-pure injective modules, in this article, we first introduce the homological objects which are flat and projective relative to the min-pure exact sequences. We shall call A_R is *min-pure projective* provided that A_R is projective relative to min-pure exact sequences. Also, $_RA$ is called *min-pure flat* if $_RA$ is flat relative to min-pure exact sequences. Naturally, flat left modules are min-pure flat, and projective right modules are min-pure projective, but not conversely (see Example 2.2(2)).

In section 2, we give some preliminary properties of min-pure projective and min-pure flat modules. After giving various equivalent conditions of min-purity, absolutely minpurity of modules are described via min-purity. Moreover, it is shown that R is left universally minipicative if and only if all min-pure projective (resp. flat) right R-modules are projective (resp. flat). Also, we show that R is left FS if and only if injective dimensions of min-pure injective right R-modules ≤ 1 if and only if flat dimension of min-pure flat left R-modules ≤ 1 . Finally, projective dimensions of min-pure projective right R-modules ≤ 1 equivalent to that for any $a \in R$ such that Ra is simple, aR is projective.

In section 3, we consider the covering and enveloping properties of min-pure injective and min-pure projective modules. We show that all min-pure injective modules have an injective cover, and if R is left min-coherent, then all min-pure projective right Rmodules have a projective preenvelope. Also, we get that all right modules have a min-pure projective precover and min-pure injective envelope.

In section 4, we focused on the rings whose all injective modules are min-pure projective. Along the way, being R is quasi-Frobenius equivalent to that R is right CF and every injective right R-module is min-pure projective. For a commutative ring R we prove that all injective R-modules are min-pure projective if and only if R is quasi-Frobenius. Moreover, it is shown that R is semisimple if and only if every min-pure projective (resp. injective) right R-module is injective (resp. projective). Finally, we focused on the rings whose all R-modules are min-pure projective (resp. injective). For this purpose, we prove that R is a two-sided Köthe ring provided that every right R-module is min-pure projective (resp. injective). Consequently, for a commutative indecomposable ring with $J(R)^2 = 0$, it is shown that R is either a field or a quasi-Frobenius ring of composition length 2 if and only if all R-modules are min-pure projective.

For future research, we close the paper by giving some questions that are partially answered inside the paper.

2. Min-pure projective and min-pure flat modules

A sequence $0 \to D \to E \to F \to 0$ of right *R*-modules is called *min-pure exact* if for any $a \in R$ such that Ra is simple, $0 \to D \otimes (R/Ra) \to E \otimes (R/Ra) \to F \otimes (R/Ra) \to 0$ is exact. Moreover, A_R is called *min-pure injective* provided that A_R is injective relative to every min-pure sequence (see [28]). Motivated by min-pure injective modules, we introduce the homological objects which are projective and flat with respect to the min-pure sequences.

Definition 2.1. (a) A_R is called *min-pure projective* if for all min-pure sequences $0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0$ of right *R*-modules, the induced map β : Hom $(A, E) \rightarrow$ Hom(A, F) is an epimorphism.

(b) ${}_{R}A$ is called *min-pure flat* if for all min-pure sequences $0 \to D \to E \to F \to 0$ of right *R*-modules, the induced map $\alpha : D \otimes A \to E \otimes A$ is a monomorphism.

Example 2.2. (1) For any $a \in R$ such that Ra is simple, R/aR is min-pure projective and R/Ra is min-pure flat.

(2) Any projective right module is min-pure projective and any flat left module is minpure flat. However, in general case, the converses need not be true. Consider the ring $R := \mathbb{Z}/p^2\mathbb{Z}$ for some prime integer p. R/pR is a min-pure flat and min-pure projective R-module since pR is simple ideal. Whereas the module R/pR is not flat, otherwise R/pRwould be projective by [29, Corollary 3.3]. But the epimorphism $R \to R/pR \to 0$ does not split.

By the following theorem, further equivalent conditions of min-pure flatness are given.

Theorem 2.3. Let $\mathscr{F} = \{R/Ra \mid \text{for any } a \in R \text{ such that } Ra \text{ is simple}\}$. The following are equivalent for $_RA$:

- (1) A is min-pure flat;
- (2) A^+ is min-pure injective;
- (3) $A \cong E/D$ where E is in $Add(\mathscr{F} \cup \{RR\})$ and D is pure in E;
- (4) A can be written as a direct limit of finite direct sums of modules from $\mathscr{F} \cup \{_R R\}$. Also, when R is commutative, above statements are equivalent to:
- (5) $\operatorname{Hom}(A, D)$ is min-pure injective, for any injective *R*-module *D*;
- (6) $A \otimes C$ is min-pure flat, for any flat R-module C.

Proof. (1) \Rightarrow (2). Let $_{R}A$ be min-pure flat and $0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0$ a min-pure sequence of right *R*-modules. So, $0 \rightarrow D \otimes A \rightarrow E \otimes A$ is monic, whence $(E \otimes A)^{+} \rightarrow (D \otimes A)^{+} \rightarrow 0$ is epic. This implies that $\operatorname{Hom}(E, A^{+}) \rightarrow \operatorname{Hom}(D, A^{+}) \rightarrow 0$ is also epic and so A^{+} is min-pure injective.

 $(2) \Rightarrow (3)$. Assume that A^+ is min-pure injective. By [30, Proposition 1.2], there exist an \mathscr{F} -pure sequence $0 \to D \to E \to A \to 0$ where E is in $\operatorname{Add}(\mathscr{F} \cup \{RR\})$. Also, by the isomorphism used in $(2) \Leftrightarrow (7)$ from the Lemma 2.4, the sequence $0 \to A^+ \to E^+ \to D^+ \to 0$ would be min-pure. Since A^+ is min-pure injective, $0 \to A^+ \to E^+ \to D^+ \to 0$ splits and so the sequence $0 \to D \to E \to A \to 0$ is pure.

 $(3) \Rightarrow (4)$. Easily follows by [37, Theorem 34.2].

