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Abstract. In the present paper, we introduce a two-order nonlinear fractional

sequential Langevin equation using the derivatives of Atangana-Baleanu and
Caputo-Fabrizio. The existence of solutions is proven using a fixed point theo-

rem under a weak topology, and an illustrative example is then given. Further-
more, we present new fractional versions of the Adams-Bashforth three-step

approach for the Atangana-Baleanu and Caputo derivatives. New nonlinear

chaotic dynamics are performed by numerical simulations.

1. Introduction

Fractional calculus has several applications in biology, mechanics, physics, vis-
coelasticity, electromagnetic waves, fractional Brownian motions, image processing,
and engineering. Numerous books and essays in the literature cover a wide spec-
trum of fractional calculus problems, see [2, 22,33].
Unfortunately, the fundamental prestigious Caputo and Riemann-Liouville features
have such a critical flaw, even though their kernel is non-local, it remains singu-
lar. This issue has an impact on the modeling of real-world problems. To address
the aforementioned obstacles, Caputo and Fabrizio proposed a new differential op-
erator with non-singular kernel, see for instance the papers [12, 13, 21]. On the
other, some researchers have used these derivatives to handle specific challenges,
see [3, 5, 21]. Regrettably, various concerns have been raised in opposition to this
novel approach, leading them to conclude that this operator cannot be a derivative
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of fractional order but can be viewed as a regulatory parameter, see [35]. For these
reasons, based on the Mittag Leffler function, Atangana and Baleanu devised a new
fractional operator, see [4, 26].

Nowadays, the most common differential equations observed in engineering and
applied research are of second order. They take the form of ẍ = f (t, x, ẋ).
Among the important examples of second-order equations is the Newton equation:
mẍ = f(x), the RLC circuit equation in electrical engineering: LCẍ + RC ẋ+ x =
v (t), as well as the forced harmonic oscillator: mẍ + bẋ+ kx = f (t).
The ultimate focus of this paper is to thoroughly explore certain sophisticated
fractional differential equations, which can typically produce chaotic behavior such
as the Langevin equation. The relevance of the nonlinear Langevin problem arises
from its implementation as a model of anomalous systems. Indeed, it is well known
that in many cases, the Langevin equation is the most convenient way to measure
time changes in Brownian motion velocity, see [11,18,19,23,32,34].
In this contribution, we study the existence of solutions for the nonlinear Langevin
equation using a fixed point theorem under a weak topology, see [9, 20, 21]. The
considered problem involves, in particular, two fractional orders with non-local
multi-point boundary conditions. For more information, see [1, 8, 15,17,31].
So let us consider the following problem:

Dα
(
Dβ − λ(t)

)
y(t) = f

(
t, y(t), Dβy(t)

)
, t ∈ [0, T ], 0 < α, β ≤ 1, (1)

with its conditions:

y(0) = 0, Dβy(0) =

r∑
i=0

δiJ
γy(ξi),

0 < β ≤ 1, γ > 0, r ∈ N∗, ξi ∈ [0, T ],

(2)

where Dα and Dβ are fractional differential operators of order 0 < α, β ≤ 1, Jγ is
the Rieman Liouville fractional integral operator of order γ > 0 and λ : [0, T ] → R
is a given continuous function. Two different approaches are used: the first one is
of Caputo-Fabrizio and the second one is of Atangana Baleanu.
Then, inspired by [7, 25, 27, 28], we propose new three-step Adams-Bashforth frac-
tional methods for Caputo and Atangana Baleanu fractional derivatives. Finally,
we apply the three-step Adams-Bashforth fractional methods to obtain new non-
linear chaotic dynamics.

The remaining part of the paper is organized into sections. Section 2 provides
an overview of some of the fundamental concepts of fractional differentiation and
fixed-point theory. In Section 3, we assert the existence of at least one solution
to the problem as an outcome of the study. Section 4 discusses the numerical
approximation method for fractional derivatives. Section 5 investigates numerical
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experiments with chaotic fractional differential equations to illustrate the utility of
the proposed technique. Finally, we conclude with Section 6.

2. Preliminaries

The following section introduces some fractional calculus notions and concepts,
see [4, 9, 13,20,23] .

Definition 1. The Riemann-Liouville fractional integral operator of order α ≥ 0,
for a continuous function f on [a, b] is defined as

Jα
a f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, α > 0, a < t ≤ b,

where Γ(α) :=
∫∞
0
e−ssα−1ds.

Definition 2. The Liouville-Caputo fractional derivative of order α ∈ (0, 1), for a
differentiable function f , is defined by

CDαf(t) =
1

Γ(1− α)

∫ t

0

f ′(s)
1

(t− s)α
ds.

Definition 3. The Laplace transform for the Liouville-Caputo fractional derivative
of order α is:

L [Dαf(t)] (s) = sαL{f(t)}(s)− sα−1{f(0)}.

Definition 4 ( [13]). The Caputo-Fabrizio derivative of order α ∈]0, 1[, for T >
0, f ∈ H1(0, T ), is given by

CFDαf(t) =
1

2

M(α)(2− α)

1− α

∫ t

0

f ′(s) exp
[−α(t− s)

1− α

]
ds,

where M(α) is a normalizing function depending on α such that M(0) =M(1) = 1.

