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ABSTRACT. In this paper, we introduced nonstandard finite difference scheme (NSFD) for solving the
continuos model with Michaelis-Menten harvesting rate. We have seen that the proposed scheme preserves
local stability and positivity. Stability analysis of each fixed point of the discrete time model has been
proven. Also, numerical comparisons were made between the nonstandard finite difference method and
the other methods.

1. INTRODUCTION

Mathematical modelling is the most effective method to find solutions of the real world problems.
Increasing number of studies on mathematical models in ecological models are very important issue to
explain the dynamics of these [1,2]. Predator-prey interactions can be seen as the building blocks for
ecological structures [3]. Predator-prey models have been studied since 1925 when mathematical model
was propounded independently by Lotka and Volterra [4,5]. The Lotka-Volterra model is used in ecology
and population dynamics of animal species. These models consider only four factors such as prey
population size, predator population size, death rate of predator and conversion rate. These four rates are
also linear. Actually, predator-prey interactions do not depend only these four factors. In general, some
researchers have worked on various methods to solve nonlinear systems. EI-Dib et. al. suggested a different
scheme to modify the homotopy perturbation method with three expanded expansions [6]. They also finded
attractive results for the accuracy of the method. In the model presented by Clark [7], the predator-prey
harvesting depends on the predator density that grows logistically. Furthermore, the predator density is
expressed with Holling Type I model with functional response [8]. Chaudhuri, Kar discussed a same
situation but they used Holling Type II model with functional response [9]. Holling Type models with
functional response have been introduced by Holling [10,11]. The functional response on these models
depend on only the prey density. However, according to the Arditi and Ginzburg, the functional response
may be depend on both prey density and predator density [12].

One of the functional response model is the ratio dependent model. The standard model that depend on
prey shows “paradox of enrichment” and it is also called “biological control paradox”.
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Whereas, the ratio dependent models do not produce neither the enrichment paradox nor the biological
control paradox [13, 14]. There are most interesting dynamics near the (0,0) point for this type models [15].
Xiao and Ruan [15] and Berezovskaya et. al. [16] observed that there are different types of topological
structures around the root of the ratio dependent models. Also, Jost et. al [17] has denoted that the
equilibrium point may either be a saddle point or an attractor for ratio dependent models. Though ratio
dependent hypotheses cause hot discussions, a recent study by Jost and Arditi has showed that ratio
dependent and prey dependent models are in good agreement with each other’s time series [17]. In
addition, Hsu [18] defend an idea that ratio dependent models are more sophisticated and flexible.
Biologically, simulations and local stability analysis show that ratio dependent models produce richer and
more suitable dynamics [19].

The aim of this article is to analyze the stability of equilibrium points in a ratio dependent system where
predator density is subjected to harvesting with Michaelis-Menten type harvesting rate. Harvesting in the
model can be two fold. The main purpose is the exploitation of the harvested reserve to increase the profit
[20]. However, some researchers assumed harvesting from ecological perspective [21]. Michaelis-Menten
type functional form of the catch rate h(t) is given as:

qaEy

h(t) = ——-,
© bE + ly

where q is the catchability coefficient, E is the external effort dedicated to harvesting and b, [ are positive
constants [20].

We are considered the following ratio dependent system where predator density is subjected to harvesting
with Michaelis-Menten type harvesting rate in [20]:

dx x axy
E:(l_E>rx_ay+x'

dy  abyxy qE,
dt ay+x oY bE + 1y’

where x(t): prey population size (time dependent), y(t): predator population size (time dependent), a: the
maximum prey consumption rate, r: the internal growth rate of the prey, dy: the death rate, a: the half-

saturation constant, by: the conversion efficiency of the predator.
!