(4) \Rightarrow (1). Let $0 \to D \to E \to F \to 0$ be a min-pure sequence of right *R*-modules and $\{F_{\alpha}\}_{\alpha \in \Lambda}$ is a finite family of right *R*-modules such that for each $\alpha \in \Lambda$, $A = \underset{K}{\lim}F_{\alpha}$, where F_{α} 's is a finite direct sums of modules from $\mathscr{F} \cup \{RR\}$. Since F_{α} is min-pure flat for each $\alpha \in \Lambda$, $0 \to D \otimes F_{\alpha} \to E \otimes F_{\alpha} \to F \otimes F_{\alpha} \to 0$ is exact. So by [37, Theorem 24.11], the sequence $0 \to D \otimes \underset{K}{\lim}F_{\alpha} \to E \otimes \underset{K}{\lim}F_{\alpha} \to F \otimes \underset{K}{\lim}F_{\alpha} \to 0$ is exact. Therefore, A is min-pure flat.

 $(1) \Rightarrow (5)$. Let *D* be an injective *R*-module. If we consider the splitting map $0 \rightarrow D \rightarrow \prod R^+$, we would have the map $0 \rightarrow \operatorname{Hom}(A, D) \rightarrow \operatorname{Hom}(A, \prod R^+)$ which is also

splits. Being A^+ is min-pure injective by (1) together with the isomorphisms $\prod A^+ \cong \text{Hom}(A, \prod R^+)$ implies that $\prod A^+$ is min-pure injective. This gives the min-pure injectivity of Hom(A, D).

 $(5) \Rightarrow (6)$. Assume that C is any flat R-module. Since $(A \otimes C)^+$ is isomorphic to $\operatorname{Hom}(A, C^+)$, it is min-pure injective by (5) and by the injectivity of C^+ . This gives the min-pure flatness of $A \otimes C$.

 $(6) \Rightarrow (1)$ straightforward by putting C = R.

Now, we are ready to give further characterizations of min-purity.

Lemma 2.4. Let $0 \to D \to E \to F \to 0$ be a sequence of right *R*-modules. The following are equivalent:

- (1) $0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0$ is min-pure;
- (2) $\operatorname{Hom}(R/aR, E) \to \operatorname{Hom}(R/aR, F) \to 0$ is epic for any $a \in R$ such that Ra is simple;
- (3) $\operatorname{Hom}(A, E) \to \operatorname{Hom}(A, F) \to 0$ is epic for any min-pure projective R-module A_R ;
- (4) $\operatorname{Hom}(E, A) \to \operatorname{Hom}(D, A) \to 0$ is epic for any min-pure injective R-module A_R ;
- (5) $\operatorname{Hom}(R/Ra, E^+) \to \operatorname{Hom}(R/Ra, D^+) \to 0$ is epic for $a \in R$ such that Ra is simple;
- (6) $0 \to D \otimes B \to E \otimes B$ is monic for any min-pure flat *R*-module $_RB$;
- (7) $0 \to R/aR \otimes F^+ \to R/aR \otimes E^+$ is monic for any $a \in R$ such that Ra is simple. Also, if R is commutative or two sided minipicctive, then the above are equivalent to:
- (8) $\operatorname{Hom}(R/aR, E) \to \operatorname{Hom}(R/aR, F) \to 0$ is epic for any $a \in R$ such that aR is simple.

Proof. (1) \Leftrightarrow (2) follows by [28, Lemma 2.1].

 $(1) \Leftrightarrow (3) \Rightarrow (4) \text{ and } (1) \Rightarrow (6) \text{ are obvious.}$

(4) \Rightarrow (1). Let $a \in R$ such that Ra is simple. Min-pure flatness of R/Ra implies the min-pure injectivity of $(R/Ra)^+$ by Theorem 2.3. Thus by (4), the induced sequence $0 \rightarrow \operatorname{Hom}(F, (R/Ra)^+) \rightarrow \operatorname{Hom}(E, (R/Ra)^+) \rightarrow \operatorname{Hom}(D, (R/Ra)^+) \rightarrow 0$ can be obtained, and that gives the sequence $0 \rightarrow (F \otimes R/Ra)^+ \rightarrow (E \otimes R/Ra)^+ \rightarrow (D \otimes R/Ra)^+ \rightarrow 0$. So (1) follows by the exactness of $0 \rightarrow D \otimes R/Ra \rightarrow E \otimes R/Ra \rightarrow F \otimes R/Ra \rightarrow 0$.

(1) \Leftrightarrow (5). Let $a \in R$ such that Ra is simple. Then the right exactness of $0 \to D \otimes (R/Ra) \to E \otimes (R/Ra) \to F \otimes (R/Ra) \to 0$ is equivalent to the left exactness of $0 \to (F \otimes (R/Ra))^+ \to (E \otimes (R/Ra))^+ \to (D \otimes (R/Ra))^+ \to 0$, equivalently $0 \to \operatorname{Hom}(R/Ra, F^+) \to \operatorname{Hom}(R/Ra, E^+) \to \operatorname{Hom}(R/Ra, D^+) \to 0$ is exact. Now, (1) \Leftrightarrow (5) is obvious.

 $(6) \Rightarrow (1)$ is obvious since every R/S is min-pure flat for any simple left ideal S.

(2) \Leftrightarrow (7). Let $a \in R$ such that Ra is simple. Take into consideration the next diagram:

By [12, Lemma 2], μ, δ and λ are isomorphisms. Thus exactness of the first row is equivalent to the exactness of the second row, and equivalently the map $\operatorname{Hom}(R/aR, E) \to \operatorname{Hom}(R/aR, F) \to 0$ is epic.

(2) \Leftrightarrow (8). If R is commutative, it is easy.

Let R be left-right mininjective and $a \in R$. Then being aR is a minimal right ideal equivalent to that Ra is a minimal left ideal by [33, Theorem 1.14]. So in either cases (2) \Leftrightarrow (8) follows.

Remark 2.5. (1). Obviously purity implies the min-purity, but not conversely. Indeed, by [13, Example 3.1(ii)], there is an *R*-algebra *S* over a local Artinian ring *R*, such that

the inclusion homomorphism $R \hookrightarrow S$ is cyclically pure, and so is min-pure. But $R \hookrightarrow S$ is not pure.

