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1. Introduction

Convexity theory is an astonishing and compelling methodology for contemplating the enormous and beautiful issues that arise in many
different fields of the pure and applied sciences. Numerous new structures have been presented and explored, including convex sets and
related functions. This theory has a rich history and has been the focus and motivation of outstanding mathematical research for more than a
century. Also, convexity theory has a critical place in the advancement of the idea of inequality. Inequalities have an interesting mathematical
model due to their important applications in traditional calculus, fractional calculus, quantum calculus, interval-valued, stochastic, time-scale
calculus, fractal sets, etc.

There are many types of convexity in the literature. The three types of convexity that will be used in this article are as follows.

The concept of s-convex function was introduced in Breckner’s paper [3] and a number of properties and connections with s-convexity in the
first sense are discussed in the paper [14].

Definition 1.1. A function f : [0,00) — R is said to be s-convex in the second sense if
JAx+(1=2)y) SA°fx)+(1=2)" ().

forall x,y € [0,0), t € [0,1] and for some fixed s € (0,1].

Definition 1.2. [/5] Let f: 1 CR — R forall A € [0,1] and all x,y € I, if the following inequality

fAx+(1=2)y) < max{f(x),f(y)}

holds, then f is called a quasi-convex function on I.

Definition 1.3. [5] A function f : 1 C R — R is P-function or that f belongs to the class of P(I), if it is nonnegative and for all x,y € I and
A € [0,1], satisfies the following inequality:

FAx+(1=24)y) < f(x)+ ().

Recently, a large number of researchers, including mathematicians, engineers and scientists, have devoted themselves to studying the
inequalities and properties associated with convexity in certain different directions. Many integral inequalities have been developed so
far by different researchers in the due course of time. In the literature, we have many types of inequalities that involve convex functions,
such as Bullen inequality [4], Hermite-Hadamard-Fejér inequality [11], Simpson type inequality [20], and Ostrowski type inequalities [19].
Likewise, there are a lot of well-known integral inequalities but the most notable one is the Hermite-Hadamard integral inequality.
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Let f:1 C R — R be an integrable convex function with a < b. Then, the Hermite-Hadamard inequality is expressed as follows: (see [12]):

(%57 = 5 [ ran < TS0

In [6], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequality which holds for the s-convex functions.

Theorem 1.4. Suppose that f : [0,00) — [0,0) is an s-convex function in the second sense, where s € (0,1] and let a,b € [0,%0), a < b. If
f € Lla,b], then the following inequalities hold

b
2S*‘f(“;b) <o [ oo < L0 (L1

There has also been research focusing on the Simpson-type inequality. In particular, Alomari ef al. [1] studied Simpson’s inequality
for s-convex functions using differentiable functions. Many researchers have studied Simpson-type inequalities in the literature (see,
[2,7, 10,13, 16]).

Bullen [4] obtained the well-known Bullen-type inequalities. Bullen-type inequalities for generalized convex functions were obtained by
Sarikaya and Budak [18]. The local fractional version of Bullen-type inequality was presented in [9]. Du et al. [8] obtained Bullen-type
inequalities using fractional integrals.

In the last few decades, many mathematicians and research scholars have focused their great contributions and attention to the study of this
inequality. The aim of this paper, is to establish some new Hermite-Hadamard type inequalities and Simpson-type inequalities for s-convex
function, quasi-convex function and P-convex function, respectively.

2. Generalized Bullen Type Inequalities

Theorem 2.1. Suppose that f : [0,00) — [0,00) is an s-convex function in the second sense, where s € (0,1] and let a,b € [0,00), a < b. If
f € L[a,b), then the following inequalities hold

PR < ot e

2
< S+ /(b)+2/() @1
s+1
forx € (a,b).
Proof. Since f is a s-convex function in the second sense on [a,x] C [a,b], by using the inequalities (1.1) we get
- +x o fla)+f(x)
ys—lp( @ < / < _ 22
f( 2 )_x7a.af(x)dx_ s+1 22)
By similar way for [x,b] C [a,b], it follows that
_ b+x 1 b F(b)+f(x)
28 1 < / < X 2.
f( 5 )*b—axf(x)dx* — 23)
Consequently, by adding (2.2) and (2.3), we have
_ +x b+x 1 x 1 b
2S 1 a < / /
(f( 2 ) +f( > )) < =l f(t)dt—i_ibfx.x f(r)de
fla)+f(b) +2f(x)
- s+1
which completes the proof of the inequality (2.1). O

Remark 2.2. If we choose the s =1 in the Theorem 2.1, then the inequality (2.1) reduces to the inequality of Theorem 3 in [17].