Ky' . .
Yt = % in equation (1)

7
a

The parameters in equation (1) are supposed to be positive. Taking x = Kx', y =

we can rewrite the following system:

dxl_ ’(1 ,) xlyl
e~ NS T Ty

(2)
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!

d_y’ Box'y’ , Eyy

dt’ =x’+y’_yoy _E’+y"

2

a“qE adg ' abE
— E p— :

axt’ Y0 a’ Kl

ar
where a, = = Bo = aby, Ey =

We rewrite equation (2) by changing t',x’,y' by t, x, y respectively:

dx a ) xy
dr -~ %X x x+y’
)
d_y _ Boxy _ _ Eoy
dt x+y Yo¥ =g +y’

For convenience, we change the independent variable t to (x + y)t" and replacing t" by t, equation (3)

becomes:
dx
— =qox(1—x)(x +y) —xy,
dt
4
dy Eqy(x +y)
E—ﬁox}’—)’oﬂx‘ﬂ’) _E’—+y'

In this work, the nonstandard finite difference scheme (NSFD) that defined by Mickens [22] has been
developed for a ratio dependent model and stability analysis of the discretized system has been investigated
using [23-25]. By using NSFD methods, it is aimed to find positive discrete solutions. However, numerical
methods like Euler, Adams and Runge-Kutta can be used to examine the population dynamics. The most
disadvantage of these methods are that their stability depends on the time step size. Whereas, nonstandard
finite difference scheme preserves local stability of the equilibrium with arbitrary time step sizes [26]. By
using nonstandard finite difference scheme, the arbitrary step size selection simplifys the solution of the
problem [27]. In other advantage of these scheme is to protect the main features of the continuous model
and therefore it gives dependable numerical results [3]. Bairagi et. al. [28] used standard Euler method and
nonstandard finite difference method to compare their dynamic properties. Shokri et. al. [29] presented two
NSFD methods based on Micken’s rules to solve mathematical model of the Rosenzweig-MacArthur model.
It can be seen that the new proposed method has special feature such as stability and positivity. Also, it is
worth mentioning that nonstandard finite difference method has many computational advantages over
conventional methods [30].

The article is arranged as follows: Part 2 deals with the existence and local stability analysis of equilibrium

points. Numerical simulations are shown in part 3. The work ends with the summary of conclusion in part
4.

2. STABILITY AND EXISTENCE ANALYSIS OF THE EQUILIBRIUM POINTS

Definition 2.1. Nonstandard finite difference method is based on two basis. These are analyzed as follows:
o
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dz _ Zg+1 T Zg
. o(h)

where @(h) = h + 0(h?).
(ii) both nonlinear and linear terms may need a nonlocal representation on the discrete computational case
[25,31].
Constructing a numerical perspective for equation (4), we discretize the time variable at t,, = nh, t (t = 0)
where h (h > 0) is the time step size.
x(t) and y(t) at points t,, are shown with x,, and y,,. To present stability analysis of the discrete time model,
the continuous nonlinear differential equation (4) will be discretizated respectively as follows:

XX, YOV X2 NXpyrs XY 2 Xep1Vis

and

VX 2 Yr41Xksr XY = XgVis 3’2 = Yk+1Vk-

Thus, positive solutions of the discretized model can be obtained. By using nonstandard finite difference
scheme for equation (4), we can write the following discrete model with ratio dependent functional

response:
Xk+1 — Xk
:rp(—h) = —Xp1 Vi + Ao (X + Vi) (X = Xpe1) X,
6)
Ye+1 — Vi EoYi1 (Ve + xx)

’

o) Boxiyx — Wk + X )VoYVk+1 — E +y,
where @ (h) depends on the step size At = h and it is called denominator function. It can be seen that how
to find arbitrary choice of denominator functions in [24,25,26,27,31]. Let us indicate h; = @(h).

If x) 4+, and y, 4 are solved from equation (5), following iterations can be obtained:

(1 + hagxy + haogyi)xk
[1+ hyaox, (Vi + x,) + Ry Y]

Xk+1 =

(6)
(1 + hyBoxi)yi(E' + yi)
(14 hvoO + %)) (E' + yi) + i Eo (v + x3)]

Vi+1 = [

It is easy to find that equation (6) has two boundary fixed points: Ef = (0,0), E; = (1,0). Besides those
boundary fixed points, equation (6) has also positive equilibrium E; = (x*, y").