Definition 5 ( [13]). The Laplace transform for Caputo-Fabrizio derivative is de-
fined as

L
{
CFDαf(t)

}
(s) =

1

2

M(α)(2− α)

1− α

s L{f(t)}(s)− f(0)

s+ α
1−α

.

Definition 6 ( [23]). The Caputo Fabrizio integral operator of order α is given in
the following way:

CFJαf(t) =
2(1− α)

M(α)(2− α)
f(t) +

2α

M(α)(2− α)

∫ t

0

f(s)ds.

Definition 7 ( [4]). The Atangana Baleanu fractional derivative in Caputo sense,
for T > 0, f ∈ H1[0, T ], α ∈]0, 1[, is given as:

ABCDαf(t) =
B(α)

1− α

∫ t

0

f ′(s)Eα

[
−α (t− s)α

1− α

]
ds.
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The Atangana Baleanu fractional derivative in Riemann-Liouville sense is given
as:

ABRDα
t f(t) =

B(α)

1− α

d

dt

∫ t

a

f(s)Eα

[
−α (t− s)α

1− α

]
ds,

where Eα is Mittag-Leffler function, given by

Eα(u) =

∞∑
k=0

uk

Γ(αk + 1)
, α > 0, α ∈ R, u ∈ R,

where B(α) has the same properties as M(α) in Caputo-Fabrizio case.

Definition 8 ( [4]). The fractional integral associated to the Atangana-Baleanu
fractional derivative is defined as:

ABJαf(t) =
1− α

B(α)
f(t) +

α

B(α)Γ(α)

∫ t

a

f(y)(t− s)α−1ds.

Definition 9. The Laplace transform of Atangana-Baleanu fractional derivative in
Caputo sense, is defined by:

L
{
ABCDαf(t)

}
(s) =

B(α)

1− α

sαL{f(t)}(s)− sα−1f(0)

sα + α
1−α

.

Definition 10 ( [4]). The Laplace transform of Atangana-Baleanu fractional de-
rivative in Riemann-Liouville sense is given as:

L
{
ABRDαf(t)

}
(s) =

B(α)

1− α

sαL{f(t)}(s)
sα + α

1−α

.

Definition 11. Let E and F be two Banach spaces. The operator f : E → F is
weakly sequentially continuous if, for each sequence (yn)n with yn → y, we have
fyn → fy.

Definition 12. Let E be a Banach space with a norm ∥ · ∥E. A mapping
Ψ : E −→ E is called D-Lipschitz, if there exists a continuous nondecreasing
function W : R+ −→ R+satisfying

∥Ψx−Ψy∥E ≤ W(∥x− y∥∞),

for all x, y ∈ E with W(0) = 0. The function W is called a D-function of Ψ on
E. Particularly, once W(r) = kr for a given k > 0 is a Lipschitz mapping with
a Lipschitzian constant k. In addition, if k < 1 is a contraction on E with a
contraction constant k.

Remark 1. Any Lipitzian correspondence is automatically D-Lipschitz, but the
reverse may not be true. If W is not necessarily increasing and satisfies W(r) < r
for r > 0, then Ψ is called a nonlinear contraction on E.

Remark 2. Note that any weakly sequentially continuous nonlinear contraction is
ω-condensing.
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Corollary 1. Let Ω be a nonempty, convex, and closed set in a Banach space E.
Assume that Ψ : Ω −→ Ω is a weakly sequentially continuous and condensing map
in Ω. If Ψ(Ω) is bounded, then, Ψ has at least a fixed point.

Corollary 2. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach
space E. Assume that Φ : Ω −→ Ω is weakly sequentially continuous. If Φ(Ω) is
relatively weakly compact, then Φ has at least a fixed point in Ω.

Theorem 1 ( [9]). Let Ω be a nonempty, bounded, closed, and convex subset of
a Banach space E. Suppose that Φ : Ω −→ E and Ψ : E −→ E are two weakly
sequentially continuous mappings such that:

(i) Φ is weakly compact,
(ii) Ψ is a nonlinear contraction,
(iii) (y = Ψx+Φy, x ∈ Ω) =⇒ y ∈ Ω.

Then, there exists y ∈ Ω such that y = Ψy +Φy.

Theorem 2 (Eberlein-Smulian). Let B be a weakly closed subset of the Banach
space E. Then the following assertions are equivalent:

* B is weakly compact.
* B is weakly sequentially compact.

Lemma 1. Let T > 0, f ∈ H1(0, T ), α ∈]0, 1[. Then the solution of the problem
(1)-(2), for Atangana Baleanu fractional derivative in Caputo sense, is

y(t) =A1


∫ t

0

(
(t− u)β+α−1

Γ(β + α)
+

(1− α)(t− u)β−1

αΓ(β)
+

(1− β)(t− u)α−1

βΓ(α)

)
f(u)du

+
(1− β)(1− α)f(t)

βα


+ B1

[∫ t

0

(t− u)

Γ(B)

β−1

λ(u)y(u)du+ λ(0)

(
1− β

β
+

tβ

Γ(β + 1)

) r∑
i=0

δiJ
γy(ξi)

]
.