(2). By (1), every min-pure injectivity (resp. min-pure projectivity) of modules implies pure-injectivity (resp. pure-projectivity), but not conversely. Every Artinian *R*-module is well known as pure-injective. Hence the artinian ring *R* in [13, Example 3.1(ii)] is pureinjective. But it is not min-pure injective, otherwise the inclusion map $R \hookrightarrow S$ above splits.

(3). By (2) and the following corollary, we ensure that the existence of pure-projective module which is not min-pure projective.

A ring R is a valuation ring (commutative but not necessarily a domain) provided that all ideals of R are totally ordered by inclusion.

Corollary 2.6. The next statements are equal for a ring R:

- (1) All left modules are min-pure flat;
- (2) All pure-projective right modules are min-pure projective;
- (3) All pure-injective right modules are min-pure injective;
- (4) All min-pure exact sequences of right modules are pure.

Moreover, if R is commutative, $R_{\mathfrak{p}}$ is a valuation ring for every prime ideal \mathfrak{p} .

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4) \Rightarrow (3) are easy.

 $(3) \Rightarrow (1)$. For any left module A, pure-injectivity of A^+ implies its min-pure injectivity by (3). Thus by Theorem 2.3, we conclude that A is min-pure flat.

Since cyclically pure exact sequences are min-pure, the last statement follows by [13, Theorem 2.7].

Let \mathscr{C} denotes the set $\mathscr{C} = \{R/aR | \text{for any } a \in R \text{ such that } Ra \text{ is simple}\}$. Note that min-pure= \mathscr{C} -pure= $\mathscr{C} \cup \{R_R\}$ -pure. The following due to Warfield Jr.(see [36, Proposition 1, p.700]).

Lemma 2.7. ([30, Proposition 1.2]) For a module A_R we have:

- (1) There exists a min-pure exact sequence $0 \to D \to E \to A \to 0$ where E is a direct sum of copies of modules in $\mathcal{C} \cup \{R_R\}$.
- (2) The class of all min-pure projective right modules is exactly $Add(\mathcal{C} \cup \{R_R\})$.

We will call A_R is absolutely min-pure (similar to absolutely purity) provided that A is min-pure in every extension of it.

Proposition 2.8. The next statements are equal for an *R*-module A_R :

- (1) A_R is absolutely min-pure;
- (2) All exact sequences starting with A are min-pure;
- (3) $Ext^{1}(D, A) = 0$ for any min-pure projective R-module D_{R} ;
- (4) $Ext^{1}(R/aR, A) = 0$ for any $a \in R$ such that Ra is simple;
- (5) There exists a min-pure sequence $0 \to A \to E \to C \to 0$ with E injective;
- (6) For all min-pure injective R-modules D_R, all homomorphisms from A to D factors through an injective R-module.
 Also, if R is commutative, then the above conditions are equivalent to:
- (7) A is min-injective.

Proof. (1) \Leftrightarrow (2) is easy by definition.

 $(2) \Rightarrow (5)$ is obvious, since we can embed A in an injective right R-module.

 $(5) \Rightarrow (6)$. Let $f: A \to B$ be a homomorphism for any min-pure injective R-module

 B_R . Being $0 \to A \xrightarrow{i} E$ is min-pure, gives the existence of a map $g: E \to B$ such that gi = f, and this proves (6).

(6) \Rightarrow (2). Let $g: A \rightarrow D$ be any homomorphism with D min-pure injective and $\xi: 0 \to A \xrightarrow{i} K \to L \to 0$ be an exact sequence. So, there are a map $h: A \to E$ with E injective and a map $f: E \to D$ such that fh = q by (6). By injectivity of E, there is a map $\alpha: K \to E$ such that $\alpha i = h$. So $q = f \alpha i$, whence ξ is min-pure by Lemma 2.4.

 $(1) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ follows from Lemma 2.7.

(4) \Rightarrow (6). We always have a sequence $\varepsilon : 0 \to A \xrightarrow{i} K \to L \to 0$ with K injective. Since by (4), $\operatorname{Ext}^1(R/aR, A) = 0$ for any $a \in R$ such that Ra is simple, $\operatorname{Hom}(R/aR, K) \to \operatorname{Hom}(R/aR, L) \to 0$ is epic. Thus ε is min-pure by Lemma 2.4, and so every homomorphism $A \to B$ with B min-pure injective factors through E.

(2) \Leftrightarrow (7) follows by [28, Proposition 2.3].

Recall by Puninski et al. [34] that, R is an RD-ring provided that purity and RD-purity coincides (this property is right-left symmetric). A serial ring and a regular ring are always RD (see [11, Theorem I.4] and [34, Remark 2.7]). By Puninski et al. [34, Proposition 4.5], a commutative RD ring is exactly an arithmetic ring, i.e., the rings with a distributive lattice of ideals.

Proposition 2.9. The next statements hold for a ring R:

- (1) If all min-pure sequences are pure, then R is an RD-ring.
- (2) If R is commutative and all min-pure sequences are pure, then R is arithmetic and all min-injective R-modules are Absolutely pure.
- (3) If R is commutative Noetherian ring such that all min-pure sequences are pure, then R is quasi-Frobenius arithmetic.

Proof. (1). If we assume that every min-pure exact sequence is pure, then every RD-exact sequence is pure, whence R is an RD-ring.

(2). By (1) and [34, Proposition 4.5], R is arithmetic. Also, if A is min-injective, then $0 \to A \hookrightarrow E(A) \to E(A)/A \to 0$ is min-pure by Proposition 2.8. So, it is pure exact and this implies that A is Absolutely pure.

(3). Being arithmetic comes from (2). Again by (2) and Noetherianity of R, all mininjective *R*-modules are injective, whence *R* is Artinian by [2, Theorem 1] and the fact that simple injectives are min-injective. Thus R_R is pure-injective, whence R_R is min-pure injective by hypothesis. Hence by Theorem 4.6, R is quasi-Frobenius.

Relationship between min-pure injective (resp. min-pure projective, min-pure flat) modules and injective (resp. projective, flat) modules is given below.

Corollary 2.10. The next conditions are true for any ring R:

- (1) Any min-pure injective absolutely min-pure right R-module is injective.
- (2) Any min-flat min-pure projective right R-module is projective. Moreover, if R is commutative, then
- (3) Any min-pure injective min-injective R-module is injective.
- (4) Any min-pure flat min-flat R-module is flat.

