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Abstract: In this paper, we formulate an efficient algorithm based on a new iterative method for the numerical solution of the 

Bagley-Torvik equation. The fractional differential equation arises in many areas of applied mathematics including 

viscoelasticity problems and applied mechanics of the oscillation process. We construct the fractional derivatives via the 

Caputo-type fractional operator to formulate a three-step algorithm using the MAPLE 18 software package. We further 

investigate the relationships between the surface area and stiffness of the spring constants of the Bagley-Torvik equation on 

three case problems and numerical results are presented to demonstrate the efficiency of the proposed algorithm. 

 

Key words: Fractional Bagley-Torvik equation, new iterative method, Caputo derivative, Riemann-Liouville fractional 
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Kesirli Bagley-Torvik Denklemi Üzerindeki Yay Sabitinin Yüzey Alanı ve Sertliğinin Hesaplamalı İlişkisi 
 

Öz: Bu makalede, Bagley-Torvik denkleminin sayısal çözümü için yeni iterativ yönteme dayalı etkili bir algoritma formüle 

ediyoruz. Kesirli diferansiyel denklemler, uygulamalı mekanik ve salınım sürecinin viskoelastisite problemleri dahil olmak 

üzere, uygulamalı matematiğin birçok alanında ortaya çıkar. MAPLE 18 yazılım paketini kullanarak üç adımlı bir algoritma 

formüle etmek için Caputo tipi kesirli operatör aracılığıyla kesirli türevler üretiyoruz. Üç durumlu bir problemde Bagley-Torvik 

denkleminin yay sabitlerinin yüzey alanı ve katılığı arasındaki ilişkileri araştırdık ve önerilen algoritmanın etkinliğini 

göstermek için sayısal sonuçlar sunuldu. 

 

Anahtar kelimeler: Kesirli Bagley-Torvik denklemi, yeni iterativ metod, Caputo, Riemann-Liouville kesirli integral 

operatörü, Maple 18 yazılım paketi. 

 

1. Introduction 

Initial value problems (IVPs) and boundary value problems (BVPs) of fractional order occur in the description of 

many physical processes of stochastic transportation, investigation of liquid filtration in a strongly porous medium, 

diffusion wave, cellular systems, signal processing, control theory, and oil industries. The analytical and numerical 

solutions to these fractional differential equations have attracted a lot of attention from researchers over the last 

decade. The Bagley-Torvik equation was proposed by Bagley and Torvik to described it is one of the many leading 

mathematical models of viscoelasticity damped structures with fractional derivatives. Therefore, it is meaningful 

to investigate the nature of the Bagley-Torvik equation with time delay. In particular, the 
1

2
 -order derivative or  

3

2
 

-order derivative describes the frequency-dependent damping materials quite satisfactorily and the Bagley-Torvik 

equation with  
1

2
  -order derivative or 

3

2
  -order derivative describes the motion of real physical systems, an immersed 

plate in a Newtonian fluid and a gas in a fluid respectively [1-7]. 

In this paper, we investigate the relationship between the surface area and stiffness of the spring constants 

appearing in the Bagley-Torvik equation which arises in the application of fractional calculus of the theory of 

viscoelasticity and it can also describe the motion of real physical systems, the modeling of the motion of a rigid 

plate immersed in a viscous fluid, and a gas in a fluid respectively [8, 9,10].  

𝑀𝐷2𝑦(𝑥) + 𝑆𝐷
3
2𝑦(𝑥) + 𝐾𝑦(𝑥) = 𝑔(𝑥)               0 < 𝑥 ≤ 1           (1) 
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with initial conditions 

{
𝑦(0) = Ω
𝑦𝑥(0) = Φ

                                                                                              (2) 

Where 𝑦(𝑥) represents the displacement of the plate of mass M,  𝑆 is the surface area, 𝐾 is the stiffness of the 

spring to which the plate is attached, Ω and Φ are constant parameters, 𝐷
3
2  is the Caputo fractional derivative of 

order 
3

2
 ,and 𝑔(𝑥) represents the loading force. 