3. Trapezoid Type Inequalities

Lemma 3.1. [17] Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If f' € L|a,b), then the following equality holds:

f(x)+f(a);f(b)—Lia/:f(z)dwr%ﬁ/ff(t)dt} = x;a (;1(1—2/1)f'(7w+(1—/1))f)d7L
b—x
+

/0'1(1 —20)f (Ax+ (1—A)b)dA

for x € (a,b).



Konuralp Journal of Mathematics 343

Theorem 3.2. Let f : [a,b] C [0,0) — R be a differentiable mapping on (a,b) with a < b. If | f'| is s-convex in the second sense on [a,b),
then

'f(x)+f(a)+f(b)_{i / dt+—/f dt} 3.1)

1 s .
= <2‘V+1(s+1)(s+2) AT 1)(s+2)) (b=a)lf @)

1 s / /
* <2s+1(s+1)(s+2) +z(s+1)(s+2)) =a)lf @] +E=x)| @)

forx € (a,b).

Proof. From Lemma 3.1, by using the properties of modulus and |f’| is s-convex in the second sense on [a, b], we have

1o+ LD L s oL [ roa

1 b—x rl
/O\172M|f’(la+(lf/l)x)dl|+ /0|1727L|\f’(lx+(lfl)b)dl|

X—a

IN

X—a

IA

/O1 120 W @]+ (1271 ()] a2

22| [AIF @)+ (1= 2)|f ()] dA

X—a

= - (1*271) (A1 (@) + (1= 2)*|f'(x)]] 42

)C

/ A=) X7 @]+ (1= 217 ()] a2

(1-22) (RIS @)+ (1= 217 0)]] dA

=D A+ A=) |f ()] dA

(25+1(S+l)(s+2) +2(s+1)(s+2)) (bfa)|f/(x)‘

1 s
+ <2s+1(s+1)(s+2) T )62

)=l @i+ o0l o)
which completes the proof of the inequality (3.1). O

Remark 3.3. Ifwe choose s =1 in the Theorem 3.2, then the inequality (3.1) reduces to the inequality of Theorem 4 in [17].

Theorem 3.4. Let f: [a,b] C [0,00) — R be a differentiable mapping on (a,b) with a < b. If | f'|1 is s-convex in the second sense on |a, b]
for some g > 1, then

‘ PRERICLYC 7{ 1

x—a  (If@E+IfWINT | b=x (IO E\
2(p+1);( s+l > +2(p+1)']’( s+l )

xf(z)dz + ﬁ /xbf(t)dt}

X—aJa

(3.2)

where x € (a,b) and % +é =1



344 Konuralp Journal of Mathematics

Proof. From Lemma 3.1, by using Holder inequality and | /|7 is s-convex in the second sense on [a, b], we have

f)+

fla)+f(b) 7[
2

xia /:f(t)dt+$/xbf(t)dt]

x—a (! , b—x (! ,
< 5 /0\172M|f(la+(lf/l)x)dl|+ 5 /0|1727L|\f(lx+(17/l)b)dl|
XxX—a 1 b % 1 ’ é
< = (/0 |1—2/1\1d7L) (/0 |f(la+(1—7t)x)d/l\)
b—x ([ [l VAR ;
+5 (/0 |1—2/l\”d7L) (/0 |f(7Lx+(1—7L)b)d/l\)
_ I i
< 2 ([wr@ia-arirmmae )
2(p+1)r \JO
_ 1 :
e AT CIERIE LT OIY
2(p+1)r \VO
x—a <|f’(a)|"+|f’(X)q)‘l’+ box (If’(b)|q+f’(x)|q)‘lf
2p+1)7 s+l 2p+1)7 s+l
which completes the proof of the inequality (3.2). O

Remark 3.5. If we choose s = 1 in the Theorem 3.4, then the inequality (3.2) reduces to the inequality of Theorem 5 in [17].

