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ABSTRACT: Generalized Kudryashov method (GKM), which is one of the solution methods of 

nonlinear evolution equations (NLEEs), has been used to obtain some solutions of Ivancevic option 

pricing model (IOPM) and (3+1)-dimensional nonlinear wave equation (NLWE) in liquid with gas 

bubbles. Thus, some solutions of the discussed equations have been found such as dark soliton, 

trigonometric and hyperbolic solutions. Two dimensional (2D) and three dimensional (3D) graphics of 

these solutions have been drawn with the help of Wolfram Mathematica 12. 

Keywords: GKM, Ivancevic option pricing model, (3+1)-dimensional NLWE in liquid with gas 
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INTRODUCTION 

Nonlinear evolution equations (NLEEs) are tackled in quite substantial scientific fields such as 

physics, biophysics, mathematical physics, optical fibers, mathematical chemistry, hydrodynamics, 

fluid dynamics, control theory, optics, mechanics, chemical kinematics, biogenetics and so on. With 

the improving world, NLEEs arise as having more hard and complex solutions. Solving these 

equations and finding novel methods forms a very important field of study. For this aim, several 

solution methods have been presented to the literature by some scientists (Kara and Ünsal, 2022; 

Mamun et al., 2022; Eslami and Mirzazadeh, 2014; Biswas et al., 2018; Günay et al., 2021; Duarte and 

da Mota, 2021; Tuluce Demiray and Bayrakci, 2021a) 

Ivancevic option pricing model (IOPM) (Ivancevic, 2010; Jena et al., 2020; Ivancevic, 2011; 

Chen et al., 2022; González-Gaxiola et al., 2017; Chen et al., 2021) is given as: 

 𝑖𝑤𝑡 = −
1

2
𝜎𝑤𝑠𝑠 − 𝛽|𝑤|2𝑤, (𝑖 = √−1)                                                                                                             (1)  

Where 𝑤(𝑠, 𝑡) symbolizes the option price function at time 𝑡, |𝑤|2 indicates the probability 

density function for the option price and denotes potential field, σ is dispersion frequency coefficient, 

and it is used to represent the volatility being constant or stochastic process itself, (in this paper, it is 

tackled as a constant). 𝛽 shows the Landau coefficient symbolizing the adaptive market potential(Jena 

et al., 2020).  IOPM defines a nonlinear wave (e.g. in Bose-Einstein condensates) described by the 

complex-valued wave function 𝑤(𝑠, 𝑡) of real space and time parameters. Herein, the space-like 

variable𝑠 shows the stock (asset) price (Ivancevic, 2011). Also, Eq. (1) constitutes a connection 

between economy and optional pricing (Chen et al., 2022). 

A lot of solutions have been procured via fractional reduced differential transform method (Jena 

et al., 2020), Jacobi elliptic functions (Ivancevic, 2011), rational sine-Gordon expansion method and 

modified exponential method (Chen et al., 2022), He’s frequency amplitude formulation method 

(González-Gaxiola et al., 2017), and so on (Chen et al., 2021). 

In the area of liquid with gas bubbles, bubble–liquid mixing equations have been improved to identify 

the propagation of weak nonlinear waves which are extensively observed in natural science, 

hydrodynamics, medical science, and engineering. Motivated by that, (3+1)-dimensional NLWE in 

liquid with gas bubbles is tackled as (Wang et al., 2019; Wang et al., 2020; Kumar et al.,2021; Shen et 

al., 2022; Liu and Zhang, 2020; Yadav and Arora, 2021; Tu et al., 2016; Liu et al., 2020), 

(𝑤𝑡 + 𝑤𝑤𝑥 +
1

4
𝑤𝑥𝑥 − 𝑤𝑥)

𝑥
+

3

4
(𝑤𝑦𝑦 + 𝑤𝑧𝑧) = 0                                                                                         (2)  

Where 𝑤 = 𝑤(𝑥, 𝑦, 𝑧, 𝑡) is a differentiable function with space coordinates 𝑥, 𝑦, 𝑧 and time 

coordinate 𝑡 (Wang et al., 2019). 𝑤 is connected with the velocity of the mixture, 𝑥, 𝑦, 𝑧 and 𝑡 denotes 

the scaled spatial and temporal coordinates, sembolizing the transverse 𝑦 and 𝑧 perturbation on the 

wave propagating in the 𝑥 direction (Wang et al., 2020). Eq. (2) identifies some nonlinear physical 

phenomena in liquid including gas bubble (Wang et al., 2019). 