Several numerical methods have been proposed for analytically and numerically solutions of this typical equation 

in area formulation of mathematical model of viscoelastic damped structures with fractional derivative such as 

[11] who presented a theoretical frame work on basis for the application of fractional calculus to viscoelasticity, 

[12] studied the fractional calculus in the transient analysis of viscoelastically damped structures, [14] obtained 

numerical solution of the Bagley-Torvik equation, [14] proposed and applied generalized Taylor collocation 

method for numerical solutions of the Bagley-Torvik equation, [15] employed discrete spline methods for solving 

two point fractional Bagley-Torvik equation, [16] applied fractional iteration method to obtain approximate 

analytical solutions to the Bagley-Torvik equation, [17] proposed and applied Chebyshev wavelet operational 

matrix of fractional derivative for the numerical solution of Bagley-Torvik equation, [18] employed Adomian 

decomposition method for analytical solution of the Bagley-Torvik equation, [19] formulated numerical scheme 

for solving two point fractional Bagley-Torvik equation using Chebyshev collocation method, [20] presented and 

applied Bessel collocation method for the numerical solution of the Bagley-Torvik equation, [21] applied shifted 

Chebyshev operational matrix for the numerical solution of the Bagley–Torvik equation and [22] investigated the 

existence and uniqueness as well as approximations of the solutions for the Bagley-Torvik equation.  

We aim to investigate and obtain numerical solutions for the relationship between surface area 𝑆  and stiffness of 

the spring constants 𝐾 of equation (1) and coupled with given initial conditions. Although some of the methods 

stated in our references have done great work in solving the Bagley-Torvik equation, however, there is still a need 

for a robust, fast, and suitable algorithm using MAPLE 18 software codes command to overcome the complexity 

of Riemann–Liouville fractional integral and Liouville–Caputo fractional derivative for better simplicity and 

efficiency. 

 

2. The fractional integration and differentiation  

The definition of fractional derivatives are defined in many ways such as Riemann-Liouville, Grunwald-Letnikove 

and Caputo. In the present paper, we consider the Caputo fractional derivative and Riemann–Liouville fractional 

integral as follow [21]: 

Definition 1  

The Riemann–Liouville fractional integral operator 𝐽𝛼, 𝛼 > 0 is defined as follows: 

 

𝐽𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫ (𝑥 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠,                     𝛼 > 0                               (3)
𝑥

0

 

 

Definition 2  

The Liouville–Caputo fractional derivative operator 𝐷𝛼 is defined as follows: 

 

  {
𝐷𝛼𝑓(𝑥) =

1

Γ(𝑚 − 𝛼)
∫ (𝑥 − 𝑠)𝑚−𝛼−1𝑓𝑚(𝑠)
𝑥

0

𝑑𝑠

𝑓𝑜𝑟  𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝑥 > 0, 𝑓(𝑥) ∈ 𝐶−1
𝑚

                      (4) 

 

And the Liouville–Caputo derivative (4), we have 

 

𝐷𝛼𝑥𝛽 =

{
 

 
                0                                      𝑓𝑜𝑟 𝛽 ∈ ℕ0 𝑎𝑛𝑑 𝛽 < ⌈𝛼⌉; 

Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑥𝛽−𝛼                      𝑓𝑜𝑟 𝛽 ∈ ℕ0 𝑎𝑛𝑑 𝛽 ≥ ⌊𝛼⌋;

                                                               𝑜𝑟 𝛽 ∉ ℕ0 𝑎𝑛𝑑 𝛽 > ⌊𝛼⌋      

          (5)     
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Here, ⌈𝛼⌉ and ⌊𝛼⌋ are the ceilings and floor functions respectively, and ℕ0 = {0,1,2… }. 
 

