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Abstract

The goal of this research is to reveal the unknown time dependent diffusion
coefficient in space-time fractional differential equations by means of frac-
tional Taylor series method. Unlike most methods used in inverse problems,
using no over-measured data is a substantial advantage of this method. As a
result, the unknown diffusion coefficient could be determined with high preci-
sion. Illustrative examples shows that the retrieved unknown coefficient and
the solution of the problem are in a high agreement with the exact solution
of the corresponding the inverse problems.

Keywords: Space-time fractional partial differential equations, Fractional
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1. Introduction

Nonlocal properties of fractional derivatives make fractional differential
equations a substantial tool in modelling of diverse processes. Therefore this
subject gains a growing attention of scientist in various research areas [1–12].
As a result, determination of unknown parameters in fractional differential
equations with or without additional measured data becomes one of the main
challenges in inverse problems [13–16].
In this research, our focus is on establishing time dependent diffusivity co-
efficient and the solution of the mathematical problem including heat-like
differential equation by employing fractional Taylor series method. Unlike
many methods in inverse problems, this method does not require any local
or nonlocal over-measured data. Hence, this prohibits the error in deter-
mination of unknown coefficient and solution. Moreover, having a Dirichlet
boundary condition at the final point is enough for acquiring the unknown
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coefficient. The other boundary and initial conditions ensure the uniqueness
of the unknown coefficient of a given heat-like differential equations [17]. All
these properties make this method much more valuable.
The main goal in this article is to reveal the unknown coefficient of the fol-
lowing governing space-time fractional heat equation:

Dα
t u(x, t) = a(t)Dβ

x(D
β
xu(x, t)), 0 < x < l, 0 < t < T, 0 < α, β ⩽ 1, (1)

where u(x, t) and a(t) > 0 represent the temperature and thermal diffusivity,
respectively. Associated to (1) the prescribed initial condition is

u(x, 0) = φ(x), 0 ⩽ x ⩽ l, (2)

and the prescribed Dirichlet boundary conditions are

u(0, t) = µ1(t), 0 < t ⩽ T, (3)

u(1, t) = µ2(t), 0 < t ⩽ T. (4)

Having the condition a(t) > 0 makes the problem (1)-(4) well-posed.
u(x, t) must be continuously differentiable with respect to time variable t and
two times continuously differentiable with respect to space variable x, i.e.

W 1
2 [0, T ] ∩W 2

2 [0, l]

where the Banach spaces W 1
2 [0, T ] and W 2

2 [0, l] are defined as follows:

W 1
2 [0, T ] = {u = u(., t) : u, u′ϵAC[0, T ]}, (5)

W 2
2 [0, l] = {u = u(x, .) : u, u′ϵAC[0, l]},

Notice that, AC[0, T ] and AC[0, l] denote the space of absolutely continu-
ous functions. Moreover, the diffusivity a(t) belong to space of continuous
function C[0, T ].

2. Preliminaries

Essential concepts and features of fractional derivatives are presented in
this section [1–4].
Definition 1. The Riemann-Liouville fractional integral of order α (α ⩾ 0) is
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given as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0, (6)

J0f(x) = f(x). (7)

Definition 2. The αth order derivative of u(x, t) in Liouville-Caputo sense is
given as

Dα
t u(x, t) =

{
1

Γ(n−α)

∫ t

0
(t− ξ)n−α−1 ∂

nu(x,ξ)
∂tn

dξ, n− 1 < α < n,
∂nu(x,t)

∂tn
, α = n ∈ N.

(8)

Definition 3. An (α, β)-fractional Taylor series is defined as follows [18]:

∞∑
i+j=0

gi,jt
iαxjβ = g0,0︸︷︷︸

i+j=0

+ g1,0t
α + g0,1x

β︸ ︷︷ ︸
i+j=1

+...+
n∑

k=0

gn−k,kt
(n−k)αxkβ

︸ ︷︷ ︸
i+j=n

+... (9)

where gi,j, i, jϵN are the coefficients of the series.
We have the following fractional form of Taylor’s formula that is related to
(9)

u(x, t) =
∞∑

i+j=0

Diα
t Djβ

x (u(x, t))|(x,t)=(0,0)

Γ(iα + 1)Γ(jβ + 1)
tiαxjβ

=
∞∑
i=0

( ∞∑
j=0

Diα
t Djβ

x (u(x, t))|(x,t)=(0,0)

Γ(jβ + 1)
xjβ

)
tiα

Γ(iα + 1)

