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Abstract 

 In this paper, we introduce a new type of almost convergence and using this 

convergence, we give a Korovkin-type approximation theorem. Then, we construct an example 

such that our result is stronger than the results given before. Also, we present some 

consequences. 
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Relative Hemen Hemen Yakınsaklık ve Yaklaşım Teoremleri  

Öz 

Bu makalede, yeni bir hemen hemen yakınsaklık türü tanıtacağız ve bu yakınsaklığı 

kullanarak Korovkin tipi yaklaşım teoremi vereceğiz. Daha sonra bizim sonucumuzun önceden 

verilen sonuçlardan daha güçlü olduğunu gösteren bir örnek vereceğiz. Ayrıca, bazı sonuçlar 

sunacağız. 

 

Anahtar Kelimeler: Relative düzgün hemen hemen yakınsaklık, Korovkin teorem, Hemen 

hemen yakınsaklık, İstatistiksel yakınsaklık  

 

Introduction and Preliminaries 

 There are two well-known non-

matrix regular summability methods, 

namely "almost convergence" and 

"statistical convergence".  Let l  and c  

respectively be the Banach spaces of all 

bounded and convergent sequences 

 kx x with the usual norm sup k
k

x x . 

A Banach limit L  is defined on l , as a 

continuous linear functional such that 

  ( ) (( )) 0ki L x L x   for 0kx   for each k

  ( ) 1ii L e  ,  1,  1,  1,  ...e  ,  
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and    1( ) ( )k kL x L x   for all 

 kx x l   [1]. In 1948, Lorentz [2] used 

this notion of a Banach limit to define a new 

type of convergence which known as the 

almost convergence. A sequence  kx x  

is said to be almost convergent to the 

number l  if and only if all Banach limits of 

x  are l . A bounded sequence  kx x  is 

almost convergent to the number l  if and 

only if  

11
lim 0

n p

k
p

k n

x l
p

 



  , uniformly in n . 
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 The concept of statistical 

convergence for sequences of real numbers 

was introduced by Fast [3] and Steinhaus 

[4] independently in the same year 1951 and 

since then several generalizations and 

applications of this notion have been 

investigated [5, 6]. It is known that 

statistical convergence and almost 

convergence are distinct concepts but their 

intersection is not empty. 

 E. H. Moore [7] introduced the 

notion of uniform convergence of a 

sequence of functions relative to a scale 

function. Then, E. W. Chittenden [8] gave 

the following definition of relatively 

uniform convergence equivalently to the 

definition given by Moore: 

 A sequence  kf  of functions, 

defined on an interval ( ) I a x b   , 

converges relatively uniformly to a limit 

function f   if there exists a function  x

, called a scale function such that for every 

0   there is an integer k  such that for 

every k k  the inequality 

| ( ) ( ) | | ( ) |  kf x f x x    

holds uniformly in x  on the interval I . The 

sequence  kf  is said to converge uniformly 

relative to the scale function   or more 

simply, relatively uniformly. 

 It will be observed that uniform 

convergence is the special case of relatively 

uniform convergence in which the scale 

function is a non-zero constant (for more 

properties and details, see also [8, 9, 10]). 

 In [11], Demirci and Orhan define a 

new type of statistical convergence by using 

the notions of the natural density and the 

relatively uniform convergence. 

 Let K  be a subset of , the set of 

natural numbers, then the natural density of 

K , denoted by  K , is given by: 

   
1

: lim :
n

K k n k K
n

     

whenever the limit exists, where B  

denotes the cardinality of the set B  [12]. 

 Let f  and kf  belong to  C X , 

which is the space of all continuous real 

valued functions on a compact subset X  of 

the real numbers and 
 C X

f  denotes the 

usual supremum norm of f  in  C X . 

Definition 1. [11] 

  A sequence  kf  is said to be 

statistically relatively uniform convergent 

to f  on X  if there exists a function  x  

satisfying   0x  , called a scale 

function such that for every 0  , 

   
 

: sup 0k

x X

f x f x
k

x
 



   
   
    

. 

This limit is denoted by 

( )  ( ; )kst f f X  Ã . 