3. Description of the new iterative method (NIM) 

 

The new iterative method was proposed by Daftardar-Gejji and Jafari [23].  It is an efficient technique for 

solving linear and nonlinear functional differential equations which arise in a wide area of applications in 

nonlinear problems without linearization or small perturbation [24, 25]. We consider the basic idea of the new 

iterative method for the general functional equation of the form: 

 

𝑦(𝑥) = 𝑓(𝑥)   + 𝑁(𝑦(𝑥))                                                                                  (6) 
where 𝑁 Na nonlinear operator from a Banach is space 𝐵 → 𝐵 and 𝑓(𝑥)   is a known function. 

Looking for a solution of (6) having the series form: 

 

𝑦(𝑥) =∑ 𝑦𝑖(𝑥)                                                                                                (7)
∞

𝑖=0
 

The nonlinear operator which is on the right-hand side of (6) can be decomposed as follow:  

 

𝑁(∑ 𝑦𝑖(𝑥)
∞

𝑖=0
) = 𝑁(𝑦0) +∑ {𝑁(∑ 𝑦𝑗

𝑖

𝑗=0
) − 𝑁 (∑ 𝑦𝑗

𝑖−1

𝑗=0
)}       (8)

∞

𝑖=1
 

Substituting equations (7) and (8) into equation (6); becomes; 

 

∑ 𝑦𝑖(𝑥)
∞

𝑖=0
= 𝑓(𝑥) + 𝑁(𝑦0) +∑ {𝑁(∑ 𝑦𝑗

𝑖

𝑗=0
) − 𝑁 (∑ 𝑦𝑗

𝑖−1

𝑗=0
)}    (9)

∞

𝑖=1
 

The recurrence relation is given by:  

{

𝑦0 = 𝑓

𝑦1 = 𝑁(𝑦0)   

𝑦𝑚+1 = 𝑁(𝑦0 + 𝑦1 +⋯+ 𝑦𝑚) − 𝑁(𝑦0 + 𝑦1 +⋯+ 𝑦𝑚−1)   𝑚 = 1,2,3, . .
(10) 

 

Then,  

𝑁(𝑦0 + 𝑦1 +⋯+ 𝑦𝑚) = 𝑁(𝑦0 + 𝑦1 +⋯+ 𝑦𝑚−1)       𝑚 = 1,2,3…         (11)      
     

and  

∑ 𝑦𝑖
∞

𝑖=0
= 𝑓 + 𝑁 (∑ 𝑦𝑖

∞

𝑖=0
),                                                                                (12) 

    The k − term approximate solution of (6) is given by; 

𝑦 = 𝑦0 + 𝑦1 +⋯+ 𝑦𝑘−1.                                                                                        (13) 

            

3.1 Suitable Algorithm 

In this section, we formulate three steps algorithm using MAPLE 18 software codes for solving fraction Bagley-

Torvik equation (1) coupled with initial conditions given in equation (2). We utilize definition 2 and the new 

iterative method discussed in the previous section as follows: 

restart: 

Step 1:  
𝑤𝑖𝑡ℎ𝑝𝑙𝑜𝑡𝑠: 
𝐷𝑖𝑔𝑖𝑡𝑠 ≔ ℝ+; 
𝑁 ≔ ℝ+; 
𝑆 ≔ ℝ+; 

𝐾 ≔ ℝ+; 
𝑔 ≔ 𝑔(𝑥); 
𝑦[0] ≔ Ω; 
𝑑𝑦[0] ≔ Φ; 
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𝑌[0] ≔ (𝑦[0] + 𝑑𝑦[0] ∗ 𝑥 + 𝑖𝑛𝑡(𝑔, 𝑥$2)); 

𝑚 ≔ 𝛼 +
1

2
; 

Step 2: 

for n from 0 to N do 

𝑓 ≔ 𝑑𝑖𝑓𝑓(𝑌[𝑛], 𝑥$2); 

𝐺 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

Γ(𝑚 − 𝛼)
∗ 𝑖𝑛𝑡((𝑥 − 𝑠)𝑚−𝛼−1 ∗ 𝑠𝑢𝑏𝑥(𝑠 = 𝑥, 𝑓), 𝑠 = 0…𝑥), 𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ; 