We take x;,,1 is equivalent to x;, and then:

(1 + hyaoxy + hyagy)xk

x = =Xy,
T+ hyaox, (v + x0) + Ry .

QoXp + XYy = AoXpXy + XXy Vi + Vi -
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Similarly we take y,,1 is equivalent to y, and then:

(1 + hyBoxi )y (E" + yi)
(1 + hyyori + %)) (E" + yi) + hEo (i + x3)]”

Vi+1 = [

Boxk (E" + yi) = (E" + yi)vo i + x1) + Eo(yk + xi) -

So fixed point (x*,y") is satisfying:
apx* + agy” = agx*x* + apxy* +y7,
and
Box"(E'+y") = (E' +y)yo(y" +x) + Ec(y™ +x7) .

If we want to organize the local stability conditions, we can write the Jacobian matrix of equation (6) as the
form:

OXpr1  OXpyr

oxy Yy
Vi1 OVka1
0xy Oy

J(x,y) =

where
[(1 + hyaoxy + hyaoyy) + hiaexi][1 + O + yi )by apxy + by ]
[1+ G + yi)hiaoxy + hyyi]?
[2hyaox) + hyiagyilx (1 + hyaoxy + hyaoyy)
[1+ Cox + yidhiaoxy + hyyi]?

J11 G i) =

’

_ [hyaoxp][1+ (g +yE)hiaoxg+haye]—[h@oxg +halxg (1+hyaoxg+hiaoy)
J12(X, Y1) = ,

[1+(xg+yr)hiaoxg+hyyi]?

(R Boyic (E" + yi)l[(1 + havo (ke + %)) (E' + yie) + by Eg (i + x1) ]

[(1 + hyvo O + x))E' + y30) + hy B + x0)]°
[A1Yo(E" + yi) + hiEg](1 + hy Boxi) Vi (E' + yi)

[(1+ hyyo e + %)) E' + Y1) + hEo e + x0)]”

J21 (X, yi) =

and

[(1+hyBoxi) (' +yi) +yi(1+h1 Boxi)] % [(1+h1vo Wr+x1)) (B +y1) +ha Eo Ve +x1)]

(1+h1 Yo Wi +x10) E'+yi) +ha Eo Wie+xid)]”  [(1+havo Wi+ x10) B +v10) +ha Bo Wi +x1)]

_ [havo (B +yi)+(1+havoWr+xp)) +ha Eo] (1+hy Boxi)yk (B +yk)
[(1+h1Vo(Yk+xk))(E’+J/k)+h1Eo(Yk+xk)]2 .

J22 (X, vie) = [

Lemma 2.1. We suppose that 4, and 4, are two roots of the Jacobian. Thus the following descriptions are
given:

i) The fixed point of J(x*,y™) is called stable (sink) fixed point, if |4; | <1 and |4, | < 1.

ii) The fixed point of J(x*,y") is called unstable (source) fixed point, if [A; | > 1 and |4, | > 1.
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iii) The fixed point of J(x*, y*) is called unstable (saddle) fixed point, if |4, | <1 and |4, | > 1
(or A4, |>1 and |4, | < 1).
iv) The fixed point of J(x*, y*) is called non-hyperbolic fixed point, if [, | =1 or |4, | =1 [32].

Theorem 2.1. E = (0, 0) is a nonhyperbolic fixed point.
Proof. The eigenvalues of Jacobian are |4, | =1 and |4, | = 1 and then E; = (0, 0) is called nonhyperbolic
fixed point.