Many solutions have been found via generalized exponential rational function method (Kumar et 

al., 2021), Hirota’s bilinear method (Shen at al., 2022), extended homoclinic test method (Liu and 

Zhang, 2020), Lie symmetry method (Yadav and Arora, 2021), Hirota bilinear method and Bäcklund 

transformations (Tu et al., 2016), bilinear method and KP reduction method (Liu et al., 2020) and so 

on our purpose in this study is to obtain some solutions of (3+1)-dimensional NLWE in liquid with gas 

bubbles by using GKM (Gurefe, 2020; Tuluce Demiray and Bayrakci, 2021b; Tuluce Demiray and 

Bayrakci, 2021c). First, the basic of GKM was presented. Afterwards, GKM was implemented to the 
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recommended equation and some solutions were found by using the Wolfram Mathematica 12 package 

program. 

MATERIALS AND METHODS 

Let’s investigate the general form of the partial differential equation with detached variables 

𝑥, 𝑦, 𝑧, … , 𝑡 as, 

 𝑆(𝑤, 𝑤𝑥, 𝑤𝑦, 𝑤𝑧, … , 𝑤𝑡, … , 𝑤𝑥𝑥, 𝑤𝑥𝑦, 𝑤𝑥𝑧, … , 𝑤𝑥𝑡, … ) = 0                                                                            (3)  

Step 1: We regard travelling wave solution as in the following equation; 

𝑤(𝑥, 𝑦, 𝑧, … , 𝑡) = 𝑤(ɛ), ɛ = 𝑒1𝑥 + 𝑒2𝑦 + 𝑒3𝑧 + ⋯ + 𝑒𝑝𝑡                                                                             (4)  

Using Eq. (4), Eq. (3) is transformed into an ordinary differential equation: 

𝑇(𝑤, 𝑤′, 𝑤′′, 𝑤′′′, … ) = 0                                                                                                                                     (5)  

where superscripts indicate ordinary derivatives according ɛ .  

Step 2. Assuming that we imagine the solutions of Eq. (5) as Eq. (6), 

𝑤(ɛ) =
∑ 𝑎𝑘𝑍𝑘(ɛ)𝑛

𝑘=0

∑ 𝑏𝑙𝑍𝑙(ɛ)𝑚
𝑙=0

=
𝐺[𝑍(ɛ)]

𝐻[𝑍(ɛ)]
                                                                                                                                (6)  

where 𝑍 is  
1

1±𝑒ɛ  We must specify that 𝑍 is the solution to Eq. (7), 

𝑍′ = 𝑍2 − 𝑍                                                                                                                                                              (7)  

where 𝑍′ =
𝑑𝑧

𝑑ɛ
 . 

Using Eq. (6), the following derivatives are obtained,  

𝑤′(ɛ) =
𝐺′𝑍′𝐻−𝐺𝐻′𝑍′

𝐻2
= 𝑍′ [

𝐺′𝐻−𝐺𝐻′

𝐻2
] = (𝑍2 − 𝑍) [

𝐺′𝐻−𝐺𝐻′

𝐻2
]                                                                        (8)  

𝑤′′(ɛ) =
𝑍2 − 𝑍

𝐻2
[(2𝑍 − 1)(𝐺′𝐻 − 𝐺𝐻′) +

𝑍2 − 𝑍

𝐻
[𝐻(𝐺′′𝐻 − 𝐺𝐻′′) − 2𝐻′𝐺′𝐻 + 2𝐺(𝐻′)2]]      ( 9) 

where 𝐺′ =
𝑑𝐺

𝑑𝑍
 ,    𝐻′ =

𝑑𝐻

𝑑𝑍
 ,     𝐺′′ =

𝑑2𝐺

𝑑𝑍2   ,    𝐻′′ =
𝑑2𝐻

𝑑𝑍2 . 