(3)

Lemma 2. Let T > 0, f ∈ H1(0, T ), α ∈]0, 1[. Then the solution of (1)-(2), for
the case of Caputo Fabrizio derivative, is

y(t) =A2


∫ t

0

(
(t− u) +

(1− α)

α
+

(1− β)

β

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα


+ B2

[∫ t

0

λ(u)y(u)du+ λ(0)

(
1− β

β
+ t

) r∑
i=0

δiJ
γy(ξi)

]
.

(4)

Proof of Lemmas 1 and 2 : For computational purposes, we include the following
quantity:

g(t) := Dβy(t)− λ(t)y(t),
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A1 :=
βα

B(α)
(
B(β)− λ(t)(1− β)

) ,
B1 :=

β

B(β)− λ(t) + β
,

A2 :=
βα

4M(α)
(
α− 2

)(
M(β)(β − 2)− 2λ(t)(1− β)

) ,
B2 :=

β

−2 M(β)(β − 2)− 2λ(t)(1− β)
.

(Proof of Lemma 1) From the property of Laplace transform, we have

L{Dαg(t)} (s) =
B(α)
1−α s

α

sα + α
1−α

L(g(t))(s) +
B(α)
1−α s

α−1

sα + α
1−α

g(0) = L{f(t)} ,

thus,

L{g(t)} (s) =
sα + α

1−α

B(α)
1−α s

α
L{f(t)} (s) + g(0)

s
.

Then, we have

L
{
Dβy(t)

}
(s) =

sα + α
1−α

B(α)
1−α s

α
L(f(t))(s) + g(0)

s
+ L(λ(t)y(t))(s) + y(0)

s
.

Hence, it yields that

L{y(t)} (s) =

(
sα + α

1−α

)(
sβ + β

1−β

)
B(α)
1−α

B(β)
1−β s

α+β
L(f(t))(s) +

(
sβ + β

1−β

)
g(0)

B(β)
1−β s

β+1

+

(
sβ + β

1−β

)
L(λ(t)y(t))(s)

B(β)
1−β s

β
.

(5)

Substituting the conditions (2) in (5) and thanks to the properties of inverse Laplace
transform, we deduce (3), which ends the proof.
(Proof of Lemma 2) Using the same arguments as before, we can write

L{Dαg(t)} (s) =
M(α)(2−α)

2(1−α) s

s+ α
1−α

L(g(t))(s) +
M(α)(2−α)

2(1−α)

s+ α
1−α

g(0) = L{f(t)} .



FRACTIONAL ORDER LANGEVIN EQUATION WITH NEW CHAOTIC DYNAMICS 669

Then, we have

L{y(t)} (s) =

(
s+ α

1−α

)(
s+ β

1−β

)
M(α)(2−α)

2(1−α)
M(β)(2−α)

2(1−α) s
L(f(t))(s) +

(
s + β

1−β

)
g(0)

M(β)(2−β)
2(1−β) s2

+

(
s + β

1−β

)
L(λ(t)y(t))(s)

M(α)(2−α)
2(1−α) s

.

Replacing the conditions (2) in (2), we obtain (4), which completes the proof. □

3. Main Results

The next section addresses the existence of at least one solution to our problem by
utilizing two different approaches. We apply a fixed point theorem of Krasnoselskii
type. It is based on the sum of two sequentially weakly continuous mappings.
We consider the Banach space:

E =
{
y ∈ C([0, T ],R), Dβy ∈ C([0, T ],R)

}
,

equipped with norm

∥y∥E = sup
t∈[0,T ]

|y(t)|+ sup
t∈[0,T ]

∣∣Dβy(t)
∣∣ .

Certainly, (E, ∥.∥E) is a Banach space.
Let Ωj := {y ∈ E, ∥y∥E ≤ ηj}, j = 1, 2.
The assumptions below are required:

(H1): The function f : [0, T ]× R2 → R is a jointly continuous function.
(H2): There exist non negative function h ∈ C([0, T ],R+) and a non negative

non decreasing function W : R+ → R+, for each t ∈ [0, T ], and for all
xi, yi ∈ R, i = 1, 2, such that

|f (t, x1, x2)− f (t, y1, y2)| ≤ h(t) W(∥x− y∥E).

For x ∈ Ωj , j = 1, 2, we have

|f (t, x1, x2)| ≤ h(t) W(ηj).
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To simplify, we consider the following formulas

Fy(t) := f
(
t, y(t), Dβy(t)

)
,

k1 := ∥h∥∞A1

∣∣∣∣ (1− β)(1− α)

βα
+

T β+α

Γ(β + α+ 1)
+

(1− α)T β

αΓ(β + 1)
+

(1− β)Tα

βΓ(α+ 1)

∣∣∣∣ ,
k2 := ∥h∥∞A2

∣∣∣∣ (1− β)(1− α)

βα
+
T 2

2
+

(1− α)T

α
+

(1− β)T

β

∣∣∣∣ ,
k3 := ∥h∥∞

∣∣∣∣1− α

B(α)
+

αTα

B(α)Γ(α+ 1)