=
∞∑
i=0

ui(x)
tiα

Γ(iα + 1)
, x ∈ I ⊂ R, 0 ⩽ t < R, (10)

where ui(x) are the coefficients of the series (10) and R is the radius of
convergence. Hence approximation of u(x, t) can be rewritten as

un(x, t) =
n∑

i=0

ui(x)
tiα

Γ(iα + 1)
(11)
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Lemma 4. Let u(x, t) has a fractional Taylor series representation as (9) for
(x, t)ϵ[0, Rx)× [0, Rt). If D

rα
t Dsβ

x u(x, t)ϵC((0, Rx)× (0, Rt)) for r, sϵN , then

Drα
t u(x, t) =

∞∑
i+j=0

gi+r,j
Γ((i+ r)α + 1)

Γ(iα + 1)Γ(jβ + 1)
tiαxjβ (12)

Dsβ
x u(x, t) =

∞∑
i+j=0

gi,j+s
Γ((j + s)β + 1)

Γ(iα + 1)Γ(jβ + 1)
tiαxjβ (13)

Theorem 5. If there exists a constant 0 < γ < 1 such that

∥un(x)
tnα

Γ(nα + 1)
∥ ⩽

γn

1− γ
∥u0(x)∥, n ∈ N, x ∈ I ⊂ R, 0 ⩽ t < R, (14)

then, the sequence of approximate solution (11) converges to the exact solu-
tion.
Proof. For all x ∈ I, 0 ⩽ t < R, we have

∥un+1(x, t)− un(x, t)∥ = ∥un+1(x)
t(n+1)α

Γ((n+ 1)α + 1)
∥

⩽

∥∥∥∥ ∞∑
i=n+1

ui(x, t)

∥∥∥∥ ⩽
∞∑

i=n+1

∥ui(x, t)∥

based on Theorem 2 in [19], we have

⩽
∞∑

i=n+1

γ∥ui−1(x, t)∥

⩽
∞∑

i=n+1

γ2∥ui−2(x, t)∥

⩽
...

⩽

⩽
γn+1

1− γ
∥u0(x, t)∥

=
γn+1

1− γ
∥u0(x)∥. (15)
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Since 0 < γ < 1 and u0(x) is bounded, then

lim
n→∞

∥u(x, t)− un(x, t)∥ = 0. (16)

This completes the proof.

3. Fractional Taylor series method

In order to determine the thermal diffusion coefficient a(t) of time in the
space-time fractional diffusion problem (1)-(4), in the series form we plug the
fractional Taylor series of u = u(x, t) and a = a(t) into (1)-(4) which leads
to:

∞∑
i+j=0

gi+1,j
Γ((i+ 1)α + 1)

Γ(iα + 1)Γ(jβ + 1)
tiαxjβ

=
∞∑
k=0

ak

{ ∞∑
i+j=0

gi,j+2
Γ((j + 2)β + 1)

Γ(iα + 1)Γ(jβ + 1)Γ(kα+ 1)
t(i+k)αxjβ

}
(17)

Making two series on both sides of above equation equal to each other, the
unknown coefficients in the fractional Taylor series of a(t) are acquired.

4. Illustrative Examples

In this section, we illustrate two examples of inverse problems about de-
termination of unknown time dependent thermal diffusivity.
Example 1. Consider the inverse coefficient problem involving space-time
fractional differential equations:

Dα
t u(x, t) = a(t)Dβ

x(D
β
xu(x, t)), 0 < x < l, 0 < t < 1, (18)

u(x, 0) = Eβ(x
β), 0 ⩽ x ⩽ l, (19)

u(0, t) = Eα(t
α + t2α), 0 < t ⩽ 1, (20)

u(1, t) = Eα(t
α + t2α)Eβ(1), 0 < t ⩽ 1, (21)
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where one parameter Mittag-Leffler function Eβ(x
β) =

∞∑
j=1

xjβ

Γ(jβ+1)
is the frac-

tional generalization of the function exp(x). It has the exact solution

u(x, t) = Eα(t
α + t2α)Eβ(x

β) (22)

and

a(t) = 1 + 2
tα

Γ(α + 1)
. (23)

We establish the thermal diffusivity a(t) in fractional Taylor series form as
follows:

a(t) =
∞∑
k=0

ak
tkα

Γ(kα + 1)
, 0 < α ≤ 1. (24)

which leads to Eq. (16), with the initial coefficients

g0,j =
1

Γ(jβ + 1)
, (25)

g0,0 = 1. (26)