Step 3. The solution of the nonlinear ordinary differential equation given by Eq. (5) is sought 

according to the GKM as follows: 

𝑤(ɛ) =
𝑎0+𝑎1𝑍+𝑎2𝑧2+⋯+𝑎𝑛𝑍𝑛

𝑏0+𝑏1𝑍+𝑏2𝑧2+⋯+𝑏𝑚𝑍𝑚                                                                                                                              (10)  

We use the homogeneous balance principle to find the values of 𝑚 and 𝑛 in Eq. (5). For this 

purpose, we balance between the highest order derivative and the highest order nonlinear term in Eq. 

(5). Thus, 𝑚 and 𝑛 are obtained. 

Step 4. Then, a zero polynomial is found with respect to 𝑍. An algebraic equation system 𝑅(𝑍) is 

constituted by equating the coefficients to zero in the zero polynomial. If this found algebraic equation 

system is unfastened by way of Mathematica 12, 𝑎𝑘(𝑘 = 0, … , 𝑛), 𝑏𝑙(𝑙 = 0, … , 𝑚), 𝑒𝑗(𝑗 = 0, … , 𝑝) 

terms are satisfied 

Application of GKM to the IOPM 

To get some solutions of Eq. (1), we take into account the following equality: 

𝑤 = 𝑒𝑖(𝑐2𝑡+𝑘2𝑠)𝑤(ɛ), ɛ = 𝑐1𝑡 + 𝑘1𝑠                                                                                                                 (11)  

Putting Eq. (11) into Eq. (1), we find the following equality 

𝑒𝑖(𝑡𝑐2+𝑠𝑘2) (
𝑤′′(ɛ)𝜎𝑘1

2

2
+ (𝑖𝜎𝑘1𝑘2 + 𝑖𝑐1)𝑤′(ɛ) + 𝑤(ɛ) (𝛽|𝑤(ɛ)|2 −

𝜎𝑘2
2

2
− 𝑐2)) = 0                            (12)  

The real and imaginary parts of Eq. (12) are obtained as follows: 

(𝜎𝑘1𝑘2 + 𝑐1)(𝑤′(ɛ)) = 0,                                                                                                                                 (13)  
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𝑤′′(ɛ)𝜎𝑘1
2

2
+ 𝛽𝑤(ɛ)|𝑤(ɛ)|2 −

𝑤(ɛ)𝜎𝑘2
2

2
− 𝑤(ɛ)𝑐2 = 0                                                                                      (14)  

If the balance principle is applied, we obtain 

𝑛 − 𝑚 + 2 = 3𝑛 − 3𝑚 ⇒ 𝑛 = 𝑚 + 1                                                                                                             (15)  

If we choose 𝑚 = 1 and 𝑛 = 2, we get 

𝑤(ɛ) =
𝑎0+𝑎1𝑍+𝑎2𝑍2

𝑏0+𝑏1𝑍
                                                                                                                                             (16)  

𝑤′′(ɛ)

= (𝑍2

− 𝑍) [
(𝑎1 + 2𝑎2𝑍)(𝑏0 + 𝑏1𝑍) − 𝑏1(𝑎0 + 𝑎1𝑍 + 𝑎2𝑍2)

(𝑏0 + 𝑏1𝑍)2
]                                                                                    (17) 

 

𝑤′′(ɛ) =
𝑍2 − 𝑍

(𝑏0 + 𝑏1𝑍)2
(2𝑍 − 1)[(𝑎1 + 2𝑎2𝑍)(𝑏0 + 𝑏1𝑍) − 𝑏1(𝑎0 + 𝑎1𝑍 + 𝑎2𝑍2)]

+
(𝑍2 − 𝑍)2

(𝑏0 + 𝑏1𝑍)3
[2𝑎2(𝑏0 + 𝑏1𝑍)2 − 2𝑏1(𝑎1 + 2𝑎1𝑍)(𝑏0 + 𝑏1𝑍)