Proof. (1). For any min-pure injective absolutely min-pure right *R*-module *A*, By Proposition 2.8, there is a min-pure sequence $0 \to A \to E \to B \to 0$ with E injective. Splitting of this sequence gives us the injectivity of A.

(2). For any min-pure projective min-flat right R-module A, we always have $0 \to K \to K$ $F \to A \to 0$ where F projective. Since A is min-flat, this exact sequence is min-pure. Splitting of this sequence gives us the projectivity of A.

(3) follows by Proposition 2.8.

(4). For any min-flat min-pure flat module A, A^+ is min-pure injective and min-injective by Theorem 2.3. This gives the injectivity of A^+ by (2), whence is flatness of A. Recall by [33] that, R is *left universally minipective* ring if all left R-modules are mininjective, equivalently R is left min-injective and left PS. Now, we obtain new equivalent conditions of left universally minipjective rings via min-purity.

Proposition 2.11. The next statements are equal for a ring R:

- (1) R is left universally mininjective;
- (2) Every exact sequences of right R-modules is min-pure;
- (3) Every right R-module is absolutely min-pure;
- (4) Every min-pure injective right R-module is injective;
- (5) Every min-pure injective right R-module is absolutely min-pure;
- (6) Every min-pure flat left module is flat;
- (7) Every min-pure projective right R-module is projective.

Proof. (1) \Leftrightarrow (2) follows by [28, Theorem 4.3] and (3) \Leftrightarrow (2) \Rightarrow (5) are clear.

 $(5) \Rightarrow (4)$. Hypothesis implies that any min-pure injective right *R*-module is a direct summand of an injective module, and so (2) follows.

 $(4) \Rightarrow (6)$. For any min-pure flat left module A, A^+ is min-pure injective, whence is injective by (2). Therefore A would be flat.

(6) \Rightarrow (1). Let M be a min-pure flat left R-module. We always have a sequence $\varepsilon : 0 \to D \to E \to A \to 0$ where E is projective. Flatness of M, gives the monic map $0 \to D \otimes M \to E \otimes M$, and so ε is min-pure by Lemma 2.4. Thus, any right R-module A is min-flat by [28, Proposition 2.2], whence R is left universally mininjective by [28, Theorem 4.3].

(1) \Rightarrow (7). Since *R* is left universally miniplective, for any $a \in R$ such that *Ra* is simple, R/aR is min-flat by [28, Theorem 4.3], whence is projective by [29, Corollary 3.3]. If $\mathscr{C} = \{R/aR \mid \text{for any } a \in R \text{ such that } Ra \text{ is simple}\}$, any min-pure projective module contained in Add($\mathscr{C} \cup \{R_R\}$) by Lemma 2.7(2). Since any $R/aR \in \mathscr{C}$ is projective, (7) follows.

 $(7) \Rightarrow (1)$. Since by (7), R/aR is projective for any minimal left ideal Ra, (1) follows by [29, Theorem 5.10].

The rings all of whose minimal left ideals are projective is called *left PS* [32]. Nonsingular rings, Semiprime rings and V-rings are left PS. A ring R is *left FS* [27], if every simple left ideal of R is flat.

Proposition 2.12. The next statements are equal for a ring R:

- (1) R is left FS;
- (2) $Id(A) \leq 1$ for any min-pure injective module A_R ;
- (3) $Fd(A) \leq 1$ for any min-pure flat module _RA.

Proof. (1) \Rightarrow (2). By [28, Theorem 4.1], for any right *R*-module *F*, we have $0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0$ with *E* projective and *D* min-flat. This gives by [28, Proposition 2.2], for any min-pure injective right *R*-module *A*, $\text{Ext}^2(F, A) \cong \text{Ext}^1(D, A) = 0$. That is, Id(A) < 1.

 $(2) \Rightarrow (3)$. For any min-pure flat *R*-module ${}_{R}A$, A^{+} is min-pure injective by Theorem 2.3. By (2), for any *R*-module D_{R} , we have $\operatorname{Tor}_{2}(D, A)^{+} \cong \operatorname{Ext}^{2}(D, A^{+}) = 0$. So, $\operatorname{Tor}_{2}(D, A) = 0$, and hence $fd(A) \leq 1$.

 $(3) \Rightarrow (1)$. Since R/S is min-pure flat for any minimal left ideal S, flat dimension of R/S is ≤ 1 . In this case S is flat and so R is left FS.

Next we discuss the conditions related to min-pure projective modules which exactly characterizes left PS rings as follows.

Proposition 2.13. The next statements are equal for a ring R:

- (1) a is projective for any $a \in R$ such that Ra is simple;
- (2) $Pd(A) \leq 1$ for any min-pure projective module A_R ;

- (3) Absolutely min-pure left R-modules is closed under homomorphic images. Also, when R is commutative, above conditions are equal to:
- (4) R is PS.

Proof. (1) \Rightarrow (3). Let *B* be a submodule of an absolutely min-pure right *R*-module *A*. We shall show that A/B is absolutely min-pure. For any $a \in R$ such that Ra is simple, consider the induced exact sequence

$$\operatorname{Ext}^{1}(R/aR, A) \to \operatorname{Ext}^{1}(R/aR, A/B) \to \operatorname{Ext}^{2}(R/aR, B)$$

By Proposition 2.8, $\operatorname{Ext}^1(R/aR, A) = 0$. Consider $\operatorname{Ext}^2(R/aR, B) \cong \operatorname{Ext}^1(aR, B)$ the isomorphism. Projectivity of aR gives that $\operatorname{Ext}^2(R/aR, B) = 0$. Thus $\operatorname{Ext}^1(R/aR, A/B) = 0$, and so A/B is absolutely min-pure by Proposition 2.8.

 $(3) \Rightarrow (2)$. Let A be a min-pure projective right R-module. For any right R-module C, we always have $0 \rightarrow C \rightarrow D \rightarrow E \rightarrow 0$ with D injective, that gives the exactness of $0 = \text{Ext}^1(A, D) \rightarrow \text{Ext}^1(A, E) \rightarrow \text{Ext}^2(A, C) \rightarrow \text{Ext}^2(A, D) = 0$. By (2), E is absolutely min-pure and so $\text{Ext}^2(A, C) \cong \text{Ext}^1(A, E) = 0$ by Proposition 2.8. This means that projective dimension of A is ≤ 1 .