𝐻 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(−𝑖𝑛𝑡(𝑆 ∗ 𝐺 + 𝐾 ∗ 𝑌[𝑛], 𝑥$2), 𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒); 
𝑌[𝑛 + 1] ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝐻); 
end do; 
Step 3: 

𝑁𝐼𝐴 ≔ 𝑠𝑢𝑚(𝑌[𝑘], 𝑘 = 0. .𝑁 + 1); 
for 𝑥 from 0 by 0.1to 1 do 

𝑁𝐼𝐴[𝑥] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(𝑁𝐼𝐴)); 

end do; 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟 [𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠); 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑙𝑜𝑔𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟 [𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠); 
 

 

4. Numerical experiments 

To illustrate the effectiveness of the proposed algorithm, three test cases are considered to examine the 

relationship between surface area 𝑆  and the stiffness of the spring constants 𝐾 of equation (1) as follows: 

 

Case 1.      The stiffness of the spring constant 𝑲 is greater than surface area 𝑺     [20] 

𝐷2𝑦(𝑥) +
2

5
𝐷
3
2𝑦(𝑥) −

1

2
𝑦(𝑥) =

𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2,                      (14) 

with initial conditions: 

 

{
𝑦(0) = 0,
𝑦𝑥(0) = 1,

                                                                                                (15) 

 

The exact solution is 

𝑦(𝑥) = 𝑥(1 − 𝑥),                                                                                      (16) 
 

restart: 

Step 1:  
𝑤𝑖𝑡ℎ𝑝𝑙𝑜𝑡𝑠: 
𝑁 ≔ 5; 

𝑆 ≔
2

5
; 

𝐾 ≔
1

2
; 

𝑔 ≔
𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2; 

𝑦[0] ≔ 0; 
𝑑𝑦[0] ≔ 1; 

𝑌[0] ≔ (0 + 1 ∗ 𝑥 + 𝑖𝑛𝑡 (
𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2, 𝑥$2)) ; 
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𝑚 ≔
3

2
+
1

2
; 

Step 2: 

for n from 0 to N do 

𝑓 ≔ 𝑑𝑖𝑓𝑓(𝑌[𝑛], 𝑥$2); 

𝐺 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

Γ(𝑚 − 𝛼)
∗ 𝑖𝑛𝑡((𝑥 − 𝑠)𝑚−𝛼−1 ∗ 𝑠𝑢𝑏𝑥(𝑠 = 𝑥, 𝑓), 𝑠 = 0…𝑥), 𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ; 

𝐻 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (−𝑖𝑛𝑡 (
2

5
∗ 𝐺 −

1

2
∗ 𝑌[𝑛], 𝑥$2) , 𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ; 

𝑌[𝑛 + 1] ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝐻); 
end do; 
Step 3: 

𝑁𝐼𝐴 ≔ 𝑠𝑢𝑚(𝑌[𝑘], 𝑘 = 0. .𝑁 + 1); 
for 𝑥 from 0 by 0.1to 1 do 

𝑁𝐼𝐴[𝑥] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(𝑁𝐼𝐴)); 

end do; 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟 [𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠 𝑪𝒂𝒔𝒆 𝟏); 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑙𝑜𝑔𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟 [𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠 𝑪𝒂𝒔𝒆 𝟏); 
Output: See Table 1 and Figures 1, 2 

 

Case 2.      The surface area 𝑺 is greater than the stiffness of the spring constant 𝑲   

𝐷2𝑦(𝑥) +
1

2
𝐷
3
2𝑦(𝑥) −

2

5
𝑦(𝑥) =

𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2,                      (17) 

with initial conditions 

{
𝑦(0) = 0,
𝑦𝑥(0) = 1,

                                                                                                (18) 

 

restart: 

Step 1:  
𝑤𝑖𝑡ℎ𝑝𝑙𝑜𝑡𝑠: 
𝑁 ≔ 5; 

𝑆 ≔
1

2
; 