+ 2𝑏1
2(𝑎0 + 𝑎1𝑍

+ 𝑎2𝑍2)]                                                                                                                                      (18) 

Case 1: 

𝑎0 = −
𝑖√𝜎𝑏0𝑘1

√𝛽
, 𝑎1 = −𝑎2 +

𝑖√𝜎𝑏0𝑘1

√𝛽
, 𝑎2 = 𝑎2, 𝑏0 = 𝑏0, 𝑏1 = −

𝑖√𝛽𝑎2

√𝜎𝑘1
 ,  

 𝑐1 = −𝜎𝑘1(3𝑘1 + 𝑘2), 𝑐2 = −
1

2
𝜎(2𝑘1

2 + 𝑘2
2).                                                                                             (19)  

By placing Eq. (19) in Eq. (16), we get the trigonometric function solution of Eq. (1) 

𝑤1(𝑠, 𝑡) = −
√𝜎𝑘1

2√𝛽
𝑒𝑖(𝑠𝑘2−

1

2
𝜎(2𝑘1

2+𝑘2
2)𝑡) (𝑖 + 𝑡𝑎𝑛 [

𝑖(𝑠𝑘1−𝜎𝑘1(3𝑘1+𝑘2)𝑡)

2
])                                                     (20)  

2D and 3D graphs of real and imaginary parts of the solution (20) are demonstrated with contour 

simulations in Figure 1. 

 

 
15 10 5 0 5 10 15

4

2

0

2

4

Re w1 s,t ,Im w1 s,t
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Figure 1. 3D, contour plots of solution (20) for 𝑘1 = 0.25, 𝑘2 = −2, 𝜎 = 1, 𝛽 = 1, −15 ≤ 𝑠 ≤ 15,  −5 ≤ 𝑡 ≤ 5 values 

with −5 ≤ 𝑡 ≤ 5 range and 2D plot of solution for 𝑡 = 2 with these values 

Case 2: 

   𝑎0 = −
𝑎2𝑏0

𝑏1
, 𝑎1 = 𝑎2 (−1 +

𝑏0

𝑏1
) , 𝑎2 = 𝑎2, 𝑏0 = 𝑏0, 𝑏1 = 𝑏1, 𝜎 = −

𝛽𝑎2
2

𝑏1
2𝑘1

2,  

𝑐1 =
𝛽𝑎2

2(3𝑘1+𝑘2)

𝑏1
2𝑘1

, 𝑐2 =
𝛽𝑎2

2(2𝑘1
2+𝑘2

2)

2𝑏1
2𝑘1

2 .                                                                                                                 (21)  

By placing Eq. (21) in Eq. (16), we get the dark soliton solution of Eq. (1) 

w2(𝑠, 𝑡) = −
𝑎2

2𝑏1
𝑒

𝑖(𝑠𝑘2+
𝛽𝑎2

2(2𝑘1
2+𝑘2

2)

2𝑏1
2𝑘1

2 )
(1 + 𝑡𝑎𝑛ℎ [

1

2
(𝑠𝑘1 +

𝛽𝑎2
2(3𝑘1+𝑘2)𝑡

𝑏1
2𝑘1

)])                                              (22)  

2D and 3D graphs of real and imaginary parts of the solution (22) are demonstrated with contour 

simulation in Figure 2. 

 

 
Figure 2. 3D, contour plots of solution (22) for 𝑘1 = 2, 𝑘2 = 0.3, 𝑏1 = −3, 𝑎2 = 0.5, 𝛽 = 2 , 

−25 ≤ 𝑠 ≤ 25, −1 ≤ 𝑡 ≤ 1 values with −1 ≤ 𝑡 ≤ 1 range and 2D plot of solution for 𝑡 = 0.75 with these values. 