 $(2) \Rightarrow (1)$. Since R/aR is min-pure projective for any $a \in R$ such that Ra is simple, projective dimension of R/aR is ≤ 1 . In this case aR is projective.

(1) \Leftrightarrow (4). If R is commutative, it is easy.

3. Some (pre)envelopes and (pre)covers

Let \mathfrak{Y} be a class of right modules.

For a module X_R , a module $Y \in \mathfrak{Y}$ is called a \mathfrak{Y} -envelope of X, if there is a homomorphism $f: X \to Y$ such that the next conditions hold:

(1) For any homomorphism $g: X \to Z$ with $Z \in \mathfrak{Y}$, there is a map $h: Y \to Z$ with g = hf.

(2) If an endomorphism $h: Y \to Y$ is such that f = hf, then f must be an automorphism. If only (1) holds, we call $f: X \to Y$ a \mathfrak{Y} -preenvelope. Dually, it can be defined a \mathfrak{Y} -cover and \mathfrak{Y} -precover. In general \mathfrak{Y} -envelopes and \mathfrak{Y} -covers not always exsist, but they are unique (up to isomorphism) if they exist (see [15]).

Lemma 3.1. Let R be a ring. Then:

- (1) Extensions, pure submodules, pure quotients, direct sums and direct summands of absolutely min-pure right R-modules are absolutely min-pure.
- (2) Finite direct sums, direct summands and direct products of min-pure injective right *R*-modules are min-pure injective.
- (3) Direct sums and direct summands of min-pure projective right R-modules are minpure projective.
- (4) Direct sums, pure quotients and pure submodules of min-pure flat left R-modules are min-pure flat.

Proof. (1). Using the properties of the Ext functor, closedness of absolutely min-purity under extensions is obvious by Proposition 2.8. Also, using the properties of the tensor functor, closedness under direct sums and direct summands is easy. Also closedness of absolutely min-pure modules under pure submodules is by Proposition 2.8. Now let C a pure submodule of an absolutely min-pure right module D. Then the exact sequence $0 \to (D/C)^+ \to D^+ \to C^+ \to 0$ splits. So, the isomorphism

$$Tor_1(R/aR, D^+) \cong Tor_1(R/aR, C^+) \oplus Tor_1(R/aR, (D/C)^+)$$

induces the isomorphism

$$Ext^{1}(R/aR, D)^{+} \cong Ext^{1}(R/aR, C)^{+} \oplus Ext^{1}(R/aR, D/C)^{+}$$

for any $a \in R$ such that Ra is simple. Since D and C absolutely min-pure, for any $a \in R$ such that Ra is simple, $Ext^1(R/aR, D) = 0$ and $Ext^1(R/aR, C) = 0$ by Proposition 2.8, and so $Ext^1(R/aR, D/C) = 0$. Thus D/C is absolutely min-pure by Proposition 2.8, again.

(2) and (3). By using a standard technique as in the proofs of (pure-)injectivity and (pure-)projectivity.

(4). For a pure exact sequence $0 \to X \to Y \to Z \to 0$ of left *R*-modules with *Y* min-pure flat, we get the splitting of $0 \to Z^+ \to Y^+ \to X^+ \to 0$. Since Y^+ is min-pure injective by Theorem 2.3, X^+ and Z^+ are min-pure injective by (2), whence *X* and *Z* are min-pure flat by Theorem 2.3. Moreover, direct sums of min-pure flat left *R*-modules are min-pure flat can be easily seen by using the tensor product properties.

Proposition 3.2. Let R be a ring. Then:

- (1) All min-pure injective right R-modules have an injective cover.
- (2) If R is left min-coherent (all minimal left ideals are finitely presented), then all min-pure projective right R-modules have a projective preenvelope.

Proof. (1). Lemma 3.1(1) and [23, Theorem 2.5] yield that any min-pure injective Rmodule A_R has an absolutely min-pure cover $\beta : B \to A$. Absolutely min-purity of Bgives a min-pure sequence $0 \to B \xrightarrow{i} E \to C \to 0$ with E injective by Proposition 2.8, whence there exists $\alpha : E \to A$ such that $\alpha i = \beta$. Being β an absolutely min-pure cover gives the existence of $\lambda : E \to B$ such that $\beta \lambda = \alpha$. So $\beta(\lambda i) = (\beta \lambda)i = \alpha i = \beta$, whence λi is an isomorphism. This means that E has a summand which is isomorphic to B. This makes B injective and g an injective cover of A.

(2). If A_R is min-pure projective, then A_R has a min-flat preenvelope $\beta : A \to B$ by [29, Theorem 4.6]. By [28, Proposition 2.2], there exist $\alpha : A \to D$ and $\lambda : D \to B$ with D projective such that $\beta = \lambda \alpha$. It follows that α is a projective preenvelope of A. \Box

Proposition 3.3. All left *R*-modules can be embedded as a min-pure submodule of a minpure injective module.

Proof. Let $\mathscr{F} = \{R/aR \mid \text{for any } a \in R \text{ such that } aR \text{ is simple}\}$ and A a left R-module. Then by [30, Proposition 1.2], there exist an \mathscr{F} -pure sequence $0 \to C \to D \to A^+ \to 0$ where D is a direct sum of copies of modules in $\mathscr{F} \cup \{R_R\}$. By the isomorphism used in $(2) \Leftrightarrow (7)$ from the Lemma 2.4, the sequence $0 \to A^{++} \to D^+ \to C^+ \to 0$ is min-pure. Since A is pure in A^{++} by [18, Corollary 1.30], A is min-pure in D^+ . Moreover, since any $R/aR \in \mathscr{F}$, any $(R/aR)^+$ is min-pure injective by Theorem 2.3, D^+ is min-pure injective by Lemma 3.1(2).

Next, we consider the existence of a min-pure injective envelope and a min-pure projective (pre-)cover.