∣∣∣∣ ,
k4 := ∥h∥∞

∣∣∣∣ −αT 2

M(α)(α− 2)
+

2(α− 1)

M(α)(α− 2)

∣∣∣∣ ,
p1 := B1| ∥λ∥∞

(
T β

Γ(β + 1)
+

∣∣∣∣ 1− β

β
+

T β

Γ(β + 1)

∣∣∣∣ rδξγ

Γ(γ + 1)

)
,

p2 = B2| ∥λ∥∞
(
T 2

2
+

∣∣∣∣ 1− β

β
+ T

∣∣∣∣ rδξγ

Γ(γ + 1)

)
,

p3 = p4 = ∥λ∥∞
(
1 +

rδξγ

Γ(γ + 1)

)
,

and

1−ρ1 ̸= 0, 1−ρ2 ̸= 0, κ1 := k1+k3, κ2 := k2+k4, ρ1 := p1+p3, ρ2 := p2+p4.

δ := max{δi, i = 1, r}, ξ := max
ξi∈[0,T ]

{ξi, i = 1, r}

Our main results are given by the following theorem:

Theorem 3. Assume that (H1) and (H2) are satisfied and suppose that
κj

(1−ρj)
≤ ηj

W(ηj)
, j = 1, 2.

Then problem (1)-(2) has at least a solution y, ∥y∥E ≤ ηj , j = 1, 2.

Proof. Let’s introduce the applications Hj : E → E, j = 1, 2, by

H1y(t)

= A1


∫ t

0

(
(t− u)β+α−1

Γ(β + α)
+

(1− α)(t− u)β−1

αΓ(β)
+

(1− β)(t− u)α−1

βΓ(α)

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα


+ B1

[∫ t

0

(t− u)

Γ(B)

β−1

λ(u)y(u)du+ λ(0)

(
1− β

β
+

tβ

Γ(β + 1)

) r∑
i=0

δiJ
γy(ξi)

]
,

(6)
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and

H2y(t) =A2


∫ t

0

(
(t− u) +

(1− α)

α
+

(1− β)

β

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα


+ B2

[∫ t

0

λ(u)y(u)du+ λ(0)

(
1− β

β
+ t

) r∑
i=0

δiJ
γy(ξi)

]
.

(7)

Obviously, the establishment of the existence of solutions for (1)-(2) is equivalent
to studying the existence of solutions of equation (6) (for Atangana Baleanu deriv-
ative), or the existence of solution of equation (7) (for Caputo Fabrizio derivative).
For this aim, let us define the operators:

Ψj := (Ψj,1,Ψj,2) and Φj := (Φj,1,Φj,2), j = 1, 2,

such that

Ψj, i : E → E and Φj, i : Ωj → E, i, j = 1, 2,

by

Ψ1,1y(t) = A1


∫ t

0

(
(t− u)β+α−1

Γ(β + α)
+

(1− α)(t− u)β−1

αΓ(β)
+

(1− β)(t− u)α−1

βΓ(α)

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα

 ,

Ψ2,1y(t) = A2

[∫ t

0

(
(t− u) +

(1− α)

α
+

(1− β)

β

)
Fy(u)du+

(1− β)(1− α)Fy(t)

βα

]
,

Φ1,1y(t) = B1

[∫ t

0

(t− u)

Γ(β)

β−1

λ(u)y(u)du+ λ(0)

(
1− β

β
+

tβ

Γ(β + 1)

) r∑
i=0

δiJ
γy(ξi)

]
,

Φ2,1y(t) = B2

[∫ t

0

λ(u)y(u)du+ λ(0)

(
1− β

β
+ t

) r∑
i=0

δiJ
γy(ξi)

]
,

Ψ1,2y(t) =
α

B(α)

∫ t

0

(t− u)α−1

Γ(α)
Fy(u)du+

(1− α) Fy(t)

B(α)
,

Ψ2,2y(t) =
−2α

M(α)(α− 2)

∫ t

0

Fy(u)du+
2(α− 1)Fy(t)

M(α)(α− 2)
,

Φ1,2y(t) = Φ2,2y(t) = λ(t)y(t) + λ(0)

r∑
i=0

δiJ
γy(ξi),

where

Hj = Ψj,1 +Φj,1, DβHj = Ψj,2 +Φj,2, j = 1, 2.
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Firstly, we need to prove that Ψ1, Φ1 are two weakly sequential continuous map-
pings. Let yn ∈ Ωj be a sequence with yn → y, for some y ∈ E.
By (H1) and (H2), for j = 1, 2, we can write

|Ψj,1yn(t)−Ψj,1y(t)| ≤ kj W( ∥yn − y∥E ),

and

|Ψj,2yn(t)−Ψj,2y(t)| ≤ kj+2 W( ∥yn − y∥E ).

Thus, we can write

∥Ψjyn −Ψjy∥E ≤ κjW( ∥yn − y∥E). (8)

With the same arguments as before, we have

|Φj,1yn(t)− Φj,1y(t)| ≤ pj∥yn − y∥∞

and

|Φj,2yn(t)− Φj,2yn(t)| ≤ pj+2∥yn − y∥∞.