𝐾 ≔
2

5
; 

𝑔 ≔
𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2; 

𝑦[0] ≔ 0; 
𝑑𝑦[0] ≔ 1; 

𝑌[0] ≔ (0 + 1 ∗ 𝑥 + 𝑖𝑛𝑡 (
𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2, 𝑥$2)) ; 

𝑚 ≔
3

2
+
1

2
; 

Step 2: 

for n from 0 to N do 

𝑓 ≔ 𝑑𝑖𝑓𝑓(𝑌[𝑛], 𝑥$2); 

𝐺 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

Γ(𝑚 − 𝛼)
∗ 𝑖𝑛𝑡((𝑥 − 𝑠)𝑚−𝛼−1 ∗ 𝑠𝑢𝑏𝑥(𝑠 = 𝑥, 𝑓), 𝑠 = 0…𝑥), 𝑎𝑠𝑠𝑢𝑚𝑒

= 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ; 
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𝐻 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (−𝑖𝑛𝑡 (
1

2
∗ 𝐺 −

2

5
∗ 𝑌[𝑛], 𝑥$2) , 𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ; 

𝑌[𝑛 + 1] ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝐻); 
end do; 
Step 3: 

𝑁𝐼𝐴 ≔ 𝑠𝑢𝑚(𝑌[𝑘], 𝑘 = 0. .𝑁 + 1); 
for 𝑥 from 0 by 0.1to 1 do 

𝑁𝐼𝐴[𝑥] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(𝑁𝐼𝐴)); 

end do; 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟 [𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠 𝑪𝒂𝒔𝒆 𝟐); 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑙𝑜𝑔𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟 [𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠 𝑪𝒂𝒔𝒆 𝟐); 
Output: See Table 1 and Figures 1, 2. 

 

Case 3.      The surface area 𝑺 is equal to the stiffness of the spring constant 𝑲   

𝐷2𝑦(𝑥) +
1

2
𝐷
3
2𝑦(𝑥) −

1

2
𝑦(𝑥) =

𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2,                         (19) 

with initial conditions 

{
𝑦(0) = 0,

𝑦𝑥(0) = 1,
                                                                                                (20) 

restart: 

Step 1:  
𝑤𝑖𝑡ℎ𝑝𝑙𝑜𝑡𝑠: 
𝑁 ≔ 5; 

𝑆 ≔
1

2
; 

𝐾 ≔
1

2
; 

𝑔 ≔
𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2; 

𝑦[0] ≔ 0; 
𝑑𝑦[0] ≔ 1; 

𝑌[0] ≔ (0 + 1 ∗ 𝑥 + 𝑖𝑛𝑡 (
𝑥2

4
−
𝑥

4
−
8

5

√𝑥

√𝜋
− 2, 𝑥$2)) ; 

𝑚 ≔
3

2
+
1

2
; 

Step 2: 

for n from 0 to N do 

𝑓 ≔ 𝑑𝑖𝑓𝑓(𝑌[𝑛], 𝑥$2); 

𝐺 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

Γ(𝑚 − 𝛼)
∗ 𝑖𝑛𝑡((𝑥 − 𝑠)𝑚−𝛼−1 ∗ 𝑠𝑢𝑏𝑥(𝑠 = 𝑥, 𝑓), 𝑠 = 0…𝑥), 𝑎𝑠𝑠𝑢𝑚𝑒

= 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ; 

𝐻 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (−𝑖𝑛𝑡 (
1

2
∗ 𝐺 −

1

2
∗ 𝑌[𝑛], 𝑥$2) , 𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ; 

𝑌[𝑛 + 1] ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝐻); 
end do; 
Step 3: 

𝑁𝐼𝐴 ≔ 𝑠𝑢𝑚(𝑌[𝑘], 𝑘 = 0. .𝑁 + 1); 
for 𝑥 from 0 by 0.1to 1 do 
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𝑁𝐼𝐴[𝑥] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(𝑁𝐼𝐴)); 

end do; 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟[𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠 𝑪𝒂𝒔𝒆 𝟑); 
𝑦[𝑥][2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑙𝑜𝑔𝑝𝑙𝑜𝑡([𝑁𝐼𝐴], 𝑥 = 0…1, 𝑐𝑜𝑙𝑜𝑟[𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 Bagley − Torvik equation 𝐼𝑉𝑃𝑠 𝑪𝒂𝒔𝒆 𝟑); 
Output: See Table 1 and Figures 1, 2. 