Now we search the other fixed points.
Using that agx;, + @y, = XXy + QXY + ¥ and the fact that y, = 0, we can obtain x; as follows:
QoXy = AoXp X
x =1

Theorem 2.2. Letay >0, yo >0, B, >0, E; >0, E' >0and h; > 0.

i) E;(1,0) is asink if By —y, < % for Sy > v, and locally asymptotically stable.
ii) E;(1, 0) is not a source.

iii) E5(1,0) is a saddle if By — v, > % for By > y, hence unstable.

iv) E5 (1, 0) is non-hyperbolic if By — v, = % for By > v, -

1 o
. * . 1+hiag 1+hiag
Proof. The Jacobian of E;(1,0) is equal to (L+h1o)E"
((1+h1¥o)E"+h1Eq)
!
The eigenvalues of Jacobian are 1, = S , Ay = M .
1+hiag ((1+hqyo)E'+h41Ep)

i) |A; ]| <1since hyay >0and 1 <1+ hyaq for hy >0, ay > 0.

|1, | < 1 since By—y, < % for By > v,.
ii) Since |4, | is always less than 1 for h; > 0, ay > 0, the second condition of Lemma 2.1 is not provided.
Thus E;(1,0) is not a source.
iii) From the third condition of Lemma 1, |4; | <1 and By—y, > % for By > vo, E;(1,0) is a saddle and
hence unstable.
iv) From the fourth condition of Lemma 1, except in case of fSy—y, = % for By > vy, one of the eigenvalues

of J(E3(1,0)) can not be —1 and 1.

Lemma 2.2. For 2% —tr (](x*,y*))/'l + det(](x*,y*)) =0 and both roots satisfy [4;| <1, i =1,2 if the
following conditions are satisfied [15].

1. 1+ det (](x*,y*)) + tr(](x*,y*)) >0,

2. 1+ det (](x*,y*)) - tr(](x*,y*)) >0,

3. det (](x*,y*)) <1.

Theorem 2.3. E; = (1, 0) is locally asymptotically stable if all situations of Lemma 2.2 hold.
Proof. Eigenvalues of ] (Ez* 1, 0)) are roots of

A2 +det J(E)A—tr(J(E)A =0
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where
T CED) 2E' + hYoE + hEy + hiBoE' + hiagE' + h2ayfyE’
r =
2 (1 + hyap)((1 + hyyo)E' + hyEy)

and

(1 + hyap)((1 + hyyo)E' + hyEy)

det(J(E3)) =

tr (](Ez*))(O) =2 and det (](E;))(O) = 1 which refers that there exist constants A(Eg) > 0 such that 1+
det tr (](E;)) (hy) +tr (](E;))(hl) >0forall0 < h; < A(E;). After some calculations as below:

1+ dettr (J(E3))(hy) + tr (J(E3))(hy) >0 & Ph? + Rhy + 4E' >0

where P = agyoE' + apEy + agfoE' and R = 2E, + 2y, E' + 2a,E’ + 2B,E'.
Therefore, /T(E;) can be selected as follows:

24/ |E’
ZIE] R—0
|P|
~ 4E’
min ﬂ w otherwise
[P]" |R] '

Suppose that Ej; is a stable fixed point of system (5). Then,

h
(1+hyao)((1+h1¥o)E' +h1Eg

1+ det(J(E3)) —tr(J(E3)) = )(aoyOE’ + aoEy + agfyE") > 0

and situation (2) of Lemma 2 holds. The last situation is equal to:

hiBoE" — hyYoE' — hEy — hyaoE' — h%a’o)’oE' - h%aoEo

det(J(E;)) — 1= <0
UED) @+ haao) (L + hayo)E + hyfo)
2 ( —aoYoE' — akEy > ( BoE" — voE' — Ey — aoE’ )
'\ + hyao) (X + hyyo)E' + by Ep) '\ + hyag) (X + hyyo)E' + by Ey)

<0. €))

The inequality (9) is true when hy < A

!
|[—aovoE —agEo|
|BoE' =voE'—Eq—aoE'|

Therefore, if h; < min(A;s), Ag;) conditions (1), (2) and (3) of Lemma 2.2 hold and E; is a locally

where Az =

asymptotically stable.
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Theorem 2.4. The fixed point E3(x*, y*) is locally asymptotically stable if whole situations of Lemma hold.