Case 3: 

𝑎0 = 𝑎2, 𝑎1 = −2𝑎2, 𝑎2 = 𝑎2, 𝑏0 = 𝑏0, 𝑏1 = −2𝑏0, 𝑘1 = −
𝑖√𝛽𝑎2

2√𝜎𝑏0
,     𝑐1 =

3𝛽𝑎2
2+𝑖√𝛽𝜎𝑎2𝑏0𝑘2

2𝑏0
2 , 𝑐2 =

𝛽𝑎2
2

𝑏0
2 −

𝜎𝑘2
2

2
.                                                                                                                                                               (22)  

By placing Eq. (22) in Eq. (16), we get the dark soliton solutions of Eq. (1)  

w3(𝑠, 𝑡) =
𝑎2

4𝑏0
𝑒𝑖(𝑠𝑘2+𝑐2𝑡) (2 + 𝑐𝑜𝑡ℎ [

1

2
(

−𝑖𝑠√𝛽𝑎2

2√𝜎𝑏0
+ 𝑐1𝑡)] + 𝑡𝑎𝑛ℎ [

1

2
(−

𝑖𝑠√𝛽𝑎2

2√𝜎𝑏0
+ 𝑐1𝑡)])                     (23)  

where  𝑐1 =
3𝛽𝑎2

2+𝑖√𝛽𝜎𝑎2𝑏0𝑘2

2𝑏0
2 , 𝑐2 =

𝛽𝑎2
2

𝑏0
2 −

𝜎𝑘2
2

2
 

20 10 0 10 20

1.0

0.5

0.0
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1.0

Re w2 s,t ,Im w2 s,t
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2D and 3D graphs of real and imaginary parts of the solution (23) are demonstrated with contour 

simulation in Figure 3. 

 

 
Figure 3. 3D, contour plots of solution (23) for 𝑘2 = 0.5, 𝑏0 = 3, 𝑎2 = 5, 𝜎 = −0.4, 𝛽 = 2,              −20 ≤ 𝑠 ≤ 20, −3 ≤

𝑡 ≤ 3 values with −3 ≤ 𝑡 ≤ 3 range and 2D plot of solution for 𝑡 = 2.5 with these values. 

Case 4: 

𝑎0 = 𝑎0, 𝑎1 = −2𝑎0, 𝑎2 = 2𝑎0, 𝑏0 = 𝑏0, 𝑏1 = −2𝑏0, 𝑘1 = −
𝑖√𝛽𝑎0

√𝜎𝑏0
,  

 𝑐1 = −
𝑖√𝛽𝜎𝑎0𝑘2

𝑏0
, 𝑐2 =

𝛽𝑎0
2

𝑏0
2 −

𝜎𝑘2
2

2
                                                                                                                     (24)  

By placing Eq. (24) in Eq. (16), we get the trigonometric function solution of Eq. (1) 

𝑤4(𝑠, 𝑡) =
𝑖𝑎0

𝑏0
𝑒

𝑖(𝑠𝑘2+(
𝛽𝑎0

2

𝑏0
2 −

𝜎𝑘2
2

2
)𝑡)

𝑐𝑜𝑡 [
𝑠√𝛽𝑎0

√𝜎𝑏0
−

√𝛽𝜎𝑎0𝑘2𝑡

𝑏0
]                                                                            (25)  

2D and 3D graphs of real and imaginary parts of the solution (25) are demonstrated with contour 

simulation in Figure 4.  
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Figure 4. 3D, contour plots of solution (25) for 𝑘2 = 0.25, 𝑏0 = −0.7, 𝑎0 = 0.01, 𝜎 = −0.4, 𝛽 = 2,              −35 ≤ 𝑠 ≤

35, −4 ≤ 𝑡 ≤ 4 values with −4 ≤ 𝑡 ≤ 4  range and 2D plot of solution for 𝑡 = 3 with these values 

Case 5: 

𝑎0 = 0, 𝑎1 = 0, 𝑎2 = −
𝑖√𝜎𝑏1𝑘1

√𝛽
, 𝑏0 = −

𝑏1

2
, 𝑐1 = 𝜎𝑘1(6𝑘1 − 𝑘2), 𝑐2 = −

1

2
𝜎(8𝑘1

2 + 𝑘2
2)                   (26)  