Therefore,

∥Φjyn − Φjy∥E ≤ ρj∥yn − y∥E. (9)

Since ∥yn − y∥E → 0, the right hand sides of (8) and (9) tend to zero, then Ψj and
Φj are weakly sequentially continuous mapping.

Secondly, we show that Φj(Ωj) is relatively weakly compact.
Step 1: Let y ∈ Ωj j = 1, 2, t ∈ [0, T ]. We prove that Φj(Ωj) are bounded.
By (H2), we get

|Φj,1y(t)| ≤ ηj pj and |Φj,2y(t)| ≤ ηj pj+2,

so that

∥Φjy∥E ≤ ηj ρj . (10)

It follows that Φj(Ωj) are bounded.
Step 2: Let y ∈ Ωj j = 1, 2 and t1, t2 ∈ [0, T ] with t1 < t2, we will show that Φj

are equicontinuous.
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By application of (H1), for j = 1, we have

|Φ1,1y(t2)− Φ1,1y(t1)|

≤ |B1|
Γ(β)

∫ t1

0

∣∣∣(t2 − u)β−1 − (t1 − u)
β−1

∣∣∣ |λ(u)y(u)| du

+
|B1|
Γ(β)

[ ∫ t2

t1

∣∣(t2 − u)β−1
∣∣ |λ(u)y(u)| du +

|tB2 − tB1 |
Γ(B + 1)

r∑
i=0

δiJ
γy(ξi)

]

≤ η1 |B1| ∥λ∥∞
Γ(β)

[∫ t1

0

∣∣∣(t2 − u)β−1 − (t1 − u)
β−1

∣∣∣+ ∫ t2

t1

∣∣(t2 − u)β−1
∣∣ du]

+
|B1| δ r η1 ξ

γ |tB2 − tB1 |
Γ(B + 1)Γ(γ + 1)

.

Also, we have

|Φ1,2y(t2)− Φ1,2y(t1)| ≤ |λ(t2)− λ(t1)| |y(t2)− y(t1)|.

Consequently,

|Φ1y(t2)− Φ1y(t1)| ≤
η1 |B1| ∥λ∥∞

Γ(β)


∫ t1

0

∣∣∣(t2 − u)β−1 − (t1 − u)
β−1

∣∣∣ du
+

∫ t2

t1

∣∣(t2 − u)β−1
∣∣ du


+
δ r η1 ξ

γ |tB2 − tB1 |
Γ(B + 1)Γ(γ + 1)

+ |λ(t2)− λ(t1)| |y(t2)− y(t1)|.

(11)

In the same way as the previous part, for j = 2, we get

|Φ2,1y(t2)− Φ2,1y(t1)| ≤ |B2|

[ ∫ t2

t1

|λ(u)y(u)| du + |t2 − t1|
r∑

i=0

δiJ
γy(ξi)

]

≤ η2 |B2| |t2 − t1|
[
∥λ∥∞ + δ r

ξγ

Γ(γ + 1)

]
and

|Φ2,2y(t2)− Φ2,2y(t1)| ≤ |λ(t2)− λ(t1)| |y(t2)− y(t1)|.

These imply that

|Φ2y(t2)− Φ2y(t1)| ≤ η2 |B2| |t2 − t1|
[
∥λ∥∞ + δ r

ξγ

Γ(γ + 1)

]
+ |λ(t2)− λ(t1)| |y(t2)− y(t1)|,

(12)

when t1 → t2 , the right hand sides of (11) and (12) tends to zero independently
of y. Therefore, Φj , j = 1, 2, are equicontinuous operators.
Thanks to Arzelà–Ascoli and Eberlein-Smulian theorems, Φj , j = 1, 2, is relatively



674 M. M. BELHAMITI, Z. DAHMANI, M. Z. SARIKAYA

weakly compact.

Next, we show that the operator Ψj , j = 1, 2, are nonlinear contractions.
In view of (H1) and (H2), for each t ∈ [0, T ] , we obtain

∥Ψj,1y2 −Ψj,1y1∥∞ ≤ kj W( ∥y2 − y1∥E ),

and

∥Ψj,2y2 −Ψj,2y1∥∞ ≤ kj+2 W( ∥y2 − y1∥E ),

from which we get

∥Ψjy2 −Ψjy1∥E ≤ κj W( ∥y2 − y1∥E ).

In addition, we have to prove condition (iii) of Theorem 1 in two steps.
Phase 1: We verify that Ψj(E), j = 1, 2 are bounded.
Let Ψj(E) := {Ψj(y), y ∈ Ωj}, j = 1, 2, for all t ∈ [0, T ]. Thanks to (H2), we obtain

|Ψj,1y(t)| ≤ kj W(ηj) and |Ψj,2y(t)| ≤ kj+2 W(ηj),

which simplifies into

∥Ψjy∥E ≤ κj W(ηj). (13)

Therefore, Ψj(E), j = 1, 2 are bounded.
Phase 2: Let z ∈ Ωj , j = 1, 2, such that y = Ψjz +Φjy, so we can write:

|y(t)| ≤ |Ψj,1z(t)| + |Φj,1y(t)| and |Dβy(t)| ≤ |Ψj,2z(t)| + |Φj,2y(t)|,
Thanks to (10) and (13), we obtain

∥y∥E ≤ κj W(ηj) + ηj ρj .