Theorem 3.6. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is quasi-convex on [a,b)], then

fla)+ f(b)
o+ LTI

IN

X—a , v b—x ! !
—— max{|f (@), |f ()} + —= max{| £ (x)[, |f (B)[}

xia/:f([)dt+$/xbf(t)dt}

IN

2 max{| LU (@) L )]}

forx € (a,b).

Proof. From Lemma 3.1, by using the properties of modulus and |f’| is quasi-convex we have

b 1o b
j.(x)+f(a)42rf( ) L_a/a f(t)dt+b7ix/x f(z)dt}
< 0 e s (- apwaats P [ -2l G -
—a —x !
< S5 2w @ T [ 2R mas(f L1 @)
_ , , b— ’ '
= %max{\f (@)l,|f (X)\}+Txmax{|f L @)1}
So, the proof is completed. -

Theorem 3.7. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'|4 is quasi-convex on |a,b] for some q > 1, then

f(x)+f(a);f(b) _ {xiaéxf(t)d1+%ﬁlbf(t)dt}

xX—a
—

2(p+1)r

< max{| ()|, |f' ()|} 7 + Zb% (max{|f'(x)[.]F'(b)|}) 7
p

1)»

where x € (a,b) and % +é =1
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Proof. From Lemma 3.1, by using Holder inequality and | /|4 is quasi-convex on [a, b], we have
b 1 * 1 b
f(x)+f(a);f( )_ [x_a/a f(t)dt+m/x f(z)dz]
— 1 , b— 1 ,
< xza/o 11— 2A[|f (Aa+ (1—2)x)dA| + 2x/0 11— 2A[|f (Ax+ (1= A)b)dA|
< ’“(/lu—zwda);(\f’(xa+(1—x)x)dx|)a
0
' ’ i
(/ |1—2/1\”d7L) (\f’(lx—i—(l—/l)b)d?u)
< ([ maxtir @i >|‘f}d1)
2(p+1 )P
b— .
([ maxtir @i e1an )
2p+1)r VO
— 1 b— , 1
= (max{lf @1 (0)[})* + ——— (max{|f' )%, |f (B)|})*
2(p+1)7 2(p+1)»
So, the proof is completed. O
Theorem 3.8. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is P-convex on [a,b], then
b 1 X 1 b _ / / b— / (b
e OO [ L pars p L [ a| < -l @) 0ol W1l o)
forx € (a,b).
Proof. From Lemma 3.1, by using the properties of modulus and |f’| is P-convex on [a, b], we have
b 1 x
fla+ LELO) [x_a/a £l dr+—/ £(0) dz]
x—a (! , b—x ,
< 5 /0 [1—-2A]f (Aa+ (1 —A)x)dA|+ > /0 [1—2A[f (Ax+ (1 —A)b)dA|
x—a (1 , , / ’
< [;\1—21|Uf(aﬂ*4fTXN] 2L [IF ()] + 1 (B)]] dA
=)l @I+l (b=0)[f @)+ 1f ()]
4 4 '
So, the proof is completed. O

Theorem 3.9. Let f: [a,b] — R be a differentiable mapping on (a,b) with a < b. If |f'|4 is P-convex on |a,b] for some q > 1, then

< T (F @t W) 2
20p+1)r 2(p+1)»

floy+ LAEIE) { = [rwa /bf(t)dt}

xX—a. b—x

where x € (a,b) and % +$ =1

Proof. From Lemma 3.1, by using Holder inequality and |f’| is P-convex on [a,b], we have

< x;a/ol\1—21||f’(/la+(1—/l)x)dl|+b;x‘/ol|1—27L|\f’(lx+(1—l)b)d?t|
—a 1 » 1 :
< (/0 |172;um> (/0 |f’(la+(lfk)x)d/'t\)
—x/ s t
+bT (/0 |1—2/1\Pd/1) (/0 |f’(7Lx+(1—7L)b)d/’L\)
x—a 1 )4 - g
< oo (fwarsrwmna)
b—x q N2 i
Z(,,H);(/ 1@+ 15 @)nar )
= L @)+ (PG )
2(p+1)7 2(p+1)7r

So, the proof is completed.