Proof. Using the equations agx* + ayy* = apx"x* + apx*y* + y* and
Box"(E'+y*) = (E' + y)yo(y" + x*) + Eo(y" + x7) , the Jacobian J(x*,y") = J;;(x",¥")2x, can be obtained
as:

14 2hyapx* + hyagy* — 2hyaox*® — hyapx™y*

Juhy™) = 1+ hjaox* + hyagy* ’
( « *) _ hlaox* - hlaox*z - hlx*
S5 y7) = 14+ hjaox* + hyagy*
ey hiBoy*(E" +y*) — hyyoy (E' +y*) — hiEpy”
Joa(x™y") =

[(E"+y*) + hiBox*(E" + y*)] '
and

T (' y") = E'+y" + hifox™(E'+ 2y") — hiyoy (E' + 2y" + x*) — hyEyy”
e [(E" +y*) + hyBox* (E' + y*)] '

Eigenvalues of J(x", y*) are roots of the equation in Lemma :

2E" + 2y* + 2hy Box*E" + 3hyBox™y* + 3h apx E' 4 3hyaox*y* + 3h2a,Lox 2E’
(1 + haox* + hyagy")[(E" +y*) + hyfox*(E' + y*)]
N 4h3aoBox 2yt + 2h2aoBox y E' + 3h2ayox*y*? + 20, By E' + 2h,ayy*?
(1 + hyaox* + hyaoy*)[(E' + y*) + hy fox*(E' + y*)]

2R aox*2E" 4 2hyaox 2 y* + 2R3 aofox*2E" + 2R3 aofox ™yt + hyagx*y*E’
B (1 + hyaox* + hyaoy*)[(E' + y*) + hy fox*(E' + y*)]

hiaox"y*? + hi*aoBox "y E' + hyatoBox™*y"? + hyyoy"E' + 2hyvoy*? + hiyox'y®
- (1 + hyaox* + hyagy)[(E" +y*) + hyfox*(E' + y*)]

hiEgy* + hiagyox"y E' + 2h3agyox"y™? + by aoyox"?y” + hi*aoEox"y” + hiagy,y™*E’'
B (1 + hyaox* + hyagy)[(E" + y*) + hyfox*(E' + y*)]

2R3 ayyoy*® + hiagyey™® + hi’agEey™”

T A+ hyaox + hyagyI(E +y*) + hyfox* (E' + )]

tr(J(E5)) =

and

det(](E*)) _ E'+y" + hifox"E" + 2h, fox"y" — hyyoy'E' — 2h1}/0y*2 - h%l’ox*y* - h%yox*y*z
: (1 + hyaox* + hyagy)[(E' +y*) + hyfox*(E' + y*)]
N 2h aoxE' — hyEgy* + 2hyaox*y* + 2h2aoBox ™ *E' + 4h2a,Pox*2y* — h2x*Eyy*
(1 + hyaox* + hyaoy*)[(E' + y*) + hyfox*(E' + y*)]
N hiaoy E' — h%aoyox*y*E’ - 4h%a0y0x*y*2 - thaoyox*zy* - hfaoon*y* - h%aox*y*z
(1 + hyaox* + hyaoy*)[(E' + y*) + hyfox*(E' + y*)]
" h1aoy*2 + h1ZQOBOX*y*2 - hlao)’oy*zE’ - Zhlao)’oy*3 - hlzc’-’oEoy*2 - 2]11C¥035*2E’
(1 + hyaox* + hyaoy*)[(E' + y*) + hyfox*(E' + y*)]
N 3R2ayyox* iy ® — 2h2agx*?y* — 2h 2 aBox* E' — 4hy 2 agBox*3y* + K2agyox 2y E’
(1 + hyaox* + hyagy)[(E' +y*) + hyfox*(E' + y*)]
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N R2agEgx**y* + 2h 2 agyox™>y* — hyaox*y*E' — h3aoBox*?y** + h2ayy,y *x*E’

1+ hyaox* + h1aoy*)[(E' +¥*) + hyfox*(E' + y*)]
N 2R3 agyox Y™ + R2agyox 2y % + hy 2 agEgx*y*? + hy*Box y*E' + hy*Box*y** — hyagx*y*E’
(1 + hyaox* + hyagy)[(E' +y*) + hyfox*(E' + y*)]

tr(J(E3))(0) = 2 and det(J(E3))(0) = 1 which refers that there exist constants K >0 such that 1+
tr(J(E3))(hy) + det(J(E3))(hy) > 0 forall 0 < by < Kgy).