Consequently, we have

∥y∥E ≤ ηj ⇒ y ∈ Ωj .

So through the implementation of theorem1, we can state that Hj has at least one
fixed point. Hence problem (1)-(2) has one solution in Ωj , for j = 1, 2. □

4. An Example

Consider the following example:
Dα

(
Dβ − λ(t)

)
y(t) = f

(
t, y(t), Dβy(t)

)
, t ∈ [0, T ], 0 < α, β ≤ 1,

y(0) = 0, Dβy(0) =

r∑
i=0

δiJ
γy(ξi), 0 < β ≤ 1, γ > 0 r ∈ N∗, ξi ∈ [0, T ].

We choose α = 0.995, β = 0.995, γ = 1.33, δ = 0.75, ξ = 0.75, r = 5, and T = 1.
Define the continuous function by

f(t, x1, x2) =
ecos(πt)

(2− t)4

(√
|x1 + x2|

)
, h(t) =

ecos(πt)

(2− t)4
, W(r) =

√
r, λ(t) = 0.1t.
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From the above data, for η1 = 4.5 and η2 = 1.6, we have

κ1 = 0.5581, κ2 = 0.4138, ρ1 = 0.7293, ρ2 = 0.6708.

Obviously,
κ1

(1− ρ1)
= 2.0622 ≤ η1

W(η1)
=

√
4.5 ∼ 2.1213

κ2
(1− ρ2)

= 1.2575 ≤ η2
W(η2)

=
√
1.6 ∼ 1.2649.

By Theorem 1, our problem has at least one solution on [0, 1].

5. Numerical Method of Approximation

We recall the following result, which is needed in the next section.

Theorem 4 ( [25]). The three-step Adams-Bashforth scheme for the Caputo Fab-
rizio fractional derivative is given by

y(tn+1) =y(tn) +

(
1− α

M(α)
+

23αh

12M(α)

)
f (tn, y(tn))

−
(
1− α

M(α)
+

16αh

12M(α)

)
f (tn−1, y(tn−1)) +

5αh

12M(α)
f (tn−2, yn−2) .

(14)

In what follows, we prove an analogue theorem in the case of Atangana-Baleanu
and then in the case of Caputo.

Theorem 5. The three-step fractional Adams-Bashforth scheme for Atangana-
Baleanu derivative in Caputo sense, for n ∈ N, is given by

y(tn+1) =y(tn) + A (f (tn, yn)− f (tn−1, y(tn−1)))

+ f (tn, y (tn))


hαB(n+ 1)α

2

[
6

α
− 5(n+ 1)

(α+ 1)
+

(n+ 1)2

α+ 2

]
− hαBnα

2

[
2

α
− 3n

α+ 1
+

n2

α+ 2

]


+ f (tn−2, y (tn−2))


hαB(n+ 1)α

2

[
2

α
− 3(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+
hαBnα

2

[
n

α+ 1
− n2

α+ 2

]


− 2f (tn−1, y (tn−1))


hαB(n+ 1)α

2

[
3

α
− 4(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+
hαBnα

2

[
2n

α+ 1
− n2

α+ 2

]
 ,

(15)
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where

A :=
1− α

B(α)
, B :=

α

B(α)Γ(α)
.

Proof. To approach the fractional derivative of Atangana-Baleanu we use [27, 28].
First, we take the following differential equation

ABCDα
t y(t) = f(t, y(t)).

With respect to the integral representation, we find that

y(t)− y(0) =
1− α

B(α)
f(t, y(t)) +

α

B(α)Γ(α)

∫ t

0

(t− τ)α−1f(τ , y(τ))dτ.

At tn+1, we get

y (tn+1)− y(0) =
1− α

B(α)
f (tn, y(tn)) +

α

B(α)Γ(α)

∫ tn+1

0

(tn+1 − t)
α−1

f(t, y(t))dt,

thus

y (tn+1)− y (tn) = A (f (tn, yn)− f (tn−1, y(tn−1))) + C1 − C2, (16)

where,

C1 :=
α

B(α)Γ(α)

∫ tn+1

0

(tn+1 − t)
α−1

f(t, y(t))dt,

C2 :=
α

B(α)Γ(α)

∫ tn

0

(tn − t)
α−1

f(t, y(t))dt.

To approximate the integral parts, we must use the polynomial approximation
for f(t, y(t)) that passes through f (tn, y(tn)) , f (tn−1, y(tn−1)), and f (tn−2, yn−2),
which is given by

Π2(t) =

2∑
i=0

f (tn−i, yn−i)Li(t),

where Li(t) is the Lagrange polynomial for the interpolation points on tn, tn−1 and
tn−2, as

Π2(t) =
f (tn−2, y (tn−2))

2h2
(t− tn) (t− tn−1)−

f (tn−1, y (tn−1))

h2
(t− tn)

× (t− tn−2) +
f (tn, y (tn))

2h2
(t− tn−1) (t− tn−2) .
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Now, using u = (tn+1 − t) /h in C1, we get