The coefficients gi,j are acquired by equating two series in Eq. (16), which
allow us to form the solution of Eq.(18) as follows:

u(x, t) =
tα

Γ(α + 1)
+

xβ

Γ(β + 1)
+

t2α

Γ(2α + 1)
+

x2β

Γ(2β + 1)

+
x3β

Γ(3β + 1)
+

t3α

Γ(3α + 1)
Γ(2α + 1)

(
Γ(2α + 1)

(Γ(α + 1))3

−(Γ(α + 1))2Γ(2α + 1)− Γ(α + 1)Γ(3α + 1) + (Γ(2α + 1))2

(Γ(α + 1))3Γ(2α + 1)

+
(1 + Γ(2α+1)

Γ(α+1)
)

Γ(2α + 1)

)
+

t2α

Γ(2α + 1)
(1 +

Γ(2α + 1)

Γ(α + 1)
)

+
tαx2β

Γ(α + 1)Γ(2β + 1)
+

tαxβ

Γ(α + 1)Γ(β + 1)

+
t2αxβ

Γ(2α + 1)Γ(β + 1)
(1 +

Γ(2α + 1)

Γ(α + 1)
) + 1 (27)
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In order to establish the thermal diffusivity a(t), the Dirichlet boundary
condition at x = 1 taken into account in (20) which produces the coefficients
ak as follows:
a0 = 1,
a1 =

Γ(2α+1)
Γ(α+1)

,

a2 = − (Γ(α+1))2Γ(2α+1)−Γ(α+1)Γ(3α+1)+(Γ(2α+1))2

(Γ(α+1))3
,

a3 = −
(

Γ(α+1)(Γ(3α+1))2−(Γ(α+1))3Γ(4α+1)−(Γ(α+1))4Γ(4α+1)
(Γ(α+1))4Γ(2α+1)

)
−

(
−(Γ(2α+1))2Γ(3α+1)+Γ(α+1)(Γ(2α+1))2Γ(3α+1)+(Γ(α+1))2Γ(2α+1)Γ(3α+1)

(Γ(α+1))4Γ(2α+1)

)
,

...
As a result, the unknown thermal diffusivity a(t) is determined in the series
of as follows:

a(t) = 1 +

(
Γ(2α + 1)

Γ(α + 1)

)
tα

Γ(α + 1)
+

(
Γ(3α + 1)

(Γ(α + 1))2

−Γ(2α + 1)

Γ(α + 1)
− (Γ(2α + 1))2

(Γ(α + 1))3

)
t2α

Γ(2α + 1)

−
(
Γ(α + 1)(Γ(3α + 1))2 − (Γ(α + 1))3Γ(4α + 1)− (Γ(α + 1))4Γ(4α + 1)

(Γ(α + 1))4Γ(2α + 1)

+
(Γ(2α + 1))2Γ(3α + 1)− Γ(α + 1)(Γ(2α + 1))2Γ(3α + 1)

(Γ(α + 1))4Γ(2α + 1)

−(Γ(α + 1))2Γ(2α + 1)Γ(3α + 1)

(Γ(α + 1))4Γ(2α + 1)

)
t3α

Γ(3α + 1)
+ ...(28)

It can be concluded from Table 1 that absolute error increases as the orders of
time and space fractional derivatives decrease. Similarly, the absolute error
increases as time variable increases. In Fig. 1, the graphs of diffusivity a(t)
for various orders α of time fractional derivative are presented. Moreover,
in Figs. 2-4, 3D graphics of the solution for different values of α and β are
illustrated.
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Table 1: The table of absolute errors E(α, β) of Example 1 at x = 0.5 for n = 6 .