(B + I (]9
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4. Midpoint Type Inequalities

Lemma 4.1. [17] Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. f' € L[a,b), then the following equality holds:

f(”;x) +f(l”2”“) - Lia/:f(t)dt—kﬁ/th(t)dt} - (x—a)'/o%/l[f’(lx—l—(l—l)a)—f’(?ta—i—(l—/l)x)}d/l

+(b—x) [1 (1= A)[f' (Ax+ (1= A)b) — f/(Ab + (1 — A)x)]dA

forx € (a,b).

Theorem 4.2. Let f : [a,b] C [0,00) — R be a differentiable mapping on (a,b) with a < b. If | f'| is s-convex in the second sense on [a,b),
then

@.1)

r(t3) o (37) - [ Lo 2 [0

25t 1 , 25t , )
= m(b—aﬂf (x)|+m[(X—a)|f (@] + (B =x)|f ()]

forx € (a,b).

Proof. From Lemma 4.1, by using the properties of modulus and | f’| is s-convex in the second sense on [a, b], we have

(43) o (037) [ Lo 2 [

(x—a)/0 Allf (Ax+ (1 =A)a)| +|f (Aa+ (1 —A)x)||dA

IN

+(b—x) [ (1=2)[f Ax+ (1 =)b)|+|f (Ab+ (1 —A)x)|]dA

|— \
(ST
—_

IN

(x—a) /02 AR @)+ (=AY f (@) + A7 f (@) + (1= A)' | (x)[ldA
+(b—x) /1 (=R @I+ (=AY I B)[+ AT F (B)] + (1= A)*| £ (x)[1dA

1
2
25+1 1 2&+1 1

= S el @+

TG S [C-als @+ =217 @)

25t (s 1) (s +2

which completes the proof of the inequality (4.1). O

Remark 4.3. If we choose s = 1 in the Theorem 4.2, then the inequality (4.1) reduces to the inequality of Theorem 6 in [17].

Theorem 4.4. Let f : [a,b] C [0,00) — R be a differentiable mapping on (a,b) with a < b. If | f'| is s-convex in the second sense on |a,b]
for some q > 1, then

4.2)

‘f(aﬂ) +f(b;x) - Lia_/axf(t)dt—i-i/xbf(t)dt}
U+;£Hﬂwa%ifwwy+(ww%1f@wy}

b—x FEE+IFGINT  (1F G+ 0]\

where x € (a,b) and % +é =1
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Proof. From Lemma 4.1, by using Holder inequality and | /|7 is s-convex in the second sense on [a, b], we have

f(cuzrx>+ <b+x> {x* /f dt+7/ e d,} |
Ste-a) (/OZM‘M> [(/ |f(Ax+(1-A)a) ") (/ I (Ra+ (1= A)x)|? )I}
+(b—x) (/ Md;t) {(/ |f (Ax+(1=2)b |‘1> (/ If'(Ab+(1—2)x )\«1) ]

Xx—a st s| gl é st S\| £ %
§<1+p>2”[</° W@+ -2) |f(a>‘f]dk> +</0 7 f(a)"+(1—/1))f(X)l"]d/1> }

b—x % ! N _ N ! %
+(]+p%2% {(/ e Oy N G N ST PRI Y }
(Lerre @I+ )1
1+p { s+1 +< s+1 > }
box (I PG (1 OF I ¢
+(1+p)p2'+p {( s+1 ) +< s+1 ) }
So, the proof is completed. O

Remark 4.5. If we choose s = 1 in the Theorem 4.4, then the inequality (4.2) reduces to the inequality of Theorem 7 in [17].

Theorem 4.6. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is quasi-convex on [a,b)], then

(430 (037) [ Lo L]

= 25 (max{|/ ), | @)1} + max{|f (@), |7 ()]})

+ 2 (max{|f ()], |1 (8)]} + max{| £ (B)], ] (9)]})

forx € (a,b).