C1 =
hα(n+ 1)α

2



[
6

α
− 5(n+ 1)

(α+ 1)
+

(n+ 1)2

α+ 2

]
f (tn, y (tn))

− 2

[
3

α
− 4(n+ 1)

α+ 1
+

(n+ 1)2

α+ 2

]
× f (tn−1, y (tn−1))

+

[
2

α
− 3(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
f (tn−2, y (tn−2))


. (17)

Similarly, taking u = (tn − t) /h in C2, we obtain

C2 =
hα(n)α

2

([
n2

α+ 2
− 3n

α− 1
+

2

α

]
f (tn, y (tn)) + 2

[
2n

α+ 1
− n2

α+ 2

]
×f (tn−1, y (tn−1))−

[
n

α+ 1
− n2

α+ 2

]
f (tn−2, y (tn−2))

)
.

(18)

Substituting (17) and (18) into (16), we find (15). □

Theorem 6. The three-step fractional Adams-Bashforth scheme for Caputo deriv-
ative, for n ∈ N, is defined by:

y(tn+1) =y(tn) + f (tn, y (tn))


hα(n+ 1)α

2Γ(α)

[
6

α
− 5(n+ 1)

(α+ 1)
+

(n+ 1)2

α+ 2

]
− hαnα

2Γ(α)

[
2

α
− 3n

α+ 1
+

n2

α+ 2

]


+ f (tn−2, y (tn−2))


hα(n+ 1)α

2Γ(α)

[
2

α
− 3(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+

hαnα

2Γ(α)

[
n

α+ 1
− n2

α+ 2

]


− 2f (tn−1, y (tn−1))


hα(n+ 1)α

2Γ(α)

[
3

α
− 4(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+

hαnα

2Γ(α)

[
2n

α+ 1
− n2

α+ 2

]
 ,

(19)

Proof. For Caputo derivative, we examine the following differential equation
cDα

t y(t) = f(t, y(t)).

The integral representation is given by

y(t)− y(0) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ , y(τ))dτ.

In a similar manner as before, we obtain (19) □

We further extend the feasibility of the suggested new scheme to explore issues
modeled in many applications. In order to reproduce some existing chaotic prob-
lems, we adequately replace the classical time derivative by the fractional derivative
of Caputo, Caputo-Fabrizio, and Atangana-Baleanu, then we faithfully perform the
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simulation with the three-step Adams Bashforth fractional method as it was con-
structed above.
We note that (1) can be reduced to the following system:

Dβy(t) = z(t) + λ(t) y(t) = f1(t, y(t))
Dαz(t) = f(t, y(t), Dβy(t)) = f2(t, y(t), D

βy(t)).

We can therefore stipulate the conditions (2) as follows

y(0) = 0, z(0) =

r∑
i=0

δiJ
γy(ξi), γ > 0. (20)

By (14), (15) and (19), the above system is transformed into the following:
Caputo case

y(tn+1) =y(tn) + f1 (tn, y (tn))C1,β + f1 (tn−2, y (tn−2))C2,β

− 2f1 (tn−1, y (tn−1))C3,β

z(tn+1) =z(tn) + f2 (tn, z (tn))C1,α + f2 (tn−2, z (tn−2))C2,α

− 2f2 (tn−1, z (tn−1))C3,α.

Caputo Fabrizio case

y(tn+1) =y(tn) + f1 (tn, y (tn))F1,β + f1 (tn−2, y (tn−2))F2,β

− 2f1 (tn−1, y (tn−1))F3,β

z(tn+1) =z(tn) + f2 (tn, z (tn))F1,α + f2 (tn−2, z (tn−2))F2,α

− 2f2 (tn−1, z (tn−1))F3,α.

Atangana-Baleanu case

y(tn+1) =y(tn) + f1 (tn, y (tn))A1,β + f1 (tn−2, y (tn−2))A2,β

− 2f1 (tn−1, y (tn−1))A3,β

z(tn+1) =z(tn) + f2 (tn, z (tn))A1,α + f2 (tn−2, z (tn−2))A2,α

− 2f2 (tn−1, z (tn−1))A3,α,

where Ai,α, Ai,β , Fi,α, Fi,β , Ci,α, Ci,β , constants obtained from (14), (15), (19)
respectively.

6. Numerical Experiments

We use a variety of real-world examples to assess the performance of the new
method on our problem, see [10,14,16,29,30,36]. The integration is carried out using
the three-step fractional Adams-Bashforth methods for Caputo, Caputo Fabrizio,
and Atangana-Baleanu. The classic case is plotted using the three-step Adams-
Bashforth method for comparison.

For all the examples, we take n = 8000, so T = n × h, α = 0.999999999,
β = 0.99999999.
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Figure 1. 2-D phase portraits for the numerical simulation for
(21)

Example 1 (see [14]). We consider the following general nonlinear Helmholtz–Duffing
oscillator:

Dα
(
Dβ − δ

)
y(t) = γ cos(ωt) + y − (1− σ)y2 − σy3 − 0.000001Dβy(t),

t ∈ [0, T ], 0 < α, β ≤ 1,
(21)

the equation (21) can be reduced to the following system:

Dβy(t) = z(t) + δy(t),

Dαz(t) = γ cos(ωt) + y − (1− σ)y2 − σy3 − 0.000001Dβy(t).