Proposition 3.4. Let R be a ring. Then:

- (1) All right R-modules have a min-pure injective envelope.
- (2) All right R-modules have a min-pure projective precover. Moreover, if min-pure projective right R-modules is closed under pure quotients, all right R-module have a min-pure projective cover.
- (3) All left R-modules have a min-pure flat cover.

Proof. (1). By Proposition 3.3, all right *R*-modules have a min-pure injective preenvelope. Let a pair $(\mathfrak{E}, \mathfrak{A})$, with \mathfrak{E} is a class of min-pure monomorphism between right *R*-modules and \mathfrak{A} is a class of min-pure injective right *R*-modules. Then the pair $(\mathfrak{E}, \mathfrak{A})$ is an injective structure on the category of right *R*-modules determined by the class $\mathscr{F} = \{R/aR \mid \text{for any } a \in R \text{ such that } aR \text{ is simple}\}$ by Lemma 2.4 and [15, Definitions 6.6.2 and 6.6.3]. Thus, (1) follows by [15, Theorem 6.6.4]. (2). Min-pure projective modules are precovering by Lemma 2.7. If min-pure projective right R-modules are closed under pure quotients, every right R-module has a min-pure projective cover by [23, Theorem 2.5].

(3) follows by Lemma 3.1(4) and [23, Theorem 2.5].

4. Rings whose injective modules are min-pure projective

Next we characterize min-pure injctive and min-pure projective modules via min-purity.

Proposition 4.1. For a module A_R , the next statements are equal:

- (1) A is min-pure injective;
- (2) All min-pure sequences $0 \to A \to M \to N \to 0$ are split;
- (3) A is injective relative to all min-pure sequences $0 \to M \to N \to L \to 0$ with N min-pure projective;
- (4) A is a direct summand of every min-pure extension of it.

Proof. $(1) \Rightarrow (2)$ is obvious and $(1) \Leftrightarrow (3)$ follows by [30, Theorem 1.6].

 $(2) \Rightarrow (1)$. By Proposition 3.3, there is a min-pure exact sequence $0 \rightarrow A \rightarrow M \rightarrow N \rightarrow 0$ with M min-pure injective. So A is min-pure injective by (2).

 $(1) \Rightarrow (4)$. Suppose A is a min-pure submodule of a module B. Since A is min-pure injective then the identity map of A extends to a map $B \to A$ meaning that A is a direct summand of B.

 $(4) \Rightarrow (1)$ is clear by Lemma 3.1(2).

Proposition 4.2. For a module A_R , the next statements are equal:

- (1) A is min-pure projective;
- (2) All min-pure exact sequences $0 \to M \to N \to A \to 0$ are split;
- (3) A is projective with respect to all min-pure sequences $0 \to M \to N \to L \to 0$ with N min-pure injective.

Proof. $(1) \Rightarrow (2)$ is clear and $(1) \Leftrightarrow (3)$ follows by [30, Theorem 1.6].

 $(2) \Rightarrow (1)$. By Lemma 2.7, there is a min-pure exact sequence $0 \to M \to N \to A \to 0$ with N min-pure projective. So, A is min-pure projective by (2).

Recall that R is called a semisimple ring provided that all right (or left) R-modules are projective (resp. injective). A ring R is said to be quasi-Frobenius if R is left (or right) artinian and left (or right) self-injective. By a well-known result of Faith and Walker [16], R is quasi-Frobenius if and only if the class of injective modules and the class of projective modules are the same.

Theorem 4.3. The next statements are equal for a ring R:

- (1) R is semisimple;
- (2) All min-pure injective right R-modules are projective;
- (3) All min-pure projective right R-modules are injective.

Proof. $(1) \Rightarrow (3)$ and $(1) \Rightarrow (2)$ are easy.

 $(2) \Rightarrow (1)$. Our hypothesis implies that all injective right *R*-modules are projective, whence *R* is quasi-Frobenius. For each right *R*-module *A*, by Proposition 3.3, there is a min-pure extension *B* of *A* such that *B* is min-pure injective. Since *B* is projective by (2), *B* is injective. This means that *A* is absolutely min-pure by Proposition 2.8. Thus *R* is left universally miniplective by Proposition 2.11, whence *R* is left PS. Being *R* is left Kasch gives that all simple left *R*-modules are projective, i.e. *R* is semisimple.

 $(3) \Rightarrow (1)$ By our hypothesis again, R is quasi-Frobenius. Let A be a min-pure projective right R-module. By hypothesis, A is injective, and so is projective. Thus, R is left universally mininjective by Theorem 2.11, whence R is left PS. By the same reason of $(2) \Rightarrow (1), R$ is semisimple.

Proposition 4.4. Let R be a right Artinian ring and $\mathscr{C} = \{R/aR \mid \text{such that } Ra \text{ is simple for any } a \in R\}$. Then a right R-module A is min-pure projective if and only if $A \cong P \oplus L$ where P is projective and $L \in Add(\mathscr{C})$.

Proof. The sufficiency follows directly. For the necessity, let A_R be min-pure projective R-module. Then $A \oplus B = (\bigoplus_{i \in I} R_i) \oplus (\bigoplus_{\lambda \in \Lambda} A_\lambda)$ where $R_i \cong R$, A_λ is in \mathscr{C} for all $i \in I$ and $\lambda \in \Lambda$ for some index sets I and Λ , and B a right R-module by Lemma 2.7. Artinianity of R implies that composition lengths of each R_i and A_λ are finite, and each R_i and A_λ can be written as a finite direct sum of indecomposable cyclic modules. So, each indecomposable components of R_i and A_λ has local endomorphism ring by [18, Lemma 2.21]. Thus each A_λ have the exchange property, this means that there exist some submodules A_1, A'_1, B_1, B'_1 such that $A \oplus B = A_1 \oplus B_1(\bigoplus_{\lambda \in \Lambda} A_\lambda)$ and $A_1 \oplus A'_1 = A$ and $B_1 \oplus B'_1 = B$. Thus, $A_1 \oplus B_1 \cong \bigoplus_{i \in I} R_i$ and $A'_1 \oplus B'_1 \cong \bigoplus_{\lambda \in \Lambda} A_\lambda$. So A_1 is projective and A'_1 is in Add(\mathscr{C}). \Box

A ring R is right CF if all cyclic right R-modules embedded in a free module. In general, a right CF ring need not be a quasi-Frobenius ring even if it is two-sided Artinian (see [7]). Now, we attempt to understand when the right CF rings would be quasi-Frobenius by min-purity.