Proof. From Lemma 4.1, by using the properties of modulus and |f’| is quasi-convex on [a, b], we have

(03 ) o (3) - [ s g v

(xfa)/o Allf Ax+ (1 =2A)a)|+|f (Aa+ (1 — A)x)||dA

IN

+(b—x) /j(l “DIF (x4 (1= 2)B)] + |f (Kb + (1 — 2)x)[JdA

2

IN

(x—a) /(: Almax{|f'(x)[. |f'(@)[} +max{| f"(a)], /" (x)| }]dA

+(b—x) /11 (1= ) [max{]f'(x)[ |£(b)[} + max{|f' (D), | (x)[}]dA

= 3 < (max{|f' @)L, 11" (@)} +max{|f" (@), f'(x)[})

22 (a1 LU )} + max{l ()] 7 (o)1)

So, the proof is completed. O

Theorem 4.7. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'|7 is quasi-convex on |a,b] for some q > 1, then

(437) 0 (537) - [ [ 2 [0

>~ X—a T [(max{‘f (}C)'q"f (a)|q})q + (max{|f (a)‘q7|f (x)‘q})ﬂ
4(1+p)7
- T [(max{|f( ). 1F(6)|7}) 7 + (max{|f’(b)\‘l7|f’(x)‘q})$]
4(1+p)n

where x € (a,b) and % +é =1
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Proof. From Lemma 4.1, by using Holder inequality and | /|7 is quasi-convex on [a, b], we have

‘f<a+x>+ (bﬂ> LC a/f dz+—/ ()d,} |
: (xa)</ozﬂdl> R/ [f(Ax+(1-2)a) > (/ ' (Aa+(1—A)x ))q}
+(b—x)</ wm) {(/ If (Ax+(1=2)b)| ) (/ b (1— ) )é}

x—a 7 1 . / :
< W[(/ max{|f'(x)|%,|f'(a q}dl) +</ max{|f(a)7f(x)}dl> :|
b—x
+(1+)2[( max{| ()1, If()\q}d/1> (/ max{|f(5)]" |f()|‘1}d/l>}
= — al {(maxﬂf/(xﬂq,\f’(d)l"})é+(max{|f’(a)\q7|f’(x)|q})ﬂ
4(1+p)?
22 (U I D)+ (manll O ) .
41+ p)r
So, the proof is completed. o

Theorem 4.8. Let f: [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is P-convex on [a,b), then

’f(a+x) +f(b;x) - Lcia./(le(t)dt+$./)6bf(t)dt}

< b= )Hf(z)Hlf’(a)I]+(b*X)Hf’(Z)\+|f’(b)I]

forx € (a,b).

Proof. From Lemma 4.1, by using the properties of modulus and |f’| is P-convex on [a, b], we have

(7)o (37 - [ Lo s [ roa]

(xfa)/O Alf Ax+(1=2)a)| +|f (Aa+ (1 —A)x)||dA

IN

+(b—x) /1(1 =M Ax+ (1 =2A)B)|+|f (Ab+ (1 —A)x)||dA

DI—

IA
=

1
2=a) [ AW+ @ldA+26—x) [ (1= DI W]+ B)d2

x—a[lf @I+ @l | E=x)f &)+ B)]
4 * 4

So, the proof is completed. O
Theorem 4.9. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is P-convex on [a,b), then
b 1 x
o(557) 0 (557) - [ o 0]

< <1+),C,)_£1+;7 [(f )@f w) +(|f<a>|q;f<x>|4)q}

L bex l[(f’(ﬂl“f’(b)lq);+(|]"(la)’1+|ﬂ(ac)|q>1

(1+p)r2"* 2 2

where x € (a,b) and % +é =1
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Proof. From Lemma 4.1, by using Holder inequality and | f’|4 is P-convex on [a,b], we have

(5370 (557 [ [ e s L]

< (x- a< ZAP(M) K I (x+ (12 );+</()éf’(la+(l—k)x)q>q
o) [(rmesa-ame) ([ |
< W[(/onf O+ 1 a |m> (/0 s ”
+p;,2 {/[If O£ b mdA) (1 B+ (W) )}
= i [(f N +1f e ) (It w;wxm)g
T {( LRSI (f’(b)l";rlf’(x)l‘f)-'z}
So, the proof is completed. D

5. Simpson Type Inequalities

Lemma 5.1. [17] Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. f' € L[a,b), then the following equality holds:

[2f(a+x) +2f<b+x) +f(x)+w}

[t o]

- (k- a)/ ()L—f)[f(/lxvt(l—l)) F'(Rat(1—A)x)]dA

+(b—x)v/ll (6 —/1) [/ (Ax+ (1= 2)b) — f/(Ab+ (1 — A)x)]dA

forx € (a,b).