t Exact E(1, 1) E(1, 0.9)E(1, 0.7)E(0.9, 1)E(0.9, 0.7)E(0.7, 1)E(0.7, 0.7)
0.1 1.84043 5.49e-058.24e-05 4.18e-04 1.62e-04 7.74e-04 1.53e-03 3.76e-03
0.2 2.09591 8.29e-041.02e-03 2.41e-03 2.00e-03 4.77e-03 1.19e-02 2.23e-02
0.3 2.43485 4.41e-035.19e-03 9.39e-03 9.24e-03 1.80e-02 4.14e-02 7.24e-02
0.4 2.88462 1.49e-021.73e-02 2.80e-02 2.82e-02 5.07e-02 1.04e-01 1.77e-01
0.5 3.48279 3.92e-024.55e-02 6.97e-02 6.88e-02 1.19e-01 2.20e-01 3.67e-01
0.6 4.28032 8.82e-021.02e-01 1.52e-01 1.46e-01 2.48e-01 4.16e-01 6.86e-01
0.7 5.34550 1.78e-012.06e-01 3.03e-01 2.80e-01 4.71e-01 7.28e-01 1.19e+00
0.8 6.76897 3.33e-013.86e-01 5.62e-01 5.02e-01 8.39e-01 1.21e+00 1.95e+00
0.9 8.66984 5.88e-016.83e-01 9.86e-01 8.56e-01 1.42e+00 1.91e+00 3.06e+00
1 11.203289.92e-011.15e-011.66e+001.40e+00 2.31e+00 2.93e+00 4.64e+00

Example 2. Consider the inverse coefficient problem involving space-time
fractional differential equations:

Dα
t u(x, t) = a(t)Dβ

x(D
β
xu(x, t)), 0 < x < 1, 0 < t < 1, (29)

with initial condition

u(x, 0) = Eβ(x
β), 0 ⩽ x ⩽ 1, (30)

and boundary conditions

u(0, t) =

{
Eα(t

3α − tα

4
), 0 < t ⩽ 1

2
,

Eα(−t3α + tα

4
), 1

2
< t < 1.

(31)

u(1, t) =

{
Eα(t

3α − tα

4
)Eβ(1), 0 < t ⩽ 1

2
,

Eα(−t3α + tα

4
)Eβ(1),

1
2
< t < 1.

(32)

which has the exact solution

u(x, t) =

{
Eα(t

3α − tα

4
)Eβ(x

β), 0 < t ⩽ 1
2
,

Eα(−t3α + tα

4
)Eβ(x

β), 1
2
< t < 1.

(33)

and

a(t) =

{
1
4
− 6 t2α

Γ(2α+1)
, 0 < t ⩽ 1

2
,

−1
4
+ 6 t2α

Γ(2α+1)
, 1
2
< t < 1.

(34)
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Figure 1: The graphics of thermal diffusivity a(t) for Example 1 .
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Figure 2: The graphics of exact solution u(x, t) for Example 1 .
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Figure 3: The graphics of approximate solution u(x, t) of Example 1 for α = β = 1.
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Figure 4: The graphics of approximate solution of u(x, t) of Ex. 1 for α = β = 0.9.
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We retrieve the unknown thermal diffusivity coefficient a(t) in fractional
Taylor series form as follows:

a(t) =
∞∑
k=0

ak
tkα

Γ(kα + 1)
, 0 < α ≤ 1. (35)

which leads to Eq. (17), with the initial coefficients

g0,j =
1

Γ(jβ + 1)
, (36)

g0,0 = 1. (37)

The coefficients gi,j are obtained by equating two series in Eq. (17), which
enable us to form the solution u(x, t) of Eq.(26) as follows:

u(x, t) =



− tα

Γ(α+1)
+ xβ

Γ(β+1)
+ t2α

16Γ(2α+1)
+ x2β

Γ(2β+1)

+ x3β

Γ(3β+1)
− t3α

Γ(3α+1)
Γ(2α + 1)

(
1

64Γ(2α+1)

− Γ(3α+1)
Γ(α+1)Γ(2α+1)

)
− tαx2β

4Γ(α+1)Γ(2β+1)
+ t2αxβ

16Γ(2α+1)Γ(β+1)

− tαxβ

4Γ(α+1)Γ(β+1)
+ 1 , 0 < t ⩽ 1

2
,

tα

Γ(α+1)
+ xβ

Γ(β+1)
+ t2α

16Γ(2α+1)
+ x2β

Γ(2β+1)

+ x3β

Γ(3β+1)
+ t3α

Γ(3α+1)
Γ(2α + 1)

(
1

64Γ(2α+1)

+ Γ(3α+1)
Γ(α+1)Γ(2α+1)

)
+ tαx2β

4Γ(α+1)Γ(2β+1)
+ t2αxβ

16Γ(2α+1)Γ(β+1)

+ tαxβ

4Γ(α+1)Γ(β+1)
+ 1 , 1

2
< t < 1.