We require to find the constants Kz, .

1+ tr(J(E5))(hy) + det(J(E3))(hy) > 0 & BhZ + Chy + 4E' + 4y* >0
where
B = 6ayBox**E’ + 9aoBox 2y + 3aoBox Y E' + 5aoBox*y*? — 4ayfox* E — 6ayBox* y*
—aoﬁox*zy*E’ —2apYox Yy E' — 60-’0)’035*3’*2 - 3“0]’095*23’* — 2a0Eox"y" — Zaoyoy*zE'
2000y — ao¥ox"y*? — 2a0Eoy™? + agyox Y E' + dagyox ty™? + agEgx ty* +

[)’Ox*y*z+2a’0y0x*3y* - aoﬁox*zy* + aoyoy*zx*E' + 2aoVox*y*3 + aoon*y*2 + Box"y E' — Eogx™y"-

YoX'yE' = yox'y*’
and
C = 4Byx*E' + 6Box*y* + 6agx*E' + 6aox*y* + dagy*E' + 4ayy*? — dagx*’E' — dagx**y* — 2a0x*y*E’
—2a0x"y"? — apPox*y"? = 2y0y E' — 4yoy*? — 2y0x"y" — 2Egy” — 2a0yoy"’

Thus, Kz can be selected as follows:

2JIE'] + 2/ |y*] C—o
VIB]
~ 4E' + 4y*
K(E;) =< T » B = 0
C| 24|E"| + 24/|y*
in (%,%) ,otherwise

Suppose that E3 is a stable fixed point of system (6). Then,

%2 %

V) _ * 2 (@oBox” 2y* —aoBox*y*E' —aoBox y*? —2a0Box* y* +aoBox* y* E’
L+ det(](ES)) tr(](ES)) hi (A+hyagx*+hyagy*)[(E'+y*)+hy Box*(E'+y*)]

2C(o)/oy*3 - aoVox*y*2 - aoyox*zy* + aoyox*zy*E' + 4’(10)/095*2}’*2

(1 + hyagx* + hyagy)[(E" + y*) + hyfox*(E' + y*)]
aoEox™?y" + 2a070xy" — aoBox" 2y + agvoy x"E’ + 2a0yox"y"?

(1 + hyaox* + hyagy)[(E" + y*) + hyfox*(E' + y*)]

Boxy E'+Bx"y"2 + agBex™y*? — yox"y E' — yox"y*2 — Egx"y®)
1+ hlaox +haoy)[(E' +y*) + h1ﬁox (E"+y9)]

+hy (apx™y* 2+ aoﬁox*z 2 - 2“0]’03’ - aox*y*z) >0
(1 + haox* + hyagy)[(E" + y*) + hyfox*(E' + y*)]

and condition (2) holds. The last condition is equal to:
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hiBox*y* + hyaogx*E' + hyaox*y* + h3aoBox**E’ + 3h2aoBox**y* — hy*Eygx*y*
(1 + hyaox* + hyaoy*)[(E' + y*) + hy fox*(E' + y*)]
—hiyoy'E' — 2h1}/0y*2 — hyyox'y" — hEgy" — hiagyox ™y E' — 4h%aoyox*y*2
(1 + hyaox* + hyaoy*)[(E' +y*) + hy fox*(E' + y*)]
_Zh%aol’oxﬂy* — hiayEox"y” — h1“01’0y*2E’ - Zhlc’-’o)’oy*3 - hlzaoEoy*z
(1 + haogx* + hyagy)[(E" +y*) + hfox*(E' + y*)]
—2hyagx*y* — 2R aoBox* E' — 4h2apBox*y* + hylagyox Y E' + 3h12a0yox*2y*2