Theorem 5.2. Let f : [a,b] C [0,00) — R be a differentiable mapping on (a,b) with a < b. If |f'| is s-convex in the second sense on [a,b),
then

%{2f<a;—x>+2f<b+x>+f(x)+w} 5.1
[t [rwas g1 [ o]
z—s—l(l+5x+2) 1 s—4 ,
< (3s+2(s+1)(s+2) T2 (s 1) (s +2) + 6(s+1)(s+2)) | ()]
277114572 1 s—4 , ,
+<3s+2(s+1)(s+2) T2 (s +2) +6(s+1)(s+2)> (E=a)lf @l +E=2F )]

forx e (a,b).
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Proof. From Lemma 5.1, by using the properties of modulus and s-convexity of | f’|, we have

{2f(“+x) +2f(b;x> +f(x)+w]

[ [ s [ roal

<(r— a)/o2 l—* (1" (Ax+ (1= A)a)| +|f (Ra+ (1= A)x)||dA

+(b—x)/;1 %—/’L [f' (Ax+(1=A1)b)|+|f (Ab+ (1—A)x)||dA

rol—

<—a) [*]2— [P+ (=217 @1+ 20 @)+ (1 - 2717 @ A

1
+(bﬂ6)/l %*/1 A @)+ (1= 2) | F B + A% (B)] + (1= A)°|f (x)JdA
(27 (14512 1 s—4 ,
- (3f+2(s+1)(s+2) TG e12) 6(s+l)(s+2)) £ )l
27s71(1+5s+2) 1 s—4 , ,
(3s+2(s+1)(s+2) T +2) | 6(s+1)(s+2)) (&=a)lf @]+ G =2l Ol
which completes the proof of the inequality (5.1). O

Remark 5.3. Ifwe choose s = 1 in the Theorem 5.2, then the inequality (5.1) reduces to the inequality of Theorem 8 in [17].
Theorem 5.4. Let f : [a,b] C [0,00) — R be a differentiable mapping on (a,b) with a < b. If | f'| is s-convex in the second sense on |a, b

for some q > 1, then
%{zf(a—l—x)+2f(b+X)+f(x)+f(a)+f(b)} .2)

| o [ 0al]
- utf;Lﬁl6LJLKV“%If@WY+(mmfIy@WY]

] () ()]

where x € (a,b) and % +% =1

Proof. From Lemma 5.1, by using Holder inequality and | f’|9 is s-convex in the second sense on |a,b], we have

() () e 320
[t o
S(xa)<0£lé' ) K/ (Gt (1— A)a) > +</ 1 (Rat (1 A)x )ﬂ
s (i) [(frmesamme) (oo o) |

1 1 1

»
St

X{(x—a)[(/Oz[lslf’(X)l‘“r(l—l)‘lf’(a)q}d7t> (/ AL @+ (1= ) f (x Wﬂ

o) K/;l RLF 07+ (1 fA)SIf’(b)\qW’L) "+ ( W@+ -2 '(x)m‘”) ] }

Tt [ +%} (|f’<x>\;fﬂf’<a)|q>% . (If’(a)Zﬂf’(X)lq)é}

i <1b+,:;: o+ 6,3“}'% [('f'(x)iilf’(b)'q>‘l’+ (If’(b)ZIlf’(x)qu} |
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So, the proof is completed. a

Remark 5.5. If we choose s = 1 in the Theorem 5.4, then the inequality (5.2) reduces to the inequality of Theorem 9 in [17].

Theorem 5.6. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is quasi-convex on [a,b)], then

5 [2f <“;x) +2f(b“) +f)+ M}

3 2
[ o

< D (max {1 W1 (@)} + max (1 (@)1 0)])
#2029 (a1 B)} + max{ | ()] | (1)

forx € (a,b).

Proof. From Lemma 5.1, by using the properties of modulus and quasi-convexity of |f’|, we have

% {2]” <aT+x> +2f<b¥> @)+ f(a);f(b)}
[ [ 2 [ o]

(xfa)/o%

+(b_x)/1] ‘% —JL‘ [f (Ax+ (1=2)b)|+|f (Ab+ (1 —A)x)[]dA
2

uf@A%

=) |2 A maxtlr WL 6+ man(l @)1 ) o

IN

A g I s (1= D) 1 (st (1~ )