 In the present paper, we introduce 

uniform almost convergence and also, the 

notion of almost convergence of a sequence 

of functions relative to a scale function. 

Definition 2. 

 A sequence  kf  is said to be 

uniform almost convergent to f  on X  if  

   
11

limsup 0
n p

k
p x X k n

f x f x
p

 

 

  ,  
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uniformly in n . 

Definition 3. 

 A sequence  kf  is said to be 

relatively uniform almost convergent to f  

on X  if there exists a function  x  

satisfying   0x  , called a scale 

function such that 

 
   

11 1
limsup 0

n p

k
p x X k n

f x f x
x p

 

 

 
  

 
 ,  

uniformly in n . 

For 1n  , we will call this convergence as 

 ,1C  relatively uniform convergence. 

 It will be observed that uniform 

almost convergence is the special case of 

relative uniform almost convergence in 

which the scale function is a non-zero 

constant. Also, if  x   is bounded, 

relative uniform almost convergence 

implies uniform almost convergence. 

However, relative uniform almost 

convergence does not imply uniform almost 

convergence, when  x  is unbounded. 

This is illustrated by the following example. 

Example 1. 

 For each k , define 

 : 0,1kh   by 

 
2 2

2 2

3 3
, if  is odd,

2 1

1
, if  is even.

2 1

k

kx
k

k x
h x

kx
k

k x


 

 
 
 

  1  

Then observe that 

 
 

11 1
limsup 1 0

n p

k
p x X k n

h x
x p

 

 

 
  

 
 , 

uniformly in n , 

where  
1

, 0 1

1, 0

x
x x

x




 

 
 

, namely  kh  

is relatively uniform almost convergent to 

the function 1f   on the interval  0,1 . 

However,  kh  is not uniform almost 

convergent to the function 1f   on the 

interval  0,1 . Also, we note that  kh  is not 

statistically relatively uniform convergent. 

A Korovkin-Type Approximation 

Theorem 

     The fundamental theorem of 

Korovkin [13] on approximation of 

continuous functions on a compact interval 

gives conditions in order to decide whether 

a sequence of positive linear operators 

converges to identity operator. This 

theorem has been extended in several 

directions[5, 14].  In 2011, Mohiuddine [15] 

gived the following version of the classical 

Korovkin approximation theorem. 

  Throughout the paper, we use the 

test functions ie  defined by   i

ie x x  

 0,  1,  2 .i   

Theorem 1. [15] 

 Let  kT  be a sequence of positive 

linear operators acting from  C X  into 

itself and    
1

,

1
; : ;

n p

n p k

k n

D f x T f x
p

 



  . 

Then, for all  f C X ,  
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   ,limsup ; 0n p
p x X

D f x f x


  , uniformly 

in n , 

if and only if  

   ,limsup ; 0n p i i
p x X

D e x e x


  , uniformly 

in n , 0,  1,  2i  . 

 Now we present the following main 

result. 

Theorem 2. 

 Let  kT  be a sequence of positive 

linear operators acting from  C X  into 

itself and    
1

,

1
; : ;

n p

n p k

k n

D f x T f x
p

 



  . 

Then, for all  f C X , 

   
 

, ;
limsup 0

n p

p x X

D f x f x

x


 ,           2  

uniformly in n , 

if and only if  

   
 

, ;
limsup 0

n p i i

p x X i

D e x e x

x


 ,            3  

uniformly in n , 0,  1,  2i  , 

where     max ;  0,  1,  2ix x i   ,  

  0i x   and  i x  is unbounded, 

0,  1,  2i  . 

Proof. 

 Condition  3  follows immediately 

from condition  2 , since each of the 

functions 21,  ,  x x  belongs to  C X . Let 

 f C X . Then, reasoning exactly as in 

the proof of Theorem 2.1 in [15], we arrive 

at, 

   , ;n pD f x f x  

   , 0 0 ;n pD e x e x       

      , 2 22

2
     ;

C X

n p

f
D e x e x


     

   , 1 1     2 ;n px D e x e x     

    2

, 0 0     ;n px D e x e x     

     , 0 0     ; ,n pf x D e x e x     

therefore  

   
 , ;n p C X

D f x f x f      

       
2

, 0 02

2
    ;

C X C X

n p

f e
D e x e x




 



 

       
1

, 1 12

4
    ;

C X C X

n p

f e
D e x e x


   

     , 2 22

2
    ;

C X

n p

f
D e x e x


   

    , 0 0  ;n pM D e x e x    

       , 1 1 , 2 2    ; + ;n p n pD e x e x D e x e x  

 

where 

 

 

    2 12

2
2 1 .