(38)

In order to determine the unknown coefficient a(t) the boundary condition
at x = 1 into account in (32) produce the coefficients ak as follows:
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a(t) =



a0 = −1
4
,

a1 = 0,

a2 =
Γ(3α+1)
Γ(α+1)

,

a3 =
(Γ(3α+1))2−Γ(2α+1)Γ(4α+1)+Γ(α+1)Γ(2α+1)Γ(3α+1)

4(Γ(α+1))2Γ(2α+1)
,

... , 0 < t ⩽ 1
2
,

a0 =
1
4
,

a1 = 0,

a2 = −Γ(3α+1)
Γ(α+1)

,

a3 =
(Γ(3α+1))2−Γ(2α+1)Γ(4α+1)+Γ(α+1)Γ(2α+1)Γ(3α+1)

4(Γ(α+1))2Γ(2α+1)
,

... , 1
2
< t < 1.

(39)

As a result, the unknown coefficient a(t) is determined in the series of as
follows:

a(t) =



−1
4
+
(

Γ(3α+1)
Γ(α+1)

)
t2α

Γ(2α+1)

+
(

(Γ(3α+1))2−Γ(2α+1)Γ(4α+1)+Γ(α+1)Γ(2α+1)Γ(3α+1)
4(Γ(α+1))2Γ(2α+1)

)
t3α

Γ(3α+1)
+ ..., 0 < t ⩽ 1

2
,

1
4
−

(
Γ(3α+1)
Γ(α+1)

)
t2α

Γ(2α+1)

+
(

(Γ(3α+1))2−Γ(2α+1)Γ(4α+1)+Γ(α+1)Γ(2α+1)Γ(3α+1)
4(Γ(α+1))2Γ(2α+1)

)
t3α

Γ(3α+1)
+ ..., 1

2
< t < 1.

(40)

It can be concluded from Table 2 that absolute error increases as the orders of
time and space fractional derivatives decrease. Similarly, the absolute error
increases as time variable increases. In Fig. 5, the graphs of diffusivity a(t)
for various orders α of time fractional derivative are presented. Moreover,
in Figs. 6-8, 3D graphics of the solution for different values of α and β are
illustrated.
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Table 2: The table of absolute errors E(α, β) of Example 2 at x = 0.5 for n = 6 .

t Exact E(1, 1) E(1, 0.9)E(1, 0.7)E(0.9, 1)E(0.9, 0.7)E(0.7, 1)E(0.7, 0.7)
0.11.609627.07e-065.55e-06 1.25e-05 1.96e-05 1.65e-06 1.29e-04 6.85e-05
0.21.580911.14e-049.53e-05 6.11e-05 2.20e-04 1.11e-04 6.21e-04 5.79e-04
0.31.571454.93e-044.21e-04 2.53e-04 7.32e-04 5.08e-04 7.51e-04 3.17e-03
0.41.590421.13e-038.78e-04 1.05e-03 1.20e-03 2.32e-03 1.70e-03 1.20e-02
0.51.648701.35e-035.22e-04 4.27e-03 1.67e-04 8.67e-03 1.13e-02 3.50e-02
0.61.543253.26e-033.87e-03 3.72e-03 7.91e-03 9.19e-03 2.15e-02 3.67e-02
0.71.392691.56e-021.88e-02 2.14e-02 2.38e-02 3.67e-02 3.30e-02 6.81e-02
0.81.201613.97e-024.87e-02 5.77e-02 4.69e-02 8.35e-02 2.67e-02 8.90e-02
0.90.974867.15e-029.08e-02 1.12e-01 6.33e-02 1.38e-01 3.22e-02 5.89e-02
1 0.705678.49e-021.20e-01 1.60e-01 3.14e-02 1.55e-01 2.06e-01 9.64e-02

5. Conclusion

In this article, inverse problem of determining unknown thermal diffu-
sivity coefficient in mathematical problem including differential equation is
taken in hand. Fractional Taylor series method is implemented successfully
for establishing time-dependent diffusion coefficient. The considerable ad-
vantage of this method is that it doesn’t require any over-measured data
which allows us to establish the solution of inverse problem more precisely.
Taking the Dirichlet boundary condition at final point into account enable us
to determine the coefficients in fractional Taylor series of the solution. Future
work will be concerned with the construction of the diffusivity coefficient in
linear heat-like equations with Neumann boundary conditions.
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Figure 5: The graphics of thermal diffusivity a(t) for Example 2 .
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Figure 6: The graphics of exact solution u(x, t) for Example 2 .
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Figure 7: The graphics of approximate solution u(x, t) of Example 2 for α = β = 1.
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Figure 8: The graphics of approximate solution u(x, t) of Example 2 for α = β = 0.9.
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