 

Table 1. Numerical solutions for fractional Bagley-Torvik equation 

x Case 1    𝑲 > 𝑆 Case 2     𝑺 > 𝐾 Case 3    𝑲 = 𝑺 

0 0.00000000000000000000 0.00000000000000000000 0.0000000000000000000 

0.1 0.09003714575609670000 0.09019689275910890000 0.0902115355713342000 

0.2 0.16027451051370710000 0.16111925446865500000 0.1612269944499560000 

0.3 0.21085875278105220000 0.21308057719348000000 0.2134168770485690000 

0.4 0.24188680735470110000 0.24629374672292200000 0.2470320576228550000 

0.5 0.25341043900550710000 0.26091502542611400000 0.2622500177590770000 

0.6 0.24543906121089720000 0.25705962169323800000 0.2591917700789600000 

0.7 0.21794167866797620000 0.23480976534771500000 0.2379308325787490000 

0.8 0.17084825859778810000 0.19421956791560900000 0.1984986925198820000 

0.9 0.10405067979332910000 0.13531816759601700000 0.1408883409487810000 

1.0 0.01740334450319540000 0.05811182557896970000 0.0650565938996210000 

 

    
Figure 1. Depict the numerical solution 𝑦(𝑥) for the relationship between three cases of the stiffness of the 

spring constant 𝐾 and surface area 𝑆 on interval 0 ≤ 𝑥 ≤ 1 for  K > 𝑆, 𝑆 > 𝐾, 𝑎𝑛𝑑  𝐾 = 𝑆 
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Figure 2. Depict the numerical solution 𝑦(𝑥) (𝑙𝑜𝑔) for the relationship between three cases of   stiffness of the 

spring constant 𝐾 and surface area 𝑆 on interval 0 ≤ 𝑥 ≤ 1 for  K > 𝑆, 𝑆 > 𝐾, 𝑎𝑛𝑑  𝐾 = 𝑆. 
 

5. Results and Discussion  

 

           The surface area 𝑆 and stiffness of the spring constants 𝐾 of fractional Bagley-Torvik equation are examined 

and from the numerical solutions obtained, we observed the following: 

i. The proposed algorithm demonstrated a good alternative to the conventional approach to solving the 

fractional differential equations. 

ii. The peak (maximum) results obtained for all cases within interval 0.5 ≤ 𝑥 ≤ 0.55.  
iii. The highest numerical results are obtained when the surface area 𝑆 is equal to the stiffness of the 

spring constants 𝐾 (see case 3: Table 1. and Figure 1. Blue). 

iv. The last results have obtained the stiffness of the spring constant 𝐾 is greater than surface area 𝑆 (see 

case 1: Table 1. and Figure 1. Red).  

v.  Intermediary solutions are obtained when surface area 𝑆 is greater than the stiffness of the spring 

constant 𝐾 (see case 2: Table 1. and Figure 1. Green).     

 

6. Conclusion 

 

An efficient new iterative algorithm was formulated and applied for the numerical solutions of fractional Bagley-

Torvik equation with constant parameters of the surface area 𝑆 and stiffness of the spring 𝐾. Numerical results 

show that the computational cost of the technique has decreased significantly and through the numerical 

experiments, we observed that the solutions obtained are considered as the sum of finite series 𝑦(𝑥) = ∑ 𝑦𝑖
5
𝑖=0  

converges to exact solutions which demonstrated that new iterative algorithm is a suitable and powerful tool for 

solving fractional differential equations arising in the calculus of the theory of viscoelasticity. 
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