det(J(E3)) —1=

(1 + hagx* + hyagy)[(E" + y*) + hifox*(E' + y*)]
+h2agEgx* 2y + 2h, 2 agyox 3y — hiaox ™y E' — K2 ayBox™y*? + hiayy,y 2 x*E'
(1 + hagx* + hyagy)[(E" +y*) + hfox*(E' + y*)]
+2hiaoyox"y*® + hiagyox"’y"? + b *agEgx"y*? + hi*Box"y E' + hy* Box"y*?
(1 + haogx* + hyagy)[(E" +y*) + hfox*(E' + y*)]
—Zhlaox*zE’—hlaox*y*z - hlzyox*y*E' - h12)/ox*y*2 - hlzao[)’ox*y*E'
(1 + hyaox* + hyaoy*)[(E' +y*) + hy fox*(E' + y*)]

det(J(E3))—1<0

h%(“oﬁox*zE’ + 3aoﬂox*z}’* — Egx"y" — agyox"y'E' — 4“0)/095*37*2 - 25(0)/095*2}’* — aoEox’y”
(1 + hyaox* + hyaoy*)[(E' +y*) + hy fox*(E' + y*)]
—2a,Box"’E’ — 4aoox"’y" + aoyox "’y E' + 3agyox 2y + agEgx"?y" + 2a0vox"’y" — agfox’y”?
(1 + hagx* + hyagy)[(E" +y*) + hfox*(E' + y*)]
2a0Y0x"y"* + agyoxy*? + aoEox"y"* + Box "y E' + Box"y"* — yox "y E' — yox"y"*
(1 + hagx* + hyagy)[(E' +y*) + hfox*(E' + y*)]
_Ov’oEoy*2 + aoyox*y*zE' — aopfox"y*E")
(1 + hyaox* + hyaoy*)[(E' +y*) + hy fox*(E' + y*)]
o, Py + QXE + aoxy” —yoyE 2y0y"* = ¥ox"y" = Eoy* = aoyoy™E' — 2a5y0y "’
(1 + hyaox* + hyaoy)[(E' +y*) + hy fox*(E' + y*)]
—ox Y E' — 200x**E' — agx*y*? — 2ax**y")
(1 + hyaox* + hyaoy*)[(E' +y*) + hy fox*(E' + y*)]

The above inequality is true when h; < K ) where K ) = % and
M = aoﬁox*zE, + 3“03035*23’* — Eox™y" — agyox"y'E' — 40-’0)’09‘*3’*2 - Zaol’oxﬂy* —aoEgx"y" — 20‘-’03035*3E’
- 4“03095*33’* + aoyox*zy*E' + 3“0)/095*237*2 + aoon*zy* + Zaol’ox*3y* - aoﬂox*zy*2

+ 2a0y0x" Y™ + aovox 2y + agEox" Y + Box Y E' + Box"y*E — yox Y E' —yox"y*?

— aoEoy*? + agyoy ’E' — aofox "y E’

N = Box™y" + aoX"E' + aox™y" — VoY E' — 2voy™> —¥ox™y* — Eoy”" — ao¥oy *E' — 2aoyoy™> — aox"y'E’

2 2 2
—20ox*E' — agx*y*" — 2aqx*“y*

Therefore, if hy < min(K ), K(g;)) , all conditions of Lemma hold and E3 is a stable.
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3. NUMERICAL SIMULATIONS