By placing Eq. (26) in Eq. (16), we get the dark soliton solution of Eq. (1)  

𝑤5(𝑠, 𝑡) =
𝑖√𝜎𝑘1

√𝛽
𝑒𝑖(𝑠𝑘2−

1

2
𝜎(8𝑘1

2+𝑘2
2)𝑡)(−1 + 𝑐𝑜𝑡ℎ[𝑠𝑘1 + 𝜎𝑘1(6𝑘1 − 𝑘2)𝑡])                                            (27)  

2D and 3D graphs of real and imaginary parts of the solution (27) are demonstrated with contour 

simulation in Figure 5.  
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Figure 5. 3D, contour plots of solution (27) for 𝑘1 = 0.8, 𝑘2 = 0.5, 𝜎 = 0.2, 𝛽 = 1,                    −40 ≤ 𝑠 ≤

40, −2 ≤ 𝑡 ≤ 2 values with −2 ≤ 𝑡 ≤ 2  range and 2D plot of solution for , 𝑡 = 1  with these values 

Case 6: 

a1= −𝑎0 −
𝑖√𝜎𝑏1𝑘1

√𝛽
, 𝑎2 =

𝑖√𝜎𝑏1𝑘1

√𝛽
, 𝑏0 =

𝑖√𝛽𝑎0

√𝜎𝑘1
,     𝑐1 = −𝜎𝑘1(3𝑘1 + 𝑘2), 𝑐2 = −

1

2
𝜎(2𝑘1

2 +

𝑘2
2)                                                                                                                                                                             (28)  

By placing Eq. (28) in Eq. (16), we get the dark soliton solution of Eq. (1)  

𝑤6(𝑠, 𝑡) = −
𝑖√𝜎𝑘1

2√𝛽
𝑒𝑖(𝑠𝑘2−

1

2
𝜎(2𝑘1

2+𝑘2
2)𝑡) (1 + 𝑡𝑎𝑛ℎ [

1

2
(𝑠𝑘1 − 𝜎𝑘1(3𝑘1 + 𝑘2)𝑡)])                                 (29)  

2D and 3D graphs of real and imaginary parts of the solution (29) are demonstrated with contour 

simulation in Figure 6. 
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Figure 6. 3D, contour plots of solution (29) for 𝑘1 = 0.5, 𝑘2 = −1, 𝜎 = 4, 𝛽 = −1, −30 ≤ 𝑠 ≤ 30,                  −6 ≤ 𝑡 ≤ 6 

values with−6 ≤ 𝑡 ≤ 6   range and 2D plot of solution for 𝑡 = 1.5  with these values 

Practice of GKM to the (3+1)-dimensional NLWE in liquid with gas bubbles 

To get some soliton solutions of Eq. (2), we take into account the following equality: 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(ɛ),   ɛ = 𝑥 + 𝑦 + 𝑧 − 𝑐𝑡,                                                                                                     (30)  

where 𝑥, 𝑦, 𝑧 are space coordinates and 𝑡 temporal coordinate. 

Putting Eq. (30) into Eq. (2), we find the following  

(−𝑐𝑤′ + 𝑤𝑤′ +
1

4
𝑤′′′ − 𝑤′)

𝑥
+

3

4
(𝑤′′ + 𝑤′′) = 0                                                                                    (31)  

If the integration constant of Eq. (31) is taken as zero and by integrating Eq. (31) with respect to 

ɛ, we get, 

 (2 − 4𝑐)𝑤 + 2𝑤2 + 𝑤′′ = 0                                                                                                                            (32)  

If the balance principle is applied between 𝑤2 and  𝑤′′ in Eq. (32), we obtain 

𝑛 − 𝑚 + 2 = 2𝑛 − 2𝑚 ⇒ 𝑛 = 𝑚 + 2                                                                                                             (33)  

If we choose 𝑚 = 1 and𝑛 = 3, we get, 

  𝑤(ɛ) =
𝑎0+𝑎1𝑍+𝑎2𝑍2+𝑎3𝑍3

𝑏0+𝑏1𝑍
,                                                                                                                                (34) 