C X

C X C X C X

f
M f e e


    

We get 
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   
 

, ;
sup

n p

x X

D f x f x

x


 

 
   

 
, 0 0

0

;
  sup sup

n p

x X x X

D e x e x
M

xx



 

 
  


 

   
 

, 1 1

1

;
    sup

n p

x X

D e x e x

x


  

   
 

, 2 2

2

;
    sup

n p

x X

D e x e x

x

 
 



 

where     max ;  0,  1,  2ix x i   . 

Then using the hypothesis  3  and 

supposing that p , we get 

   
 

, ;
limsup 0

n p

p x X

D f x f x

x


  uniformly 

in n . 

This completes the proof of the theorem. 

 We now show that our result 

Theorem 2 is stronger than Theorem 1. 

Example 2.  

 Let  0,1X   and consider the 

classical Bernstein polynomials  ;kB f x  

on  0,1 .C Using these polynomials, we 

introduce the following positive linear 

operators on  0,1C : 

     ; ;k k kQ f x h x B f x ,                   4  

 0,1x  and  0,1f C , 

where  kh x  is given by  1 . 

If we choose 
1, if  is odd

0, if  is even
k

k
z

k


 


 and 

  2 2

2

1
k

kx
g x

k x



,  0,1x , then we can 

write     
1

1
2

k k kh x z g x
 

   
 

 and 

      
1

; 1 ;
2

k k k kQ f x z g x B f x
 

   
 

 

 0,1x  and  0,1f C . 

Observe that 

     0 0;k kQ e x h x e x , 

     1 1;k kQ e x h x e x , 

     
 

2 2

1
;k k

x x
Q e x h x e x

k

 
  

 
, 

and the sequence  kQ  satisfies the 

condition  3 . Hence, by Theorem 2 

   
 

, ;
limsup 0

n p

p x X

D f x f x

x


  uniformly 

in n , 

where    
1

,

1
; : ;

n p

n p k

k n

D f x Q f x
p

 



   and  

 
1

, 0 1

1, 0

x
x x

x




 

 
 

.  

On the other hand for each k , 

 
 , ,

0,1

1
sup 1; 1 1; 1n p n p
x

D x D
k

 
   

 
 

12
                             = .

p

n p

k

k n

z
 



  
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Since 
12

limsup 1
p

n p

k
p n k n

z
 



 , we have  

 
 ,

0,1

limsup sup 1; 1 0n p
p n x

D x


   

and we can say that Theorem 1 does not 

work for our operators defined by  4 . 

Some Consequences 

 It is easy to see that relatively 

uniform convergence implies relatively 

uniform almost convergence and relatively 

uniform almost convergence implies 

 ,1C  relatively uniform convergence, but 

in this section, we prove the converse of 

these cases under an additional condition. 

Theorem 3. 

 Let  nT  be a sequence of positive 

linear operators on (X)C  such that 

   
 

1 ; ;
limsup 0n n

n x X

T f x T f x

x






 ,          5  

and 

 
     

11 1
limsup ; 0, 6

n p

k i i
p x X k ni

T e x e x
x p

 

 

 
  

 


 

uniformly in n , 0,  1,  2.i    

Then for any function (X)f C , we have 

   
 

;
limsup 0,n

n x X

T f x f x

x


  

where     max ;  0,  1,  2ix x i   , 

  0i x   and  i x  is unbounded for 

each  0,  1,  2i  . 

Proof.  

By Theorem 2, condition  6  

implies that 

 
     

11 1
limsup ; 0,    7

n p

k
p x X k n

T f x f x
x p

 

 

 
  

 


 

uniformly in n . 