In this part, parameters are chosen: a, = 0.5,y = 0.16, y, = 0.1 ,E' = 0.05 and E, = 0.001 [20]. These
parameters provide the conditions of Theorem 2.2, 2.3, 2.4, 2.5. Table 1 and Table 2 present the effect of time
step size on Theta method (for & = 1) and NSFD scheme for E, = 0.001 and E, = 0.004, respectively. It is
seen from Table 1- 2; the nonstandard discretization is more effective than the classical method for bigger
step-size. In Figure 1(a), it can be seen that, E7 (0, 0) is a nonhyperbolic, E;(1, 0)is a saddle and the interior
fixed point E3(x*,y*) is an unstable focus for E, = 0.001 at the equation (6). If the parameter value of Ej is
increased from 0.001 to 0.0022, not changing other parameter values, some trajectories go to (0, 0) and some
creates limit cycle (Figure 1(b)). If we again change the parameter E, from 0.0022 to 0.004, keeping other
parameter values unchanged, E;(0,0)and E3(x",y*) are stable. That's way, the system exhibits bistability
(Figure 1(c)) and some trajectories go to (0, 0) and some converge to the interior fixed point. If we again
increase the parameter value of E, from 0.004 to 0.005, the system exhibits tristability (Figure 1(d)). Here,
some trajectories go to (0, 0), some converge to (1, 0) and some converge to the interior equilibrium, attached
on the initial values. A further increment in E, from 0.005 to 0.01 keeping other parameter values unspoilt,
E7(0,0) and E;(1,0) can be fined stable fixed point and the system exhibits bistability (Figure 1(e)). It is
observed that some trajectories go to (0, 0) and some converge to (1, 0). If we increase the parameter value
of E, from 0.01 to 0.05, not changing other parameter values, all trajectories converges to (1, 0) (Figure 1(f)).
Because, only the fixed point E;(1, 0) is stable and the system exhibits monostability. In Figure 2, the graphs
of x and y solutions are drawn respectively for values of E, = 0.001, E, = 0.0022, E, = 0.004, E, =
0.005, E, = 0.01, E, = 0.05 in different initial conditions. Also, the phase portrait of equation (6)
corresponding to different E, and the same initial conditions (0.3, 0.159) is drawn in Figure 3. In Figure 4,
the phase portrait of the equation (6) using NSFD for different E, at the same initial conditions (0.3, 0.159)
is drawn. In Figure 5, the phase portrait of the equation (4) using RK4 for (a) : E, = 0.001, (b) : E, = 0.0022,
(c) : Eg =0.05, (d) : Ey = 0.01at the same initial conditions (0.3, 0.159) is simulated. The phase portrait
drawn using NSFD is compatible with the phase portrait drawn using RK4 (Runge-Kutta 4th order
method). As in [33,34] it was seen that this method gives accurate and convergence results for very small h.
In all calculations with NSFD, the denominator function is selected as
hy = @(h) = (e*" —1)/a, and h = 0.01
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h Theta method (6=1) NSFD scheme

0.000000001 Convergence Convergence

0.00001 Convergence Convergence

0.001 Convergence Convergence

0.01 Convergence Convergence

0.03 Convergence Convergence

0.09 Convergence Convergence

0.1 Divergence Convergence

011 Divergence Convergence
0.15 Divergence Divergence

TABLE 1. Effect of time step sizes on the numerical methods for E, = 0.001

h Theta method (6=1) NSFD scheme

0.000000001 Convergence Convergence
0.00001 Convergence Convergence
0.001 Convergence Convergence
0.01 Convergence Convergence
0.03 Convergence Convergence
0.1 Convergence Convergence
0.3 Convergence Convergence
0.35 Divergence Convergence

0.4 Divergence Divergence

TABLE 2. Effect of time step sizes on the numerical methods for E, = 0.004

4. CONCLUSIONS

In this study, we used nonstandard finite difference scheme to discretize the system with Michaelis-Menten
harvesting rate. It was shown that solutions are positive for all positive initial values. The stability of
equilibrium points was investigated to prove their stability features are same for both the continuous system
and the discrete system. The qualitative results were given in Table 1-2 to show the effectiveness of NSFD
schemes. Also, numerical simulations of the model are presented. According to us, NSFD schemes can also
be studied for fractional order competitive system in the future.
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