With initial conditions (0, 0.00025), h = 0.01, δ = 0.01, σ = 1, ω = 0.068, γ = 1.

Example 2 (see [16]). We consider the following problem in light of the Joseph-
son Junction pendulum description and the pendulum system for ultra-subharmonic
resonance:

Dα
(
Dβ − δ

)
y(t) =− ay − [1 + f0 cos(Ωt+Ψ)] sin y + f1 cos(ωt) sin(y − γ)

− 5 ∗ 10(−5)Dβy(t), t ∈ [0, T ], 0 < α, β ≤ 1.
(22)
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Figure 2. 2-D phase portraits for the numerical simulation for
(22)

The equation (22) can be reduced to the following system:

Dβy(t) =z(t) + δy(t),

Dαz(t) =− ay − [1 + f0 cos(Ωt+Ψ)] sin y + f1 cos(ωt) sin(y − γ)

− 5 ∗ 10(−5)Dβy(t).

The initial conditions are: (0, 0), h = 0.01, δ = 0.1, a = 0.1, Ω = 0.75, ω = 1.5,
Ψ = 7π/4, f0 = 0.2, f1 = 1.381, γ = 0.01.

Example 3 (see [30]). We examine the resulting chaos of a simple nonlinear
damped and driven pendulum motion:

Dα
(
Dβ − q

)
y(t) = aΩ2 cos(ΩDt)− Ω2 sin(y(t)) + 0.001Dβy(t),

t ∈ [0, T ], 0 < α, β ≤ 1.
(23)

The equation (23) can be reduced to the following system:

Dβy(t) = z(t) + qy(t),

Dαz(t) = aΩ2 cos(ΩDt)− Ω2 sin(y(t)) + 0.001Dβy(t).

The initial conditions: (0, 0.8), h = 0.045. q = −0.4, a = 1.4, Ω = 1, ΩD = 2/3.
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Figure 3. 2-D phase portraits for the numerical simulation for
(23)

Example 4 (see [10]). We employ numerical techniques to display chaotic attrac-
tors on the dynamics of a vertically driven damped planar pendulum:

Dα
(
Dβ − γ

)
y(t) = (χ− ψ cos τ)y(t) + 0.001Dβy(t), t ∈ [0, T ], 0 < α, β ≤ 1. (24)

The equation (24) can be reduced to:

Dβy(t) = z(t) + γy(t),

Dαz(t) = (χ− ψ cos τ)y(t) + 0.001Dβy(t).

As initial conditions: (0, 0.05), and h = 0.05, γ = −0.001, χ = −0.1, ψ = 0.545.

Example 5 (see [24]). We examine the Mixed Rayleigh Lienard Oscillator Driven
by Parametric Periodic Pimping and External Excitation given by:

Dα
(
Dβ −

(
α1 + η cos vt

))
y(t) =ω2

0 (F0 + F1 cosωt)− β0(D
βy(t))2

− β1(D
βy(t))3 + ω2

0y(t)− γy(t)3.
(25)

The equation (25) can be reduced to the following system:

Dβy(t) = z(t) +
(
α1 + η cos vt

)
y(t),

Dαz(t) = ω2
0 (F0 + F1 cosωt)− β0(D

βy(t))2 − β1(D
βy(t))3 + ω2

0y(t)− γy(t)3.
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Figure 4. 2-D phase portraits for the numerical simulation for
(24)

For initial conditions: (0,−0.5), ω0 = F0 = 0.25, α0 = 0.015, α1 = 0.025,γ = 1,

F1 = 0.5, β0 = 0.01, β1 = 0.005, and ω = v = 0.618, v =
√
5−1
2 , η = 4.

Table 1. Error summary table for each approach

Errors \ Examples Example 1 Example 2 Example 3 Example 4 Example 5
∥yAB3 − yABc∥2 1.29947854 0.00055533 0.82869035 0.05410987 0.4834849
∥yAB3 − yABcf∥2 0.00062860 0.00000003 0.00009742 0.000023851 0.0011151
∥yAB3 − yABab∥2 0.97326548 0.00047625 0.82859426 0.13071068 0.49796754

• The appearance of chaos under specific parameters demonstrates the con-
venience and pertinence of the proposed method.

• It is important to underline that some derivatives are more appropriate
than others for particular cases but not for others.

7. Conclusion

In this study, we have examined the existence of solutions to the above frac-
tional differential Langevin equation with Caputo-Fabrizio and Atangana-Baleanu
derivatives. To achieve this, we have used a fixed point theorem based on the sum
of two weakly sequentially continuous mappings.

Following that, we have proposed a novel three-step Adam Bashforth approach
based on Caputo and Atangan Baleanu fractional derivatives. Numerous nonlinear
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Figure 5. 2-D phase portraits for the numerical simulation for
(25)

fractional differential equations have been exposed to a range of quantitative exper-
iments. To assess the accuracy of the innovative numerical approach, the classical
solution was compared towards the numerical solution for various values. Computa-
tional simulation results, for particular instances of α, β, are endowed with chaotic
attractors.
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