Theorem 4.5. The next statements are equal for a ring R:

- (1) R is right CF and all injective right R-modules are min-pure projective;
- (2) R is a quasi-Frobenius ring.

Proof. $(2) \Rightarrow (1)$ is clear.

 $(1) \Rightarrow (2)$. Let A_R be an *R*-module with its injective hull E(A). Since E(A) is minpure projective, by Lemma 2.7, E(A) is contained in a direct sum of fininitely generated modules, and so *A* can be embedded in a direct sum of fininitely generated modules, whence *R* is right artinian by [17, Theoram 3.1]. Artinianity of *R* implies that all injective modules *E* can be seen as a direct sum of indecomposable cyclic modules by Proposition 4.4, and by (2), each cyclic indecomposable summands of *E* can be embedded in a free right *R*-module. By this we say that *E* can be embedded in a free module, whence *R* is quasi-Frobenius.

By the next result, commutative quasi-Frobenius rings are determined in terms of minpure injective and min-pure projective modules.

Theorem 4.6. The next statements are equal for a commutative ring R:

- (1) *R* is a quasi-Frobenius ring;
- (2) All injective *R*-modules are min-pure projective;
- (3) R is Artinian and E(R) is min-pure projective;
- (4) R is an Artinian ring and all projective R-modules are min-pure injective;
- (5) R is an Artinian and min-pure injective ring.

Proof. $(1) \Rightarrow (4) \Rightarrow (5)$ and $(1) \Rightarrow (2)$ are clear.

 $(2) \Rightarrow (3)$. Let A be any R-module. Since A embeds in a min-pure projective R-module E(A), by Lemma 2.7, E(A) is a direct summand of a direct sum of fininitely generated modules, whence R is artinian by [17, Theorem 3.1].

 $(3) \Rightarrow (1)$. Since E(R) is min-pure projective, by Proposition 4.4, E(R) is a direct sum of finitely many cyclic indecomposable modules. Thus, by similar arguments used in [5, Theorem 4.12] from $(6) \Rightarrow (1)$, we conclude that R is a quasi-Frobenius.

 $(5) \Rightarrow (1)$. Without loss of the generality, we may assume that R is a local ring with maximal ideal J. Let E be the injective hull of the field R/J. Since R is a commutative min-pure injective ring and $R \cong Hom_R(E, E)$, E is min-pure flat by Theorem 2.3(5), and so by Theorem 2.3, there exists a pure exact sequence $\xi : 0 \to A \to B \to E \to 0$ where B is in Add($\mathscr{F} \cup \{R_R\}$). But it is known that E is finitely presented. It follows that ξ splits

and so E is min-pure projective. Thus by Proposition 4.4, E can be written as a direct sum of cyclic indecomposable modules. Moreover, E is indecomposable by [20, Lemma 5.14], whence is finitely presented cyclic. Also, [26, Theorem 3.64] implies that E is faithful, and so $E \cong R$. Thus R is quasi-Frobenius.

The rings whose all right R-modules are direct sum of cyclic modules are called *right* Köthe ring. By a Köthe ring we mean that both right and left Köthe ring. Köthe in [25] proved that an Artinian principal ideal ring is a Köthe ring and then Cohen and Kaplansky in [9] showed that a commutative ring R is a Köthe ring if and only if R is an Artinian principal ideal ring. Recently, in [4, Theorem 3.1], it is shown that every normal (i.e., all the idempotents are central) right Köthe ring is an Artinian principal left ideal ring.

Proposition 4.7. The next statements are equal for a ring R:

- (1) All right *R*-modules are min-pure projective;
- (2) All right R-modules are min-pure injective;
- (3) All min-pure exact sequences $0 \to M \to N \to L \to 0$ are split;
- (4) All right R-modules are a direct sum of a module in Add(C) and a projective module.

Proof. $(4) \Rightarrow (3) \Leftrightarrow (2) \Leftrightarrow (1)$ are obvious.

 $(1) \Rightarrow (4)$. Since min-pure projectivity implies pure projectivity, R is right puresemisimple, whence is right Artinian. Thus (4) follows by Proposition 4.4.

Proposition 4.8. The next statements hold for a ring R:

- (1) If all right R-modules are min-pure projective, then R is two-sided Köthe.
- (2) If R is normal and all right R-modules are min-pure projective, then R is an Artinian principal ideal ring.
- (3) If R is commutative and all right R-modules are min-pure projective, then R is a quasi-Frobenius serial ring.

Proof. (1). Our hypothesis implies that every right *R*-module is *RD*-projective and so *R* is a right pure-semisimple *RD*-ring. Thus, [34, Proposition 6.5] implies that *R* is two-sided Köthe.

(2) follows from (1) and [4, Theorem 3.1].

(3). By (2), R is a commutative Artinian principal ideal ring and so it is Artinian serial. In this case, R is quasi-Frobenius serial by Theorem 4.6.

Recall by [8] that, a submodule C of a right R-module D is said to be *neat* in D provided that for any simple right R-module S, $Hom_R(S, D) \to Hom_R(S, D/C)$ is epic. Now, the following gives a particular answer to Proposition 4.7.

Corollary 4.9. Let R be a commutative indecomposable ring with $J(R)^2 = 0$. Then R is either a field or a quasi-Frobenius ring of composition length 2 if and only if all R-modules are min-pure projective.

Proof. There is nothing to prove for if R is a field. If R is not a field, cl(R) = 2, whence R is local with unique simple and maximal ideal S such that $(R/S) \cong S$. Thus any min-pure exact sequence is neat-exact, and so closed-exact by [19, Theorem 5]. On the other hand, since R is Artinian serial with $J(R)^2 = 0$, every closed exact sequence is splitting by [14, 13.5]. Thus, every min-pure exact sequence is splitting by Proposition 4.7, whence the necessity follows by Proposition 4.7. Conversely, R is quasi-Frobenius serial by Proposition4.8. Since R is indecomposable and $J(R)^2 = 0$, either R is a field or R is a quasi-Frobenius ring of cl(R) = 2 by [3, Proposition 3.4].