We can get 

   
 

;
sup n

x X

T f x f x

x


 

 
   

11 1
 sup ;

n p

k
x X k n

T f x f x
x p

 

 

 
  

 
  

   
 

1
1

1 1

; ;1
      sup

n p k
m m

x Xk n m n

T f x T f x

p x

 


   

 
  

 
 

 

 

 
   

11 1
 sup ;

n p

k
x X k n

T f x f x
x p

 

 

 
  

 
  

   
 

1; ;1
     sup sup .

2

k k

k n x X

T f x T f xp

x



 

    
    

   

 

Therefore using  5  and  7 , we get 

   
 

;
limsup 0.n

n x X

T f x f x

x


  

This completes the proof of the theorem. 

Theorem 4. 

 Let  nT  be a sequence of positive 

linear operators on (X)C  such that 
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 
     

1

1 1
limsup ; 0,   8

p

k i i
p x X ki

T e x e x
x p 

 
  

 


0,  1,  2i    

and 

   
 1 1; ;

lim sup sup 0,  9
( )

n p n

p n p x X

f x f xn

p x

 



  

 

 
  

 

where  
0

1
; ( ; )

1

n

n k

k

f x T f x
n






 . Then 

for any function ( )f C X , we have  

 
   

11 1
limsup ; 0,

n p

k
p x X k n

T f x f x
x p

 

 

 
  

 


 

uniformly in n , 

where 

    max ;  0,  1,  2ix x i   , 

  0i x   and  i x  is unbounded for 

each  0,  1,  2i  . 

Proof.  

For 1n p  , it is easy to see that 

   
1

1

1
; ;

n p

k n p

k n

T f x f x
p


 

 



  

    1 1; ;n p n

n
f x f x

p
    

 

which implies 

   

   

1

1

1 1

1 1
supsup ; ;

( )

; ;
sup sup .

( )

n p

k n p
n p x X k n

n p n

n p x X

T f x f x
x p

f x f xn

p x




 



 

 
  

  

 

 
 

 

 
   

 


 

 10  

From Theorem 2, we have that if  8  holds, 

then 

 
     

1

1 1
limsup ; 0. 11

p

k
p x X k

T f x f x
x p 

 
  

 
   

Using    8 11  and because of relatively 

uniform almost convergence implies 

( ,1)C  relatively uniform convergence, we 

conclude that 

 
   

11 1
limsup ; 0,

n p

k
p x X k n

T f x f x
x p

 

 

 
  

 


 

uniformly in n  

and the proof is complete. 

Theorem 5.  

 Let  pT  be a sequence of positive 

linear operators on (X)C  such that 

   
 

1 ; ;1
limsup sup 0

n p
p k

p n x Xk n

T f x T f x

p x

 




  

and 

 
     

11 1
limsup e ; 0 12

n p

k i i
p x X k ni

T x e x
x p

 

 

 
  

 
   

uniformly in n ,  0,  1,  2i  . 

Then for any function (X)f C , we have 

   
 

;
limsup 0,

p

p x X

T f x f x

x


   

where     max ;  0,  1,  2ix x i   , 

  0i x   and  i x  is unbounded for 

each  0,  1,  2i  . 
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Proof. 

 By Theorem 2, condition  12  

implies that 

 
     

11 1
limsup ; 0,  13

n p

k
p x X k n

T f x f x
x p

 

 

 
  

 
    

uniformly in n .  

Because of  

 
   

11 1
supsup ; ;

n p

p k
n x X k n

T f x T f x
x p

 

 

 
 

 
  

   
 

1 ; ;1
sup sup ,

n p
p k

n x Xk n

T f x T f x

p x

 




 

 

we have  

 
     

11 1
limsupsup ; ; 0.  14

n p

p k
p n x X k n

T f x T f x
x p

 

 

 
  

 


 

By the triangle inequality, we get 

   
 

;pT f x f x

x


 

 
   

11 1
  ; ;

n p

p k

k n

T f x T f x
x p

 



 
  

 
  

 
   

11 1
     + ;  

n p

k

k n

T f x f x
x p

 



 
 

 
  

and hence from  13  and  14 , we have 

   
 

;
limsup 0.

p

p x X

T f x f x

x


  

This completes the proof of the theorem. 
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