IN

A- é‘ (max{| /' (x)[, |f'(@)[} +max{|f"(@)], /" (x) | }]dA

= 2D (a1 LU @)+ max{ I @) 1)
22 (man (11 U B} -+ max{[ £ L1 1)
So, the proof is completed. O

Theorem 5.7. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'|4 is quasi-convex on |a,b] for some q > 1, then

% {2f<“;x) +2f(b;rx> +f(x)+w]

_ {xia/axf(t)dt—kblfx/xbf(t)dt}

ﬁ [—3,,31 } " [(maxtl @I, 17 @13)F + (max{l @1 1 (1)) 7]
p)’

b—x 2 v NG A g NN
Y {rm} [(max{1f QI 17 (1)) 7 + (max {1 (B)1 1 (1)) 7

where x € (a,b) and % +é =1
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Proof. From Lemma 5.1, by using Holder inequality and | f’|¢ is quasi-convex on [a, b], we have

{2f<a+x>+2f<b+x> +f(x)+w}
- Lﬁ /:f(t)dt+%/bf(t)dt]

<xa>< !
JO
22

1
R

é” ) K/ Ot (1= /l))) +</ ' (ha+(1— l)))q}
+(b7x)</;2 ) [(/ 1 x4+ (1= 2)b) ) +</ 1 (Ab+ (1 A)x ))l}
1 { 1 +Lr
(1+p) 3p+l (Y&

x {(xa) {( I max{lf/(xmf’(a)q}dx) "+ < [ max{f’(aw,f/(x)q}dx) }
(b {(/l max{lf WL G)an )+ ( [ maxr o) ) } }

IN

IN

2
1

ey (3| [t @)+ maxtir @i win
p)!
T [t sl @I Gl o+ (maxtlr @)1, )
p P
So, the proof is completed. O

Theorem 5.8. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If | f'| is P-convex on [a,b], then
{2f<a+x> +of (b-‘rx) )+ f(a)-;f(b)}

_ Lﬁ /:f(t)dt—i— b—ix/ff(t)dt}

< Se=alF @I+ @] 5E=D)1F G 11 @)l
= 36 36

forx € (a,b).

Proof. From Lemma 5.1, by using the properties of modulus and the fact that | f’| is P-convex on [a,b], we have

{2f(a+x> +2f(b+x> +f(x)+f(a);f(b)}

~ [xia/;f(;)dwb—ix./xbf(z)dz]

(x—a)/7 ’A - 1’ (If Ax+ (1= A)a)| + |f (Aa+ (1 — A)x)[JdA
0 6

IN

+(b7x)/ll ‘% 7/1’ [/ (Ax+ (1= 2)B)|+| £ (Ab+ (1= A)x) |dA

IN

2 [ 1= g @i @ian+ 262 |22 e+ ella
2
St allF L @], 6l B) 51
36 36 ’
So, the proof is completed. O

Theorem 5.9. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If || is P-convex on [a, D] for some q > 1, then

{2f(a+x) +2f<b;rx) +f(x)+w}

— Lia/:f(t)dw%ﬁ/xbf(t)dt}
T B IF [(If’(X)Iq;f’(a)l‘f);+ (|f'<a>q;|f'<x>|4)i]

gy [ (e (e |

IA
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where x € (a,b) and%—ké =1

Proof. From Lemma 5.1, by using Holder inequality and | f/|4 is P-convex on [a,b], we have

() e (2o S5 e L]

(x—a) (/0é A— é’im) ’ (/0é |f’(7Lx+(17L)a)”> i </0£ |f'(la+(l/l)x)"> '
+(b—x) (_/;‘%—A

pdl) | K/; i Mb)lq) % ’ </11 If' (Ab+ (1 —A)x)\q) ;}

1
1 1 1 ]»
(1+[7)% 3p+l + 6P+

IA

IN

1 1

x4 (x—a) </(;Z[f’(X)q+|f'(a)q]d7L> "+ </02 [f’(u)l"+|f'(X)"]d7t>

Loy {( IALCEICITY i (J vr@rirwma) ﬂ }

- 1F{(If’(X)”f’(a)|‘1>‘}+<|f’(a)"+f’(X)I‘f)‘q

(14p)p L3717 67F1 2 2

+(1b+;p) [+ 6]”% [(f/(x)q;v'(b)q) ", <|f'(b)q;|f/<x>|q>5} |

So, the proof is completed. O
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