𝑤′(ɛ) = (𝑍2 − 𝑍) [
(𝑎1+2𝑎2𝑍+3𝑎3𝑍2)(𝑏0+𝑏1𝑍)−𝑏1(𝑎0+𝑎1𝑍+𝑎2𝑍2+𝑎3𝑍3)

(𝑏0+𝑏1𝑍)2 ]                                              (35)  
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𝑤′′(ɛ) =
𝑍2−𝑍

(𝑏0+𝑏1𝑍)2
(2𝑍 − 1)[(𝑎1 + 2𝑎2𝑍 + 3𝑎3𝑍2)(𝑏0 + 𝑏1𝑍) − 𝑏1(𝑎0 + 𝑎1𝑍 + 𝑎2𝑍2 + 𝑎3𝑍3)] +

(𝑍2−𝑍)
2

(𝑏0+𝑏1𝑍)3
[(𝑏0 + 𝑏1𝑍)2(2𝑎2 + 6𝑎3𝑍) − 2𝑏1(𝑏0 + 𝑏1𝑍)(𝑎1 + 2𝑎2𝑍 + 3𝑎3𝑍2) + 2𝑏1

2(𝑎0 + 𝑎1𝑍 +

𝑎2𝑍2𝑎3𝑍3)]                                                                                                                                                              (36)  

Case 1: 

𝑎0 = 0, 𝑎1 = −
𝑏1

2
, 𝑎2 = 3𝑏1, 𝑎3 = −3𝑏1, 𝑏0 = 0, 𝑐 =

1

4
                                                                             (37)  

By placing Eq. (37) in Eq. (34), we get the dark soliton solution of Eq. (2)  

𝑤1(𝑥, 𝑦, 𝑧, 𝑡) =
1

4
(1 − 3𝑡𝑎𝑛ℎ2 [

1

2
(−

𝑡

4
+ 𝑥 + 𝑦 + 𝑧)])                                                                               (38)  

2D and 3D graphs of the solution (38) is demonstrated with contour simulations in Figure 7. 

 
Figure 7. 3D, contour plots of solution (38) for 𝑦 = 0.2, 𝑧 = 4, −5 ≤ 𝑡 ≤ 5, −25 ≤ 𝑥 ≤ 25,  values with −5 ≤ 𝑡 ≤ 5 

range and 2D plot of solution for 𝑡 = 2  with these values 

Case 2: 

𝑎0 = 0, 𝑎1 = 3𝑏0, 𝑎2 = 3(−𝑏0 + 𝑏1), 𝑎3 = −3𝑏1, 𝑐 =
3

4
                                                                            (39)  

By placing Eq. (39) in Eq. (34), we get the hyperbolic function solution of Eq. (2) 

𝑤2(𝑥, 𝑦, 𝑧, 𝑡) = −
3

2+2𝑐𝑜𝑠ℎ[
3𝑡

4
−𝑥−𝑦−𝑧]

                                                                                                                 (40)  

2D and 3D graphs of the solution (40) is demonstrated in with contour simulations in Figure 8. 
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Figure 8. 3D, contour plots of solution (40) for  𝑦 = 3, 𝑧 = 0.2, −20 ≤ 𝑥 ≤ 20, −4 ≤ 𝑡 ≤ 4values with −4 ≤ 𝑡 ≤ 4 range 

and 2D plot of solution for 𝑡 = 0,02 with these values 

CONCLUSION 

In this study, GKM was applied to acquire solutions of IOPM and (3+1)-dimensional NLWE in 

liquid with gas bubbles. Thus, solutions of these equations were procured such as dark soliton, 

trigonometric and hyperbolic solutions. In addition, for some certain values, 3D and 2D graphical 

representations of these solutions were given with contour simulations with the help of Wolfram 

Mathematica 12.  As far as we know, GKM has not been applied to IOPM and (3+1)-dimensional 

NLWE in liquid with gas bubbles before. In the light of the results, we deduce that GKM is an 

effective method in understanding various nonlinear phenomena. In future studies, GKM can be used 

in research of other NLEEs. 
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