5. Questions

For future research, we close the paper by giving next questions that are partially answered throughout the paper.

It was shown in [31, Theorem 2.4] that right perfectness of a ring R is equivalent to the fact that each RD-flat right R-module is RD-projective. Now, we have if every min-pure flat right R-module min-pure projective, then R is right perfect. Q1: "Whether the converse of this fact is true or not?"

In Proposition 4.8, we know that if every right *R*-module is min-pure projective, then R is a right and left Köthe ring. Also, a commutative ring over which modules are min-pure projective is quasi-Frobenius serial. Finally, in Corollary 4.9, it is shown that over a commutative indecomposable ring with $J(R)^2 = 0$, every *R*-module is min-pure projective if and only if R is either a field or a quasi-Frobenius ring of composition length 2. Now,

Q2: "What is the class of (commutative) rings R for which every R-module is min-pure projective?"

Obviously every pure (resp. RD) exact sequence is min-pure, but not conversely (see Remark 2.5). Now,

Q3: "What is the class of rings R for which min-pure exact sequences are pure (resp. RD-pure)?"

Acknowledgment. The research of the second author was in part supported by a grant from IPM (No. 1402160411). This research is partially carried out in the IPM-Isfahan Branch.

References

- Y. Alagöz and E. Büyükaşık, On max-flat and max-cotorsion modules, AAECC 32, 195-215, 2021.
- Y. Alagöz, S. Göral Benli and E. Büyükaşık, On simple-injective modules, J. Algebra Appl, 2022. https://doi.org/10.1142/S0219498823501384.
- [3] M. Arabi-Kakavand, Sh. Asgari and Y. Tolooei, Noetherian rings with almost injective simple modules, Comm. Algebra, 45 (8), 3619-3626, 2017.
- [4] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, On left Köthe rings and a generalization of Köthe-Cohen-Kaplansky Theorem, Proc. Amer. Math. Soc. 142, 2625–2631, 2014.
- [5] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, On FC-Purity and I-Purity of Modules and Köthe Rings, Comm. Algebra, 42 (5), 2061–2081, 2014.
- [6] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi and S.H. Shojaee, C-Pure Projective Modules, Comm. Algebra, 41, 4559–4575, 2013.
- [7] J.E. Björk, Rings satisfying certain chain conditions, J. Reine Angew Math. 245, 63-73, 1970.
- [8] E. Büyükaşık and Y. Durğun, Absolutely s-pure modules and neat-flat modules Comm. Algebra, 43 (2), 384–399, 2015.
- [9] I.S. Cohen and I. Kaplansky, Rings for which every module is a direct sum of cyclic modules Math. Z. 54, 97–101, 1951.
- [10] P.M. Cohn, On the free product of associative rings, Math. Z. 71, 380–398, 1959.

- [11] F. Couchot, RD-flatness and RD-injectivity, Comm. Algebra, 34, 3675–3689, 2006.
- [12] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239–252, 1975.
- [13] K. Divaani-Aazar, M.A. Esmkhani and M. Tousi, A criterion for rings which are locally valuation rings, Colloq. Math. 116, 153–164, 2009.
- [14] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, *Extending modules*, Pitman Research Notes in Mathematics Series, vol. 313, Longman Scientific and Technical, Harlow, 1994.
- [15] E.E. Enochs and O.M.G. Jenda, *Relative homological algebra*, Berlin: Walter de Gruyter, 2000.
- [16] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976.
- [17] C. Faith and E.A. Walker, Direct sum representation of injective modules, J. Algebra, 5 (2), 203–221, 1967.
- [18] A. Facchini, *Module Theory*, Birkhauser Verlag-Basel, 1998.
- [19] A.I. Generalov, Weak and ω -high purities in the category of modules, Mat. Sb. (N.S.) **34** (3), 345–356, 1978.
- [20] K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian Rings 2nd ed. Cambridge: Cambridge University Press, 2004.
- [21] M. Greferath, A. Nechaev and R. Wisbauer, *Finite quasi-Frobenius modules and linear codes*, J. Algebra Appl. 3 (3), 1–26, 2004.
- [22] M. Harada, Self mini-injective rings, Osaka J. Math. 19 (2), 587–597, 1982.
- [23] H. Holm and P. Jorgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2), 691–703, 2008.
- [24] T. Honold, Characterization of finite Frobenius rings, Arch. Math. 76 (6), 406–415, 2001.
- [25] G. Köthe, Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring, (German). Math. Z. 39, 31–44, 1935.
- [26] T.Y. Lam, Lectures on modules and rings Springer-Verlag, New York, 1999.
- [27] Z.K. Liu, *Rings with flat left socle*, Comm. Algebra, **23** (6), 1645–1656, 1995.
- [28] L. Mao, On minipictive and min-flat modules, Publ. Math. Debrecen 72 (3-4), 347–358, 2008.
- [29] L. Mao, Min-flat modules and min-coherent rings, Comm. Algebra, 35 (2), 635–650, 2007.
- [30] A.R. Mehdi, Purity relative to classes of finitely presented modules, J. Algebra Appl. 12 (8), 1350050, 2013.
- [31] A. Moradzadeh-Dehkordi and F. Couchot, RD-flatness and RD-injectivity of simple modules, J.Pure Appl. Algebra 226, 107034, 2022.
- [32] W.K. Nicholson and J.F. Watters, *Rings with projective socle*, Proc. Amer. Math. Soc. 102, 443–450, 1988.
- [33] W.K. Nicholson and M.F. Yousif, Mininjective rings, J. Algebra 187, 548–578, 1997.
- [34] G. Puninski, M. Prest and P. Rothmaler, *Rings described by various purities*, Comm. Algebra, 27, 2127–2162, 1999.
- [35] B. Stenström, Pure submodules, Ark. Mat. 7, 159–171, 1967.
- [36] R.B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28, 699–719, 1969.
- [37] R. Wisbauer, Foundations of Module and Ring Theory, New York: Gordon and-Breach, 1991.
- [38] J.A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (3), 555–575, 1999.